
sensors

Article

Mixed YOLOv3-LITE: A Lightweight Real-Time
Object Detection Method

Haipeng Zhao 1 , Yang Zhou 1,* , Long Zhang 2, Yangzhao Peng 1, Xiaofei Hu 1, Haojie Peng 1

and Xinyue Cai 1

1 The Institute of Geospatial Information, Strategic Support Force Information Engineering University,
Zhengzhou 450001, China; haipengzhao@cumt.edu.cn (H.Z.); pengyangzhao@163.com (Y.P.);
huxiaofeicn@163.com (X.H.); penghhjj@163.com (H.P.); xinyueCCC@163.com (X.C.)

2 Beijing Institute of Remote Sensing Information, Beijing 100192, China; jagger_3d@126.com
* Correspondence: zhouyang3d@163.com

Received: 16 February 2020; Accepted: 26 March 2020; Published: 27 March 2020
����������
�������

Abstract: Embedded and mobile smart devices face problems related to limited computing power
and excessive power consumption. To address these problems, we propose Mixed YOLOv3-LITE,
a lightweight real-time object detection network that can be used with non-graphics processing unit
(GPU) and mobile devices. Based on YOLO-LITE as the backbone network, Mixed YOLOv3-LITE
supplements residual block (ResBlocks) and parallel high-to-low resolution subnetworks, fully
utilizes shallow network characteristics while increasing network depth, and uses a “shallow and
narrow” convolution layer to build a detector, thereby achieving an optimal balance between detection
precision and speed when used with non-GPU based computers and portable terminal devices. The
experimental results obtained in this study reveal that the size of the proposed Mixed YOLOv3-LITE
network model is 20.5 MB, which is 91.70%, 38.07%, and 74.25% smaller than YOLOv3, tiny-YOLOv3,
and SlimYOLOv3-spp3-50, respectively. The mean average precision (mAP) achieved using the
PASCAL VOC 2007 dataset is 48.25%, which is 14.48% higher than that of YOLO-LITE. When the
VisDrone 2018-Det dataset is used, the mAP achieved with the Mixed YOLOv3-LITE network model is
28.50%, which is 18.50% and 2.70% higher than tiny-YOLOv3 and SlimYOLOv3-spp3-50, respectively.
The results prove that Mixed YOLOv3-LITE can achieve higher efficiency and better performance on
mobile terminals and other devices.

Keywords: object detection; computer vision; convolutional neural network; embedded system;
real-time performance

1. Introduction

Recently, object detection based on convolutional neural networks has been a popular research
topic in the field of computer vision with a focus on object location and classification. Feature extraction
and classification of original images can be conducted via multi-layer convolution operations, and
the position of an object in an image can be predicted using boundary boxes, providing the capability
of visual understanding. The results of these studies can be widely applied in facial recognition [1],
attitude prediction [2], video surveillance, and a variety of other intelligent applications [3–5].

Currently, convolutional neural network structures are becoming deeper and more complex.
Although such network structures can match or even exceed human vision in precision, they usually
require huge amounts of computation power and involve ultra-high energy consumption. There has
been significant development in fast object detection methods [6–8]; nevertheless, it is still inconvenient
to implement convolutional neural network structures in non-graphics processing unit (GPU) or mobile
devices. With the growth in the development of embedded and mobile intelligent devices with limited

Sensors 2020, 20, 1861; doi:10.3390/s20071861 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0249-4289
https://orcid.org/0000-0001-6667-3353
http://dx.doi.org/10.3390/s20071861
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/7/1861?type=check_update&version=2

Sensors 2020, 20, 1861 2 of 18

computing power and power consumption, such as small intelligent unmanned aerial vehicles (UAVs)
and augmented reality glasses, lightweight and real-time network models [9,10] have become key
areas of research on the use of convolutional neural network-based object detection technology in
mobile applications.

