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Abstract: The X-rudder concept has been applied to more and more autonomous underwater vehicles
(AUVs) in recent years, since it shows better maneuverability and robustness against rudder failure
compared to the traditional cruciform rudder. Aiming at the fault-tolerant control of the X-rudder
AUV (hereinafter abbreviated as xAUV), a fault-tolerant steering prototype system which can
realize dynamics control, autonomous rudder fault detection and fault-tolerant control is presented
in this paper. The steering prototype system is deployed on a verification platform, an xAUV,
in which the monitor software is developed based on the factory method and the onboard software is
developed based on the finite state machine (FSM). Dual-loop increment feedback control (DIFC)
is first introduced to obtain smooth virtual rudder commands considering actuator’s limitations.
Then the virtual rudder commands are transformed into X-rudder commands based on the mapping
theory. In rudder fault diagnosis, an optimized particle filter is proposed for estimating rudder
effect deduction, with proposal distribution derived from unscented Kalman filter (UKF). Then
the fault type can be determined by analyzing indicators related to the deduction. Fault-tolerant
control is addressed by dealing with nonlinear programming (NLP) problem, where minimization
of allocation errors and control efforts are set as the optimization objectives, and rudder failure,
saturation and actuators limitations are considered as constraints. The fixed-point iteration method is
utilized to solve this optimization problem. Many field tests have been conducted in towing tank.
The experimental results demonstrate that the proposed steering prototype system is able to detect
rudder faults and is robust against rudder failure.

Keywords: X-rudder AUV; control allocation; fault diagnosis; fault-tolerant control; field tests

1. Introduction

In recent years, a great diversity of autonomous underwater vehicles (AUVs) has been brought into
reality, ranging in size from man-portable lightweight ones to large sized vehicles over 10 m in length,
with commercial, research, military and other applications. In the pursuit of better maneuverability,
X-rudder autonomous underwater vehicles (hereinafter abbreviated as xAUVs) were developed.
The first X-rudder underwater vehicle was a research submarine, on which the US Navy carried out
numerous maneuver experiments and concluded that the maneuverability is superior to that of all other
submarines [1]. Dubbioso, et al. [2] confirmed the superior turning abilities of the X-rudder underwater
vehicles by conducting numerical simulations and compared the results to available experimental
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data. Other scientists [3] have pointed out that xAUVs can still remain operational when the rudder
gets stuck, which means the xAUVs have better safety. In addition, xAUVs have better rudder effect,
indirectly help improving propulsive efficiency, and are free of damage while docking on the seabed.
For these reasons, X-rudders have been adopted more and more in AUV designs around the world.
In the civilian field, JAMSTEC (Yokosuka, Japan) has developed a cruising xAUV that can maintain a
fixed posture in the horizontal and vertical plane in order to perform exploration in hydrothermal
activity areas [4]. MARIN (city, The Netherlands) [5,6] investigated and promoted the capabilities of
computational fluid dynamics (CFD) as a tool to conduct 6-DOF free-running maneuvering simulations
on a scale physical model equipped with an X-rudder. Although the advantages of the xAUVs are
obvious, it is more difficult to control the xAUVs than traditional AUVs, because every control surface
of the xAUVs contributes effects on both the horizontal subsystem and the vertical subsystem while in
the traditional AUVs they do not. Therefore, control-related problems, such as control allocation, fault
detection and fault-tolerant control, should not be ignored and need further research.

Horizontal and vertical planes are used for longitudinal and lateral motion, respectively, in
cruciform rudder AUVs. Virtual horizontal and vertical rudder commands are still adopted in the
above xAUVs and need to be transformed into X-rudder commands. In [6,7], a PID controller was
utilized to produce horizontal and vertical rudder commands first, then a command transformation was
employed to calculate the X-rudder commands. However, this command transformation may produce
undesired roll torques and affect translational and rotational stability. Aiming at solving this problem,
Zhang, et al. [8] formulated the transformation as a constrained minimization problem by introducing
the least energy as the criterion, and the pseudoinverse solution of this optimization problem is exactly
the transformation formula described in [6,7]. Although the the control allocation problem has been
investigated in the existing literature, most research are only conducted using simulations, and there are
no field tests in any of the existing literature. Therefore, in this work a fault-tolerant steering prototype
system will be designed and an xAUV will be developed as a verification platform. This prototype
system is an integrated controller and can realize dynamic control of the xAUV under both normal and
rudder failure conditions. In addition, autonomous rudder fault detection will also be included.

Many efforts have been made to the fault detection of AUVs. In order to identify thruster
failures, Fagogenis, et al. [9] proposed an algorithm using a mixture of Gaussians and variational
Bayes approximations in the diagnosis process, while [10] applied an online Bayesian nonparametric
topic modeling technique to characterize the AUV’s performance patterns automatically, then realized
fault detection and diagnosis by means of a nearest-neighbor classifier. Reference [11] utilized a
second-order sliding mode observer to estimate both the unmeasured system states and the fault extent
related to the thrusters of a remotely operated vehicle. In [12], fault diagnosis of the actuators under
winding faults was addressed by finite impulse response and principal component analysis. However,
most of the above studies were conducted aiming at thruster failures, which may not work for rudder
fault detection of the xAUVs. To realize rudder fault detection, a particle filter will be modified with
unscented Kalman filter (UKF) for rudder effect estimation.

Fault-tolerant control is another problem in the proposed steering prototype. Wang, et al. [13]
implemented fault-tolerant control of underwater vehicles by treating the unknown thruster fault as a
part of the general uncertainty, which was tackled by adaptive neural network-based backstepping
control. In [14], an adaptive sliding mode observer-based fault-tolerant control design was developed
and the fault-tolerant control law was deduced using integral sliding mode technique based on the
modified observer and compensation method. Actuator faults were treated as nonlinear disturbances
in [15], and the disturbance was estimated by a non-linear disturbance observer. A disturbance
observer-based adaptive neural fault-tolerant control scheme was then developed to track the desired
system output. In all the above research, the negative effects due to actuator faults were treated as
uncertainties or disturbances, then a compensation method was utilized to achieve fault-tolerant
control, which greatly increased the complexity of the dynamics controller. To solve this problem, in this
paper fault-tolerant control will be decoupled from the dynamics controller design and addressed
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by nonlinear programming (NLP) in the control allocation process, which releases the complexity of
designing the dynamics controller.