Recently, some researchers have focused on improving detection precision by building more
complex neural networks, such as the deep residual network (ResNet) [11], dense convolutional
network (DenseNet) [12], dual-path network (DPN) [13], YOLOv3 [14], and high-resolution network
(HRNet) [15]. Other researchers have constructed small and efficient lightweight neural networks by
optimizing various structures, such as MobileNetV1 [16], MobileNetV2 [17], Tiny-YOLO [18], and
YOLO-LITE [19]. End-to-end deep-learning object detection methods based on regression methods,
such as the YOLO series [14,19–23] and single shot multi-box detector (SSD) series [24–26], have
achieved real-time object detection with GPU-based computers while maintaining a relatively high
average precision. However, because of the intensive computational requirements of such systems, it
is difficult to achieve real-time and precise detection using non-GPU based computers and portable
devices that have limited computing power.

To overcome these limitations, we propose in this study a lightweight object detection network,
Mixed YOLOv3-LITE, that uses a shallow-layer, narrow-channel, and multi-scale feature-image parallel
fusion structure. Mixed YOLOv3-LITE can ensure a certain accuracy rate and its characteristics of less
computation than conventional methods and fast detection speed mean that it can be implemented in
embedded and mobile devices for accurate and efficient object detection. The main contributions of
this paper are as follows:

1. The proposed Mixed YOLOv3-LITE fuses deep and shallow features and output feature maps at
different scales to maximize the utilization of the original features by incorporating ResBlocks
and parallel structures.

2. The convolution layers of the Mixed YOLOv3-LITE detector are shallower and narrower, which
reduce the amount of computation and the number of trainable parameters to speed up the
operation of the network.

3. Mixed YOLOv3-LITE with fewer parameters—only about 5.089 million—is a lightweight real-time
network that can be implemented on mobile terminals and other non-GPU based devices.

The remainder of this paper is organized as follows. Section 2 describes several complex networks
with high precision and some efficient lightweight networks. Section 3 presents the proposed network
model and describes its structure in detail. Section 4 describes the datasets, evaluation indicators,
and experimental conditions adopted in the model evaluation process. It also describes comparative
experiments carried out to assess the model and compares the experimental results with different
datasets. Finally, Section 5 presents conclusions drawn from the results and future prospects.

2. Related Work

2.1. Complex Networks with High Precision

In this subsection, complex neural networks such as ResNet, YOLOv3, and HRNet are described
in detail. We extracted their core structures for use in the experiments of this study.

2.1.1. Deep Residual Network (ResNet), DenseNet, and Dual-Path Network (DPN)

ResNet was proposed by He et al. [11], who applied the concept of residual representation, which
is commonly used in conventional computer vision, to construct a convolutional neural network (CNN)
model. They also proposed a ResBlock structure, which adds a shortcut to the network. Their approach
is effective to an extent in solving the problem of the precision of a model decreasing when the number
of layers in a visual geometry group (VGG) [27] network increases.

Sensors 2020, 20, 1861 3 of 18

DenseNet, proposed by Huang et al. [12], is a method in which each layer accepts feature mapping
from all previous layers, thereby making the network thinner and more compact. This network has
fewer parameters than ResNet, which strengthens the reuse of features and mitigates the problems of
gradient vanishing and model degradation.

The dual-path network is a simple, efficient, and modular network proposed by Chen et al. [13].
This network uses dual-path topology in combination with the feature reuse in ResNet and new
features exploration in DenseNet, to achieve common feature sharing, ensure flexibility, and explore
new features.

2.1.2. YOLOv3

YOLOv3 [14] learns from a residual network structure to form a deeper network level. It uses
multi-scale features for object detection and logistics instead of softmax object classification to improve
the mean average precision (mAP) and detection of small objects. In the case of equal precision,
the speed of YOLOv3 is three to four times greater than that of other models. Its network structure is
illustrated in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 20

network. Their approach is effective to an extent in solving the problem of the precision of a model
decreasing when the number of layers in a visual geometry group (VGG) [27] network increases.

DenseNet, proposed by Huang et al. [12], is a method in which each layer accepts feature
mapping from all previous layers, thereby making the network thinner and more compact. This
network has fewer parameters than ResNet, which strengthens the reuse of features and mitigates
the problems of gradient vanishing and model degradation.

The dual-path network is a simple, efficient, and modular network proposed by Chen et al. [13].
This network uses dual-path topology in combination with the feature reuse in ResNet and new
features exploration in DenseNet, to achieve common feature sharing, ensure flexibility, and explore
new features.

2.2.2. YOLOv3

YOLOv3 [14] learns from a residual network structure to form a deeper network level. It uses
multi-scale features for object detection and logistics instead of softmax object classification to
improve the mean average precision (mAP) and detection of small objects. In the case of equal
precision, the speed of YOLOv3 is three to four times greater than that of other models. Its network
structure is illustrated in Figure 1.

ResultDetectionDarkNet53
Type Filters Size Output

Convolutional 32 3×3 416×416
Convolutional 64 3×3 / 2 208×208
Convolutional 32 1×1
Convolutional 64 3×3

Residual 208×208
Convolutional 128 3×3 / 2 104×104
Convolutional 64 1×1
Convolutional 128 3×3

Residual 104×104
Convolutional 256 3×3 / 2 52×52
Convolutional 128 1×1
Convolutional 256 3×3

Residual 52×52
Convolutional 512 3×3 / 2 26×26
Convolutional 256 1×1
Convolutional 512 3×3

Residual 26×26
Convolutional 1024 3×3 / 2 13×13
Convolutional 512 1×1
Convolutional 1024 3×3

Residual 13×13

1 ×

2 ×

8 ×

8 ×

4 ×
Convolutional Set

Convolutional
1×1

Upsample

Concat

Convolutional Set

Convolutional Set

Convolutional
1×1

Upsample

Concat

Convolutional
3×3

Conv2d
1×1

Predict one

Convolutional
3×3

Conv2d
1×1

Predict two

Convolutional
3×3

Conv2d
1×1

Predict three

Convolutional Set

Convolutional
1×1

Convolutional
3×3

Convolutional
1×1

Convolutional
1×1

Convolutional
3×3

Figure 1. YOLOv3 network structure.

2.2.3. High-Resolution Network (HRNet)

HRNet proposed by Sun et al. [15] maintains a high-resolution representation by parallel
subnetworks of high-resolution to low-resolution convolution and enhances high-resolution
representation by repeatedly performing multi-scale fusion across parallel convolution. This
network can maintain high-resolution representation rather than just recover high-resolution
representation from low-resolution representation. The effectiveness of the method was
demonstrated in pixel-level classification, region-level classification, and image-level classification.

2.2. Lightweight Networks

Figure 1. YOLOv3 network structure.

2.1.3. High-Resolution Network (HRNet)

HRNet proposed by Sun et al. [15] maintains a high-resolution representation by parallel
subnetworks of high-resolution to low-resolution convolution and enhances high-resolution
representation by repeatedly performing multi-scale fusion across parallel convolution. This network
can maintain high-resolution representation rather than just recover high-resolution representation
from low-resolution representation. The effectiveness of the method was demonstrated in pixel-level
classification, region-level classification, and image-level classification.

Sensors 2020, 20, 1861 4 of 18

2.2. Lightweight Networks

2.2.1. MobileNetV1 and MobileNetV2

MobileNetV1 [16] and MobileNetV2 [17] are efficient models proposed by Google for mobile and
embedded devices. MobileNetV1 is based on a streamlined structure. Its underlying innovation is the
use of depthwise-separable convolutions (Xception) to build a lightweight-depth neural network that
greatly reduces the number of parameters and the amount of computation. It also achieves a desirable
balance between detection speed and precision by introducing the parameters α (width multiplier)
and ρ (resolution multiplier). Based on deep separable convolution, MobileNetV2 uses the inverted
residual and linear bottleneck structure to maintain the representation ability of the model.