Motivated by the aforementioned considerations, a fault-tolerant steering prototype system will
be developed in this paper, where a particle filter will be improved for fault detection and NLP will be
introduced for fault-tolerant control. The main contributions of this work are summarized as follows:

(1) In order to validate the fault-tolerant steering prototype system, an xAUV will be developed
for experimental tests. With modularity and expansibility taken into consideration, monitor
software is designed based on factory method, while onboard software is based on finite state
machine (FSM). Compared to the existing research, the proposed steering prototype system is
unprecedented for xAUVs because of the integration of dynamics control, fault detection and
fault-tolerant control. Besides, field tests are conducted firstly for validation.

(2) As for rudder faults detection, the standard particle filter is modified to estimate rudder effect
deduction due to faults, where UKF is adopted for providing proposal distribution. Based on the
estimation, fault detection can be achieved by analyzing related indicators. To the best of the
authors’ knowledge, there is no previous literature about rudder fault detection of the xAUVs.

(3) In the case of rudder failure, fault-tolerant control of xAUVs is addressed by solving multi-objective
optimization in this paper. In this optimization problem, minimization of allocation errors and
control efforts are considered as optimization objectives, whereas saturation, actuators limitations,
and rudder faults are considered as constraints. Compared to previous literatures, this problem
is addressed in the control allocation process, rather than in the design of dynamics controller
dealing with disturbance.

The remainder of this paper is organized as follows: Section 2 presents the development of the
xAUV in terms of hardware composing and software design pattern. Section 3 proposes the scheme
of the fault-tolerant control algorithm and presents a detailed process of fault detection. Section 4
presents the simulations of DIFC comparing to other common dynamics controllers. Section 5 validates
the previous analysis and design through field tests in a towing tank. Section 6 concludes the work in
this paper.

2. Vehicle Platform Development

2.1. Hardware Components

The developed xAUV in this work is a scaled physical model. From the point of view of operation,
this xAUV is designed to work autonomously or under remote control. As illustrated in Figure 1,
an operator can control the xAUV remotely to complete many maneuvers by WIFI integrated into the
portable surface monitor. When underwater voyages are required, the operator needs to assign the
autonomous tasks to the xAUV firstly, and command the xAUV to switch into the autonomous mode
next, then the xAUV will dive into the water and carry out the assigned tasks. After underwater tasks
completed, it will float up to the surface and stay there waiting for the next command.

The xAUV in this paper is 3 m long and the diameter of the outer contour is 300 mm. A modular
construction pattern is introduced in the platform design and the xAUV is divided into five segments:
bow segment, electronic cabin, payload segment, actuators segment, and fairwater segment (see
Figure 2). There are four electric steering actuators driving the control surfaces, one tunnel thruster in
the actuators segment and one steering actuator driving the fairwater rudder in the fairwater segment.
This comprises the actuator configuration of the xAUV.

As for the navigation system, an Inertial Navigation System (INS) is utilized to provide position,
velocity and attitude with auxiliary data from Doppler velocity log (DVL) and global navigation frame
sensor, i.e. GPS. A lithium battery is the only power source for this platform. For safety, a Battery
Management System (BMS) is adopted to monitor the health of battery cells, discharging voltage,
current, temperature, and state of charge (SOC) of the battery.
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The surface monitor is integrated into a portable case along with a computer, a KVM (abbreviation
of keyboard, video, mouse) switch and communication instruments (see Figure 3). It can display the
status of the xAUV, such as position, velocity, etc. through UDP communication with an onboard
computer and send remote commands or task info to the vehicle.
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2.2. Software Development

2.2.1. Monitor Software Based on Factory Method

The monitor software is a supervisory control and data acquisition (SCADA) system [16] and
was developed based on the factory method [17], which is a widely used software design pattern
concluding the experience in coding, making the code easier to understand, and ensuring the program
reliability [18]. As is shown in Figure 4, the monitoring software is developed with three functional
layers: display layer, schedule layer, and infrastructure layer. Screens listed in the display layer
are designed for human-computer interaction, including state monitoring, sending commands, path
planning, etc. The schedule engine in schedule layer takes charge of coordinating the function blocks
according to the predefined time sequence and determining the program execution cycle by timers.
There are many basic function blocks and data warehouses in infrastructure layer, where a function
block can be abstracted into a proprietary factory and a data block can be compared to materials in the
factory. With this software construction, the monitor software is highly integrated.
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2.2.2. Onboard Software Based on Finite State Machine

In early aquatic vehicle research, the limited hardware capability was a significant challenge for
the development of custom software for underwater vehicles [19]. However, with the development
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of computer science, more and more powerful hardware has become available for researchers and
end users. Moreover, open-source middlewares for developing applications for robotic systems come
into public eye in recent years. Robot Operating System (ROS) is a popular open-source middleware
in the robotics research community because there are already many free function packages and this
number is increasing greatly year after year [20]. However, for underwater vehicles, the use of
the Mission Oriented Operating Suite (MOOS) maintained by the working group at MIT has been
widespread [21]. This is also an open-source middleware that includes many modules specially
designed for aquatic vehicles.

However, ROS and MOOS are inapplicable for onboard software development of the xAUV,
because the controller running Linux is the required platform rather than the Windows CE-based
controller from Beckhoff adopted by this xAUV. Therefore, the FSM-based onboard software was
customized for the xAUV. FSM is an efficient coding solution for complicated state transitions without
nested if-else branches [22] and ensures the xAUV can switch between different working modes
correctly and quickly. As shown in Figure 5, the onboard software consists of four layers: perception,
communication, decision, and control. Communication layer realizes data exchange with the surface
monitor by WIFI. Sensor data is collected in the perception layer and filtered before output. In the
decision layer, FSM will determine the working mode of the xAUV considering commands from
surface monitor and fault information diagnosed by fault detection block. Motion control algorithms
and drive control of the actuators are achieved in the control layer.
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The state transition diagram of FSM is shown in Figure 6. Six states for different purposes
are designed:

• Ready: Ready to work and feedback states periodically;
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• Remote-working: Work under the operator’s commands from the surface monitor;
• Auto-working: Work according to predefined tasks autonomously;
• Escaping: Try to escape if the thruster is twined by ropes or fishing net;
• Floating: Float up to the surface if major failure happens;
• Silent: Keep silent and do not feedback states.
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3. Fault-Tolerant Steering Algorithms

3.1. Steering Under Normal Condition

The xAUV in this paper adjusts its heading or depth usually by X-rudder and the fairwater rudder
is used for depth control when necessary. Various control methods for cruciform rudder AUVs have
been derived by researchers related to aquatic vehicles. However, there is little literature directly
referring to X-rudder control yet. Therefore, it is significant to develop an X-rudder steering method
and make good use of its advantages. To achieve this, the four individual control surfaces need to
coordinate well since every control surface contributes its own effect to the pitch and heading control.
Actually, this manner is quite similar to dynamic positioning systems for ocean surface vessels in [23,24],
motion control systems for over-actuated underwater vehicles in [25,26], flight control systems for
tailless aircraft with strong interactions between control effectors as described in [27,28].

For designing the coordination method, the deflection sign is explained in Figure 7. Upward
deflection is defined as positive for stern rudders and the definition of fairwater rudder follows the
right-hand rule with the thumb pointing to the starboard side.
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3.1.1. Dual-Loop Increment Feedback Control

According to the survey in [29], there is a great diversity of control algorithms for under-actuated or
over-actuated underwater vehicles, including PID control, fuzzy control, sliding mode control, adaptive
control, backstepping control, optimal control, and many combinations of the above algorithms. These
methods have been proved to deal with the uncertainty, environmental disturbances and actuator
saturation well that marine vehicles need to consider necessarily. However, this xAUV is designed to
sail in a towing tank for debugging in early stage, then carry out some experiments in inland lakes where
environmental disturbances, such as winds and currents, are too weak to affect the dynamics. Therefore,
it is unnecessary to design a dynamics controller with consideration of disturbance observer [30] and
drift compensation [31]. From a practical point of view, the dual-loop increment feedback control
(DIFC) is proposed to handle the dynamics control problem and the normal command transformation
is developed for control allocation, i.e. the coordination of the four control surfaces.

The principle diagram of DIFC is presented in Figure 8. There is a heading controller and a
depth controller that each controller has multiple stages forming different control loops. The DIFC
will produce the increment of virtual rudder commands (∆δs, ∆δr), then the integrator sums up the
increments and gives out the virtual rudder commands which will be transformed into the actuator’s
control inputs (δi, i = 1, 2, 3, 4) by normal command transformation later.
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Figure 8. Principle diagram of DIFC. δr and δs are virtual vertical and horizontal rudder commands
respectively. ∆δ is the increment, δi(i = 1, 2, 3, 4) is the actuator’s control input. e∗ represents the error.
ψ is the heading angle, r is the yaw rate,

.
r is the yaw acceleration, z is the depth, θ is the pitch angle, q

is the pitch rate, and
.
q is the pitch acceleration.

Let ψd denotes the desired heading, then the heading error eψ, the yaw rate error er and the yaw
acceleration error e .

r are defined as: 
eψ = ψd −ψ
er = rd − r
e .

r =
.
rd −

.
r

(1)

where the heading ψ is usually described as ψ ∈ [0, 2π]. In practice, heading error needs to be modified
to deal with heading discontinuity, and the modified expression is presented as:

eψ =


ψd −ψ+ 2π, when ψd −ψ ∈ [−2π,−π)
ψd −ψ, when ψd −ψ ∈ [−π,π]
ψd −ψ− 2π, when ψd −ψ ∈ (π, 2π]

(2)
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Based on the above error definitions, the increment heading control law is given as:
rd = k1tanh(eψ/∆1)
.
rd = k2tanh(er/∆2)

∆δr = k3tanh(e .
r/∆3)

(3)

where ki is the gain and ∆i (i = 1, 2, 3) is the scale factor in every loop. ki should be determined
according to the characteristics of the xAUV, i.e. k1 is determined by max yaw rate, k2 is determined
by max yaw acceleration, and k3 is determined by max rudder deflection speed. ∆i is used to set the
critical error that will produce the maximal outputs. In other words, ∆i has great effect on the response
speed of the control system. The tanh function is a continuous, symmetrical, smooth and saturated
function (see Figure 9), and it is introduced to limit the desired yaw rate, the desired yaw acceleration
etc. what’s more, the tanh function is helpful to parameter adaptability since the slop becomes greater
when the input approaches to zero. This is a usually adopted manner that a higher gain is preferred
when the error comes to the origin, and vice versa.
Sensors 2020, 20, x FOR PEER REVIEW 10 of 28 

 

  

Figure 9. The graphic of the tanh function. 

Finally, the virtual vertical rudder command 
t

r  at time t  can be derived as: 

1t t

r r r      (4) 

where 
1t

r


 is the last virtual command. 

By adopting the virtual vertical rudder command derived from Equation (4), the errors defined 

in Equation (1) are guaranteed to converge to the origin. 

Proof: The proof process is illustrated in the following three steps: 

Step 1: Proof of the convergence of 
re . Consider the following Lyapunov function candidate: 

2
1

1

2
rV e  (5) 

Differentiating Equation (5), utilizing Equation (3) and (4), one can obtain: 

 1 3 3tanh( / )vrr r
r r r r r

vr vr

e e
V e e e e k e

t



 

 
   

  
 (6) 

Since 
 

= 0
dr

vr vr vr

r re r

  

  
  

  
, it is obvious that 1 0V  . What’s more, 1 0V   can only be 

obtained when 0re  . Therefore, the convergence of 
re  is proved. 

Step 2: Proof of the convergence of re . Consider the following Lyapunov function candidate: 

2

2

1

2
rV e  (7) 

Differentiating Equation (7), and let 2 2tanh( / )rr k e   since the convergence of 
re  is 

guaranteed, one can obtain: 

2 2 2tanh( / )r r r
r r r r r r

e e er
V e e e e r e k e

r t r r

  
    

   
 (8) 

Due to the fact  
= 0

dr
r re

r r

 


 
, it is obvious that 2 0V  . What’s more, 2 0V   can only be 

obtained when 0re  .  Therefore, the convergence of re  is proved. 

Step 3: Proof of the convergence of e . Consider the following Lyapunov function candidate: 

Figure 9. The graphic of the tanh function.

Finally, the virtual vertical rudder command δt
r at time t can be derived as:

δt
r = δt−1

r + ∆δr (4)

where δt−1
r is the last virtual command.

By adopting the virtual vertical rudder command derived from Equation (4), the errors defined in
Equation (1) are guaranteed to converge to the origin.