2.2.2. Tiny-YOLO and YOLO-LITE

Tiny-YOLO [18] is a lightweight implementation of the YOLO network. It can be used as an
alternative structure for YOLOv2 or YOLOv3 in scenarios where the demand for precision is not
high. Its detection speed is faster than that of the original network. However, in the case of non-GPU
based devices, Tiny-YOLO still encounters difficulty meeting the requirements of real-time detection.
YOLO-LITE [19] is a lightweight version of YOLOv2, which is faster than Tiny-YOLOv2 but with a
lower average precision.

This section introduced complex networks such as ResNet, YOLOv3, and HRNet, and lightweight
networks such as MobileNet and YOLO-LITE. Owing to the large amount of model parameters and
computation, high requirements for device performance and slow inference speed make it difficult
to migrate complex networks to embedded and mobile devices. Although lightweight networks
such as MobileNet and YOLO-LITE have greatly improved their detection speed, their accuracy still
requires improvement.

3. Mixed YOLOv3-LITE Network

3.1. Mixed YOLOv3-LITE Network Structure

To apply real-time object detection using convolutional networks on embedded platforms,
such as augmented reality, we propose a simplified model structure, Mixed YOLOv3-LITE, which is a
lightweight object detection framework suitable for non-GPU based devices or mobile terminals. Its
simplified model structure is presented in Figure 2. The model is composed of fifteen 3 × 3 convolution
layers, seven 1 × 1 convolution layers, three ResBlocks, and eight max-pooling (MP) layers. It has the
following characteristics:

1. For the feature extraction part, ResBlocks and the parallel high-to-low resolution subnetworks
of HRNet are added based on the backbone network of YOLO-LITE, and the shallow and deep
features are deeply integrated to maintain the high-resolution features of the input image. This
improves the detection precision. This part includes four 3 × 3 standard convolution layers,
four maximum pooling layers, three residual blocks, modules A, B, and C for reconstructing
a multi-resolution pyramid, and concat modules A, B, and C. The concat-N module is located
between the backbone network and the detector, and is used to reconstruct feature maps with the
same resolution at different depths.

2. For the detection part, a structure similar to that of YOLOv3 is used to reduce the number of
convolution layers and channels. The detector detects the recombined feature maps of each
concat-N module separately to improve the accuracy of detecting of small objects, and then selects
the best detection result through maximum value suppression.

Sensors 2020, 20, 1861 5 of 18

Sensors 2020, 20, x FOR PEER REVIEW 5 of 20

Backbone

Concat C Concat B Concat A

NM
S

Result

Module A

Module B

Module C

Concat-N Module
Concat

Conv 1×1

Concat

u
p

sa
m

p
le

Conv 1×1Concat N-1

Conv 3×3Concat N+1

Conv 1×1, (7×7×
(3*(NumClass+5)))

Conv 1×1, (14×14×
(3*(NumClass+5)))

Conv 1×1, (28×28×
(3*(NumClass+5)))

ResBlock

1×1 Conv, 128

3×3 Conv, 256

+

256-d

Relu

Relu

Module C
Conv 1×1, (7×7×128)

upsample, (14×14×128)

Conv 3×3, (14×14×128)

upsample, (28×28×128)

Conv 3×3, (28×28×128) Concat C

Concat B

Concat A
Module A

Conv 3×3, (14×14×128)

upsample, (28×28×128)

Conv 3×3, (28×28×128)

Concat A

Concat C

Concat B

Conv 3×3, (14×14×64)

MP, /2, (7×7×64)

Module B
Conv 3×3, (28×28×128)

Conv 3×3, (28×28×64)

MP, /2, (14×14×64)

Conv 3×3, (14×14×128)

MP, /2, (7×7×128) Concat A

Concat B

Concat C

Figure 2. Mixed YOLOv3-LITE network structure.