Proof. The proof process is illustrated in the following three steps:
Step 1: Proof of the convergence of e .

r. Consider the following Lyapunov function candidate:

V1 =
1
2

e2
.
r

(5)

Differentiating Equation (5), utilizing Equation (3) and (4), one can obtain:

.
V1 = e .

r
.
e .

r ≈ e .
r
∂e .

r
∂δvr

∂δvr

∂t
≈ e .

r
∂e .

r
∂δvr

(
k3tanh(e .

r/∆3)
)

(6)

Since
∂e.

r
∂δvr

=
∂(

.
rd−

.
r)

∂δvr
= − ∂

.
r

∂δvr
< 0, it is obvious that

.
V1 ≤ 0. What’s more,

.
V1 = 0 can only be

obtained when e .
r = 0. Therefore, the convergence of e .

r is proved.
Step 2: Proof of the convergence of er. Consider the following Lyapunov function candidate:

V2 =
1
2

e2
r (7)
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Differentiating Equation (7), and let
.
r = k2tanh(er/∆2) since the convergence of e .

r is guaranteed,
one can obtain:

.
V2 = er

.
er ≈ er

∂er

∂r
∂r
∂t
≈ er

∂er

∂r
.
r ≈ er

∂er

∂r
k2tanh(er/∆2) (8)

Due to the fact ∂er
∂r =

∂(rd−r)
∂r < 0, it is obvious that

.
V2 ≤ 0. What’s more,

.
V2 = 0 can only be

obtained when er = 0. Therefore, the convergence of er is proved.
Step 3: Proof of the convergence of eψ. Consider the following Lyapunov function candidate:

V3 =
1
2

e2
ψ (9)

Differentiating Equation (9), and let r = k1tanh(eψ/∆1) since the convergence of er is guaranteed,
one can obtain:

.
V3 = eψ

.
eψ ≈ eψ

∂eψ
∂ψ

∂ψ

∂t
≈ eψ

∂eψ
∂ψ

r ≈ eψ
∂eψ
∂ψ

k1tanh(eψ/∆1) (10)

Due to the fact
∂eψ
∂ψ =

∂(ψd−ψ)
∂ψ < 0, it is obvious that

.
V3 ≤ 0. What’s more,

.
V3 = 0 can only be

obtained when eψ = 0. Therefore, the convergence of eψ is proved.
End proof. �

Similarly, let zd denotes the desired depth, then the depth error ez, the pitch error eθ, the pitch rate
error eq and pitch acceleration error e .

q are defined as:
ez = zd − z
eθ = θd − θ
eq = qd − q
e .

q =
.
qd −

.
q

(11)

and the increment of vertical rudder is derived as:
θd = k4tanh(ez/∆4)

qd = k5tanh(eθ/∆5)
.
qd = k6tanh(eq/∆6)

∆δs = k7tanh(e .
q/∆7)

(12)

where k j and ∆ j ( j = 4, 5, 6, 7) can be chosen in the same way with heading control law. Then, the
actual vertical rudder command is given as:

δt
s = δt−1

s + ∆δs (13)

The stability analysis of depth control can refer to the heading control discussion.

Remark 1. Since the increment feedback control presented in Equation (4) and Equation (13) is utilized, the
static error in heading or depth control due to currents or dead zone of steering actuators can also be eliminated
though there is no corresponding compensator in the DIFC scheme, because there is the integration process of the
rudder increments and it has been proved that the integration can eliminate the static errors.
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3.1.2. Normal Command Transformation

In Section 3.1.1, control laws for heading and depth control are derived. However, the obtained
rudder commands δr and δs are virtual and need to be transformed into X-rudder commands described
as δi(i = 1, 2, 3, 4). A fixed mapping formula for transformation is designed as:

δ1 = δ3 = δr − δs

δ2 = δ4 = −δr − δs

δi ∈ [−κ,κ], i = 1, 2, 3, 4
(14)

where κ is the maximum rudder deflection and the diagonal rudders are set the same on purpose so
that undesirable roll torque can be avoided. Equation (14) is applicable to most cases except that the
calculated δi is over the limitation, for instance, δr = 25

◦

and δs = −10
◦

. This problem was addressed
by limiting δi within normal range regarding control effort deduction in [7]. For a better solution,
Equation (14) should be revised as follows:{

δ1 = δ3 = δr − δs − ε1 + λε2 − (1−λ)ε2

δ2 = δ4 = −δr − δs − ε2 + λε1 − (1−λ)ε1
(15)

where λ ∈ [0, 1] is a weight factor representing the importance of depth control, and ε1 and ε2 are the
deduction fractions that are defined as:

ε1 =


δr − δs − κ, κ < δr − δs

0, −κ ≤ δr − δs ≤ κ
δr − δs + κ, δr − δs < −κ

ε2 =


−δr − δs − κ, κ < −δr − δs

0, −κ ≤ δr + δs ≤ κ
−δr − δs + κ, −δr − δs < −κ

(16)

Utilizing Equation (15) and Equation (16), virtual rudder commands δr and δs calculated by DIFC
can be transformed into the individual command δi(i = 1, 2, 3, 4). Usually, we are supposed to admit a
fact that the depth control is prior to heading control for underwater vehicles, thus λ = 1 is selected.

3.2. Rudder Faults Detection

Rudder faults are inevitable during experimental operations of AUVs. If this happens, AUVs
may lose control, hit a submerged mountain or suffer structural damage due to the extreme depth.
Therefore, it is meaningful to detect the faults in time and then take effective measures to maintain
maneuverability. In terms of the xAUV developed in this paper, the steering actuators are electrical
ball screws that can feed back many states by RS485 communication, such as voltage, current, absolute
position, etc. Therefore, communication failure and jam can be considered as two common faults.
Worse, the control surfaces may get damaged when hitting an obstacle and this is another typical fault.
Typical rudder faults are summarized in Table 1.

Table 1. Rudder faults list.

Fault Type Description

Communication failure The steering actuator can’t communicate with onboard software normally.

Rudder Jam Rudder gets stuck at a fixed position and affects maneuverability.

Control surface damage Control surfaces get damaged due to strike or scratch and rudder effect degraded.

Misalignment The neutral position changed due to mechanical looseness or structural deformation.

Communication failure can be easily detected by monitoring the responses after transmitting a
request message [32], since a responsive data acquisition method [33] is utilized for communication
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between the onboard software and steering actuators. In terms of rudder jam, feedback states are
useful to diagnose whether rudder jams happen. The feedback absolute position would remain the
same and the feedback current would be nearly equal to the rated value if the electrical ball screw
got stuck.

Control surface damage is difficult to detect directly due to the lack of observable characteristic
indicators. Aiming at this fault detection problem, a model-based diagnosis is proposed in this paper.
Let f (t, x, u) represents the xAUV’s dynamics, and h(t, x) represents the sates measured by sensors,
then the nonlinear dynamic system can be described as:{ .

x = f (t, x, u)
y = h(t, x)

(17)

where f (t, x, u) is the state transition function in relation to the 6DOF dynamic equations, h(t, x)
is the measurement function, x = (p, q, r) is the angular accelerations and y is the measurements,
u = (δdi f , δr, δs) is the virtual rudder commands. According to the dynamic equations of underwater
vehicles based on the Newton-Euler method as presented in [34], the detailed expressions of f (t, x, u)
and h(t, x) can be derived as:

f (t, x, u) = M−1(−C(x)x−D(x)x− g(s) + Ku)
h(t, x) = diag(1, 1, 1)

(18)

M = (MRB + MA) denotes the inertial matrix. MRB = diag
(
Ix, Iy, Iz

)
is the rigid body inertial

matrix. MA = diag
(
−K .

p,−M .
q,−N .

r

)
is the added inertial matrix.

C(x) accounts for the Coriolis and centripetal matrix, which is presented as:

C(x) = CRB(x) + CA(x) (19)

where:

CRB(x) =


0 Izr −Iyq
−Izr 0 Ixp
Iyq −Ixp 0

 (20)

and:

CA(x) =


0 −N .

rr M .
qq

N .
rr 0 −K .

pp
−M .

qq −K .
pp 0

 (21)

D(x) = diag
(
Kp + Kp|p|

∣∣∣p∣∣∣, Mq + Mq|q|
∣∣∣q∣∣∣, Nr + Nr|r||r|

)
is the hydrodynamic damping matrix

including the linear and quadratic drag.
g(s) represents the restoring moments due to gravity and buoyancy and s = [φ,θ,ψ]T. The

expression of g(s) is given as:

g(s) =


yBFB cosθ cosφ− zBFB cosθ sinφ
−zBFB sinθ− xBFB cosθ cosφ
xBFB cosθ sinφ+ yBFB sinθ

 (22)

K is the control effectiveness matrix, which is expressed as:

K = diag
(
Kδdi f , Mδs , Nδr

)
(23)

The symbols used above are defined as follows: Ix, Iy and Iz are the moments of inertial; FB is
the buoyancy; xB, yB and zB are the coordinates of the center of the buoyancy in the body-fixed frame;
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K .
p, M .

q, N .
r, Kp, Kp|p|, Mq, Mq|q|, Nr, Nr|r| are the hydrodynamic coefficients which can be directly or

indirectly obtained in advance by practical experiments.
In order to derive a diagnostic model, the rudder effect deduction ∆u due to specific rudder faults

is introduced and Equation (17) is discretized for update in real time, then the discrete model at time k
is derived as: {

xk+1 = f (k, xk, uk + ∆uk)

yk+1 = h(k + 1, xk+1)
(24)

In normal conditions, ∆u is supposed to be around zero. In order to estimate ∆u, the sate variable
x needs to be augmented as χ = (p, q, r, ∆δdi f , ∆δr, ∆δs) and a diagnostic model should be derived. Let
χ̂k is the estimation χk and ŷk is the estimation of yk, then the diagnostic model is obtained as:{

χ̂k+1 = f (k, χ̂k, uk) + νk
ŷk+1 = h(k + 1, χ̂k+1) + nk+1

(25)

where νk is the covariant of process noise and nk is the covariant of measurement noise at time k.
The Kalman filter is a common state filter that has been widely used in underwater vehicles [35],

but it requires that process noise ν and measurement noise n are Gaussian and independent whereas
real systems are not. For nonlinear and non-Gaussian estimation problems, the particle filter is
preferred [9].

As described in [36], a standard particle filter is presented as:

χ̂k =
n∑

i=1

ωi
kχ

i
k (26)

where n is the number of total particles,
{
χi

k

}
∼ q(χk

∣∣∣∣y1:k) is the particle set, ωi
k is the weight factor

determined by the posterior probability p(χi
k

∣∣∣y1:k) and q(χk
∣∣∣y1:k) is the customized proposal distribution

to be selected later. Weight factor ωi
k yields:
ω̃i

k ∝
p(χi

k

∣∣∣y1:k)

q(χi
k

∣∣∣y1:k)
∝

p(yk
∣∣∣χi

k)p(χ
i
k

∣∣∣y1:k−1)

q(χi
k

∣∣∣y1:k)

ωi
k = ω̃i

k/
N∑

i=1
ω̃i

k

(27)

where p(yk
∣∣∣χi

k) is the likelihood probability similar to measurement noise and p(χi
k

∣∣∣y1:k−1) is the prior
probability. Usually, resampling is necessary for standard particle filters to avoid the degeneracy
problem [37], but over resampling will result in particle diversity degradation [38]. Therefore, the
unscented Kalman filter (UKF) is introduced into the standard particle filter for providing the proposal
distribution q(χk

∣∣∣y1:k) .
The detailed process of fault diagnosis is illustrated as follows:

Step 1: Initialization.

Set the initial state χ0 = (p0, q0, r0, 0, 0, 0) and covariance σ0, then get the particle set
{
χi

0

}
(i =

1, 2, . . . n) including n particles from the gaussian distribution N(χ,χ0, σ0). Covariance of process noise
ν and covariance of measurement noise n are set at the same time.

Step 2: Prediction.

Update
{
χi

k

}
(i = 1, 2, . . . n) using the system dynamics represented by Equation (25), then a prior

probability
{
p(χi

k

∣∣∣y1:k−1)
}
(i = 1, 2, . . . n) is derived. Next, calculate the mean value χk and the covariance

σk basing on
{
χi

k

}
(i = 1, 2, . . .N).

Step 3: Correction.
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Generate the proposal distribution q(χi
k

∣∣∣y1:k) using UKF, and calculate the likelihood probability
with the following formula:

p(χi
k

∣∣∣yk) ≈ N((yk − h(χi
k)), 0, ν) (28)

Then, normalized weight factor ωi
k can be calculated by Equation (27) and the estimation χ̂k can

be obtained by Equation (26).

Step 4: Diagnosis.

Let ∆u is the mean value of actual rudder effect deduction ∆u and it yields to ∆u = 0 in normal
condition. Otherwise, ∆u , 0 when faults happened. Let ∆û is the estimation of ∆u and its mean value
∆û is defined as:

∆û =
1
L1

L1∑
j=1

∆û(k− j) (29)

where L1 is selected time slice for diagnosis.
Then, the fault indicator d∆u at time k is designed as:

d∆u(k) =
S1(k)

P
− ln

(
S2(k)

P

)
− 1 (30)

where S1(k) and S2(k) are given as:

S1(k) = 1
L1−1

L1∑
j=1

[∆û(k− j) − ∆u]2

S2(k) = 1
L1−1

L1∑
j=1

[
∆û(k− j) − ∆û(k)

]2
(31)

Finally, a fault is supposed to be present if d∆u(k) > β, otherwise, there is no fault. β is a positive
constant determined by past experience.