3.2. Mixed YOLOv3-LITE Network Module

The excellent performance of YOLOv3 is largely attributable to the application of the backbone

network Darknet-53 [14]. To further improve the detection speed of the network, Mixed

YOLOv3-LITE uses the shallow backbone network of YOLO-LITE to replace Darknet-53 and adds a

residual structure and parallel high-to-low-resolution subnetworks to achieve the fusion of shallow

and deep features, thereby improving the detection precision.

3.2.1. Shallow Network and Narrow Channel

YOLO-LITE employs a backbone network with seven convolution layers and four MP layers

[19]. As shown in Table 1, it is a “shallow network and narrow channel” network. The amount of

computation and the number of parameters are essentially reduced in comparison with a deep

network, and the detection speed of the network is improved significantly. In Mixed YOLOv3-LITE,

we used a backbone network with a structure similar to that shown in Table 1, and we

simultaneously narrowed the channel according to the structure at the detection end to reduce the

number of parameters and amount of computation, and to improve the network training speed.

Table 1. YOLO-LITE architecture.

Layer Filters Size Stride

C1 16 3 × 3 1

MP

2 × 2 2

C2 32 3 × 3 1

MP

2 × 2 2

C3 64 3 × 3 1

MP

2 × 2 2

C4 128 3 × 3 1

MP

2 × 2 2

Figure 2. Mixed YOLOv3-LITE network structure.

3.2. Mixed YOLOv3-LITE Network Module

The excellent performance of YOLOv3 is largely attributable to the application of the backbone
network Darknet-53 [14]. To further improve the detection speed of the network, Mixed YOLOv3-LITE
uses the shallow backbone network of YOLO-LITE to replace Darknet-53 and adds a residual structure
and parallel high-to-low-resolution subnetworks to achieve the fusion of shallow and deep features,
thereby improving the detection precision.

3.2.1. Shallow Network and Narrow Channel

YOLO-LITE employs a backbone network with seven convolution layers and four MP layers [19].
As shown in Table 1, it is a “shallow network and narrow channel” network. The amount of computation
and the number of parameters are essentially reduced in comparison with a deep network, and the
detection speed of the network is improved significantly. In Mixed YOLOv3-LITE, we used a backbone
network with a structure similar to that shown in Table 1, and we simultaneously narrowed the channel
according to the structure at the detection end to reduce the number of parameters and amount of
computation, and to improve the network training speed.

3.2.2. ResBlock and Parallel High-to-Low Resolution Subnetworks

By adding a shortcut [11] to the network, the residual structure can solve the problem of the
precision of the model decreasing rather than increasing when the number of layers in the VGG [27]
network increases. The residual structure used in this study is consistent with the residual structure of
YOLOv3 [14].

The principle of parallel high-to-low-resolution subnetworks [15] is shown in Figure 3; the dotted
frames are the parallel high-to-low-resolution subnetworks structure. We borrowed this idea for this
study, thus the resolution of three feature images with different scales was reconstructed, fused, and
then output to the detection end for object detection, thereby improving the detection precision of
the network.

Sensors 2020, 20, 1861 6 of 18

Table 1. YOLO-LITE architecture.

Layer Filters Size Stride

C1 16 3 × 3 1
MP 2 × 2 2
C2 32 3 × 3 1
MP 2 × 2 2
C3 64 3 × 3 1
MP 2 × 2 2
C4 128 3 × 3 1
MP 2 × 2 2
C5 128 3 × 3 1
MP 2 × 2 2
C6 256 3 × 3 1
C7 125 1×1 1

The region

Sensors 2020, 20, x FOR PEER REVIEW 6 of 20

C5 128 3 × 3 1
MP 2 × 2 2
C6 256 3 × 3 1
C7 125 1×1 1

The region

3.2.2. ResBlock and Parallel High-to-Low Resolution Subnetworks

By adding a shortcut [11] to the network, the residual structure can solve the problem of the
precision of the model decreasing rather than increasing when the number of layers in the VGG [27]
network increases. The residual structure used in this study is consistent with the residual structure
of YOLOv3 [14].