3.3. Fault-Tolerant Control Based on Nonlinear Programming

In order to extend the working duration, fault-tolerant control is necessary for the xAUVs to
carry out tasks without interruption when rudder failure happens. Thus, a fault-tolerant control
scheme including fault detection is presented in Figure 10, where the DIFC, the normal command
transformation, the fault detection and the fault-tolerant command transformation are integrated
together. In addition, a selector switch is used for selection of transformation methods depending on
the rudder health.

Distinguished from traditional fault-tolerant control, modification of dynamics controller is
avoided since the fault-tolerant control problem is addressed in command transformation by using the
non-linear programming (NLP). Before formulating the programming problem, one can assume that δr

and δs are the actual control efforts derived as:[
δr δs

]T
= B

[
δ1 δ2 δ3 δ4

]T
(32)

where the configuration matrix B is given as:

B =
1
4

[
1 −1 1 −1
−1 −1 −1 −1

]
Then the objective function J of the programming problem can be defined as:

J = (1− ξ)W‖(τd − τ)‖2 + ξ‖ut
‖2 (33)



Sensors 2020, 20, 1816 15 of 26

where minimization of allocation errors and control inputs are considered as criterions. In Equation

(33), τd =
[
δr δs

]T
is the virtual rudder commands produced by DIFC, τ =

[
δr δs

]T
is the actual

control efforts derived from Equation (32), u =
[
δ1 δ2 δ3 δ4

]T
is the actuator’s control inputs to

be solved, W is the weight matrix for balancing horizontal and vertical control, and ξ is a parameter for
balancing criterion components. When J is optimized to its minimum, control allocation error (τd − τ)

is minimum and rudder deflection u yields:
u ∈ [−κ,κ]∣∣∣ .
u
∣∣∣ ∈ [−γ,γ]

δi = D, whereirepresents the index of faulty rudder
(34)

where γ is the max deflection rate depending on the actuator’s characteristics, and D is determined
according to the fault type and the actuator states. By formulating Equation (34), actuator limitations
and rudder faults are considered as constraints.
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The optimization problem formulated by Equation (33) and Equation (34) is a common constrained
non-linear programming problem and there exist many reliable iterative algorithms [39]. Taking the
calculation performance of the onboard system into consideration, the fixed-point iteration method is
applied. According to the contraction mapping theorem presented in [40], an iteration formula for
calculating the actuator’s control inputs u at time t is designed as:

ut = sat
[
(1− ξ)ωBTWτd − (ωH − I)ut−1

]
, (where δt

i = δt−1
i = D) (35)

where H = (1− ξ)BTWB + ξI4×4, ω = 1/‖H‖2, and the definition of sat is given as:

sat(δ) =


−κ, δ < −κ
δ, δ ∈ [−κ,κ]
κ, δ > κ

(36)

The iteration is terminated when

‖J(ut) − J(ut−1)‖ ≤ Jend (37)
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where Jend is an adjustable threshold.
By utilizing iteration formula in Equation (35) to solve the NLP presented by Equation (33) and

Equation (34), a feasible set of commands for functional rudders can be obtained and its effect can
yield to δr and δs as close as possible. In other words, fault-tolerant control is realized.

Remark 2. Though the xAUV with rudder faults can maintain the maneuverability by NLP-based fault-tolerant
command transformation, its ability to turn or pitch is degraded and limited in fact.

4. Numerical Simulation

In this subsection, numerical simulations will be conducted to compare the proposed DIFC to PID
and Linear Quadratic Regulator (LQR) in terms of accuracy and adaptation to the surge velocity.

In the simulation, the simulated vehicle is required to approach the desired heading and depth
under four different surge velocity respectively and the results will be used for performance analysis.
During all the simulation scenarios, the initial heading and depth are ψ0= 0, z0 = 0, and the desired
states are ψd= 90◦, zd = 5m. Control parameters of the three control methods are presented in Table 2.
For LQR, G1 is defined as the input gain, and G2 is the feedback gain. For PID, kp is the proportional
gain, ki is the integration gain, and kd is the differential gain.

Table 2. Control parameters setup.

Method Subsystem Parameters

DIFC
Heading Control k1 = 0.38, ∆1 = 0.5, k2 = 1.2, ∆1 = 0.06, k2 = 1, ∆1 = 0.3

Depth Control k4 = 0.5, ∆4 = 3.3, k5 = 0.2, ∆5 = 0.2, k6 = 1.2, ∆6 = 0.07, k7 = 1, ∆7 = 0.3

LQR
Heading Control G1 = 1.7, G2 = [−1.7, −2.1]

Depth Control G1 = −1.5, G2 = [1.7, −6.9, −6.3]

PID
Heading Control kp = 0.5, ki = 0.35, kd = 1.7

Depth Control kp = 10.8, ki = 1.1, kd = 2.8

The first scenario contains a heading and depth tracking situation under a cruising speed of 3 kn
and the results are shown in Figure 11. The heading control results are nearly the same. The actual
course is approaching to 90◦ gradually and tends to stabilize after 20 s, which indicates that the heading
control is satisfactory for DIFC, LQR and PID. However, the depth control results are different. Depth
control by DIFC is smoother than with the others, while LQR behaves more rapidly but with slight
fluctuations, and PID is accompanied by small overshoot. Therefore, it can be concluded that the
DIFC helps to achieve smooth control of heading and depth, which is consistent with the functionality
of tanh function. Simulation results under lower velocity (2 kn) and higher velocity (4 kn, 6 kn) are
presented in Figure 12. According to the left three figures, it can be seen that the results under different
velocities are nearly the same, which indicates that the surge velocity has little effect on the heading
control for any of the methods. Depth control behaves differently under different velocity and this can
be found in right three figures. It is obvious that the surge velocity has an effect on depth approaching
speed. The slower the velocity is, the slower the depth approaches. In addition, overshoot varies
obviously with the velocity in LQR and PID, while there is nearly no overshoot in DIFC and the depth
control remain steady all the time. This demonstrates that DIFC has better adaptation to surge velocity
comparing to LQR and PID in depth control.

By conducting the simulations, it can be concluded that DIFC can achieve more smooth heading
and depth control than LQR and PID, and has better adaptation to surge velocity, which means
parameter tuning for different velocity may be avoided.
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Figure 11. Simulation results when surge velocity is 3 kn. Realtime heading angle ψ during the first
scenario (top), and the depth z of the vehicle (bottom).
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5. Field Tests

5.1. Dynamics Control Performance Test

In this subsection, the performance of the proposed DIFC is verified by conducting heading
and depth keeping trials in a towing tank which is 170 m × 7 m × 4 m (length × width × depth).
The assigned task for this xAUV is to keep sailing from west to east at a depth of 2 m. The whole
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test voyage can be divided into three stages. In the first stage, the xAUV needs to dive with constant
stern rudder angles until the depth approaches 1 m for a smooth dive and safety. At the second stage,
the DIFC depth controller will be put into use and the xAUV keeps sailing at a depth of 2 m. In the
third stage, the xAUV will float up with constant stern rudder angles when the preset time condition
is satisfied. During the whole voyage, the DIFC heading controller is operating all the time. The
experimental scene is shown in Figure 13, where the xAUV is sailing at 2 m.
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Figure 13. The xAUV is sailing in the towing tank.

The heading and depth tracking results are shown in Figures 14 and 15. It can be seen that the
proposed DIFC controller can regulate the xAUV to the desired heading and depth, but there is minor
fluctuation in the process. Basing on the results, it is unjust to conclude that the control performance of
DIFC is awkward, because the surge velocity is 2 kn and the rudder effect is too weak to stabilize both
heading and depth for the xAUV weighed over 235 kg. Therefore, it is reasonable that the xAUV can’t
track the desired depth and heading with high accuracy at this relatively low velocity. Unfortunately,
tests at higher velocity are prohibited in this towing tank for safety, but according to the simulation
results, it should be supposed that a better control performance can be expected if the velocity is
increased. Errors in every loop of DIFC are shown in Figure 16. Since the DIFC only operates at the
second stage, errors between 6400 s and 6445 s should be used for analysis. In this period, the errors
are fluctuating around zero which verifies the convergence of every control loop.
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Figure 14. Depth control results. The red line is the depth, the blue line is the pitch angle, and the black
line is the roll angle.
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Figure 15. Heading control results. The red line is the heading angle and the red line is the
desired heading.
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conducting the tests, a simulated method is adopted that the real control inputs ̂  to the actuators 

Figure 16. Evolution of errors in every loop. Errors in heading control (top) and errors in depth
control (bottom).

The virtual rudder commands produced by DIFC are shown in Figure 17. Between 6375 s and
6400 s, the xAUV is in the first dive stage and the stern rudder’s deflection δs is 5◦. Then the xAUV
migrates to the second dive stage where depth control by DIFC is activated, and this ends at 6445 s.
After that, the xAUV begins to float up with stern rudder deflection of –5◦ until it comes to the
surface. An obvious change of virtual rudder angles can be found only when stage transition occurs.
Except that, the variance is a slow-moving thing which reveals the advantage of increment control.
The actuator’s control inputs after command transformation are presented in Figure 18. It can be
seen that the actuator’s control inputs δi(i = 1, 2, 3, 4) are changing with δs simultaneously. By further
analyzing the command transformation results, it can be obtained that δ1 and δ3 are always the same,
so dose δ2 and δ4. Thus, a meaningful find can be obtained that the diagonal rudders are always
supposed to deflect in the same direction in normal condition. In this way, the resultant rolling torque
can be reduced to its minimum which is necessary for precise heading and depth control, since roll
motion will make this control problem more difficult.



Sensors 2020, 20, 1816 20 of 26

Sensors 2020, 20, x FOR PEER REVIEW 21 of 28 

 

 

Figure 16. Evolution of errors in every loop. Errors in heading control (top) and errors in depth control 

(bottom). 

 

Figure 17. Virtual rudder commands from DIFC. The first stage (6375–6400 s), The second stage (6400–

6445 s), The third stage (6445–6500 s). 

 

Figure 18. The actuator’s control inputs derived from normal command transformation. 

5.2. Fault Detection Test 

In this subsection, three cases relating to different faults are carried out in order to verify the 

proposed fault detection method, and the simulated fault is control surface damage which will result 

in rudder effect deduction. For modelling this fault, the effectiveness factor   is introduced to 

characterize the fault degree. Since it is improper to destroy the control surface intentionally for 

conducting the tests, a simulated method is adopted that the real control inputs ̂  to the actuators 

Figure 17. Virtual rudder commands from DIFC. The first stage (6375–6400 s), The second stage
(6400–6445 s), The third stage (6445–6500 s).

Sensors 2020, 20, x FOR PEER REVIEW 21 of 28 

 

 

Figure 16. Evolution of errors in every loop. Errors in heading control (top) and errors in depth control 

(bottom). 

 

Figure 17. Virtual rudder commands from DIFC. The first stage (6375–6400 s), The second stage (6400–

6445 s), The third stage (6445–6500 s). 

 

Figure 18. The actuator’s control inputs derived from normal command transformation. 

5.2. Fault Detection Test 

In this subsection, three cases relating to different faults are carried out in order to verify the 

proposed fault detection method, and the simulated fault is control surface damage which will result 

in rudder effect deduction. For modelling this fault, the effectiveness factor   is introduced to 

characterize the fault degree. Since it is improper to destroy the control surface intentionally for 

conducting the tests, a simulated method is adopted that the real control inputs ̂  to the actuators 

Figure 18. The actuator’s control inputs derived from normal command transformation.

5.2. Fault Detection Test

In this subsection, three cases relating to different faults are carried out in order to verify the
proposed fault detection method, and the simulated fault is control surface damage which will result in
rudder effect deduction. For modelling this fault, the effectiveness factor η is introduced to characterize
the fault degree. Since it is improper to destroy the control surface intentionally for conducting the
tests, a simulated method is adopted that the real control inputs δ̂ to the actuators are obtained by

multiplying the commands δ =
[
δ1 δ2 δ3 δ4

]T
calculated by normal command transformation

and the effectiveness factor η, but the onboard control system and fault detection program still take δ
as the executed commands deliberately. The detailed cases are as follows:

Case1 : δ̂ =
[

0.8 1 1 1
]T
◦ δ

Case2 : δ̂ =
[

0.5 1 1 1
]T
◦ δ

Case3 : δ̂ =
[

0 1 1 1
]T
◦ δ

where ◦means the Hadamard product. The fault detection results and the estimation of rudder effect
deduction ∆û are presented in Figures 19–21. In all figures, the moment of fault being triggered can
be captured when the actual deduction begins to deviate from zero. In addition, changes of actual
deduction mean changes of virtual rudder angles. If the actual deduction keeps constant, one can
determine that the virtual rudder angles are also fixed. As is shown in these figures, the estimated
deductions are following the actual deductions properly when the virtual rudder angles are changing,
for instance, 6375–6450 s in Figure 19, 5890–5920 s in Figure 20, and 5790–5860 s in Figure 21. After the
virtual rudder angles stabilize, the actual and estimated deductions approach to the same constant
value finally, for example 6450–6500 s in Figure 19, 5920–5939 s in Figure 20, and 5860–5900 s in
Figure 21. In summary, the results indicate that the proposed fault detection method can achieve a good
estimation of rudder effect deduction with reasonable errors. However, time lag and estimation errors
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are existent. This is a common phenomenon in the state estimation process and it can be improved
by increasing the gains in the filters. In practice, this is a trade-off problem between update rate and
system robustness. Usually, the greater the gains are, the faster the update rate is, but the worse the
robustness becomes, or vice versa. In terms of this xAUV, slow update rate has no effect on the fault
detection results, because the faults are usually irreversible once it happened and it is certain that the
faults can be detected finally.
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Figure 19. Estimation of ∆u in case 1. The estimated differential angle (top), the estimated virtual
vertical rudder angle (middle), and the estimated virtual horizontal rudder angle (bottom).Sensors 2020, 20, x FOR PEER REVIEW 23 of 28 
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Figure 20. Estimation of ∆u in case 2. The estimated differential angle (top), the estimated virtual
vertical rudder angle (middle), and the estimated virtual horizontal rudder angle (bottom).

Besides, poor estimation accuracy is also acceptable because a threshold is adopted over which the
fault can be determined then. In other words, minor estimation errors won’t reverse the fault detection
results. From the point view of robustness, smaller gains are beneficial to decrease the misdiagnoses.
Based on the above analysis, it can be concluded that the proposed detection method has acceptable
observation ability of rudder effect deduction, thus leading to the accomplishment of diagnosis of
rudder faults.
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5.3. Fault-Tolerant Control Test

Rudder jam is another type of fault which directly affects maneuverability and may bring great
danger to the xAUV. In order to verify the robustness of the NLP-based fault-tolerant control proposed
in this paper, tests against rudder jam will be carried out in this subsection. The rudder jam settings
are listed in Table 3. As for cases 4–6, the tasks assigned to the xAUV are the same as described in
Section 5.1.

Table 3. Rudder jam settings.

Case no. Jammed Rudder no. Stuck Angle

4 Rudder 1 0◦

5 Rudder 1 −5◦

6 Rudder 1 −10◦

The depth and heading control results are shown in Figure 22. It can be seen in general that the
NLP-based fault-tolerant control method can regulate the xAUV to the desired depth and heading no
matter what the stuck angle is. However, there are also oscillations as shown in Section 5.1 and the
reasons are the same. What’s more, the oscillations become more violent as the stuck angle increases.
In other words, the tracking performance tends to degenerate with the stuck angle increases for the
reason that the stuck rudder is likely to produce undesirable roll torque and have negative effects
on the control process. Results of NLP-based command transformation are presented in Figure 23.
By analyzing the relationship of every rudder’s command, a new rudder transformation pattern can
be found in which δ1 ≈ δ2 and δ3 ≈ δ4, and this is distinguished from the pattern in Section 5.1. After
further analyses, the essence of NLP-based fault tolerant control can be found and it can be summarized
that δ2 is used for compensation of negative effects produced by δ1, and depth adjustment is achieved
by δ3 and δ4 if rudder 1 gets stuck. The roll angle of the xAUV during the tests is presented in Figure 24.
It shows that the roll is relatively small and will not make negative effect on the dynamics control. This
verifies that the NLP-based rudder transformation method has minimized the negative effect due to
rudder jam by coordinating other operational rudders properly. Basing on the above analyses, the
proposed NLP-based command transformation has been demonstrated valid in realizing fault-tolerant
control with rudder faults.
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6. Conclusions

This paper addressed the fault-tolerant control problem of X-rudder underwater vehicles under
circumstances such as rudder jams, control surface damage, etc. Aiming at solving this problem,
a fault-tolerant steering prototype system is designed and its performance is validated by many
simulations and field tests. In this prototype system, the monitoring software is developed based
on the factory method, while the onboard software is designed based on FSM. Moreover, dynamics
control, command transformation, fault detection and fault-tolerant control are all integrated. DIFC is
proposed for dynamics control where actuator limitations are considered and smooth virtual rudder
commands are obtained. A normal command transformation is designed based on mapping theory to
obtain X-rudder commands from virtual rudder commands. The standard particle filter is optimized
by proposal distribution derived from UKF and is used to estimate rudder effect deduction. Then the
fault can be determined by analyzing the deduction. As to fault-tolerant control, NLP is utilized for
fault-tolerant command transformation. Field tests demonstrated that the proposed fault-tolerant
steering prototype system is valid and reliable for X-rudder underwater vehicles both in normal
condition and rudder failure condition.

However, sensor noise in reality may have negative effects on the performance of dynamic
control by DIFC. Thus, the DIFC method will require smooth estimations and its derivatives of those
measurements, such as heading angle, pitch angle, etc. so the performance can be guaranteed. As this
paper currently focus on the response of the xAUV to the dynamics control under ideal conditions,
a study of sensor uncertainties is beyond the scope. An extension of the work to include such filtering
method is highly relevant for future work.

Estimations of the rudder effect deduction are highly relevant to the environmental disturbances.
In order to obtain a more precise estimation, we have also described a signal separation method based
on Fourier analysis that can extract the deduction caused by rudder faults and the effect of disturbances
from the original estimations. A detailed analysis is, however, beyond the scope of this paper and
remains a topic for future work.

The achievements related to fault detection and fault tolerant control in this study can also be
applied to other vehicles, such as over-actuated underwater vehicles, quadrotors, electric vehicles,
etc. Since these vehicles also have many independent actuators, fault tolerant control is feasible. In
addition, the mathematic models of onshore vehicles are usually more precise than surface vehicles
and underwater vehicles. Therefore, it is likely that the accuracy of fault detection implemented on
such onshore vehicles are more satisfactory.
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