The principle of parallel high-to-low-resolution subnetworks [15] is shown in Figure 3; the
dotted frames are the parallel high-to-low-resolution subnetworks structure. We borrowed this idea
for this study, thus the resolution of three feature images with different scales was reconstructed,
fused, and then output to the detection end for object detection, thereby improving the detection
precision of the network.

depth

sc
al

e

1×

2×

4×
up

sample
convolutional

unit
down

sample
feature
maps

Figure 3. Schematic illustration of the architecture of the high-resolution network (HRNet).

The residual structure and parallel high- to low-resolution subnetworks are designed to solve
the degradation problem of deep networks. The difference is that the residual structure
continuously transmits shallow features to deep layers through a shortcut over a small range,
whereas parallel high- to low-resolution subnetworks conduct multi-resolution reconstruction of
deep and shallow features at multiple scales through large- and multi-scale fusion, so that
multi-scale feature maps have both deep and shallow features at the same time.

4. Experiment and Discussion

This section describes the experimental environment, datasets, parameter settings of the
training network, and the evaluation index of the model effect. The settings of the network
structure are also presented through a series of comparative experiments conducted in the process
of designing the proposed network and selecting the network that yielded the optimal
performance. This selection was based on a comparison of the experimental results obtained using
the PASCAL VOC dataset [28]. The precision index of the network for object detection was verified
using the VisDrone 2018-Det dataset [29] and the ShipData dataset. Finally, the speed index of the
network was verified on the embedded platform Jetson AGX Xavier [30].

Figure 3. Schematic illustration of the architecture of the high-resolution network (HRNet).

The residual structure and parallel high- to low-resolution subnetworks are designed to solve
the degradation problem of deep networks. The difference is that the residual structure continuously
transmits shallow features to deep layers through a shortcut over a small range, whereas parallel high-
to low-resolution subnetworks conduct multi-resolution reconstruction of deep and shallow features
at multiple scales through large- and multi-scale fusion, so that multi-scale feature maps have both
deep and shallow features at the same time.

4. Experiment and Discussion

This section describes the experimental environment, datasets, parameter settings of the training
network, and the evaluation index of the model effect. The settings of the network structure are also
presented through a series of comparative experiments conducted in the process of designing the
proposed network and selecting the network that yielded the optimal performance. This selection
was based on a comparison of the experimental results obtained using the PASCAL VOC dataset [28].
The precision index of the network for object detection was verified using the VisDrone 2018-Det
dataset [29] and the ShipData dataset. Finally, the speed index of the network was verified on the
embedded platform Jetson AGX Xavier [30].

Sensors 2020, 20, 1861 7 of 18

4.1. Experimental Details

4.1.1. Experimental Environment Setup

We performed training using a TensorFlow-based version of YOLOv3 as the baseline, in which the
YOLO-LITE model file [19] was also converted into the TensorFlow version for performance evaluation.
The training was performed on a server equipped with an Intel Core i7 mur9700K central processing
unit (CPU) and an NVIDIA RTX 2080Ti GPU. During the test, the GPU of the server was disabled, and
only the CPU was used to execute the video detection script under the TensorFlow framework. The
configuration details of the server are listed in Table 2. In addition, the NVIDIA Jetson AGX Xavier
was used as an embedded mobile terminal for performance testing. The Jetson AGX Xavier hardware
was configured as an NVIDIA self-developed eight-core ARM v8.2 64-bit CPU, a 512-core Volta GPU,
and a 16-GB RAM. It is a small, fully functional low-power computing system with a module size no
more than 105 mm × 105 mm, designed especially for robotic, industrial automation, and other neural
network application platforms. When deployed for use with intelligent devices such as unmanned
vehicles and robots, a power consumption of only 10 to 30 W can provide powerful and efficient
artificial intelligence (AI), computer vision, and high-performance computing power [30–32].

Table 2. Hardware environment configuration information.

Operating System Memory CPU Video Card

Training environment Ubuntu 16.04 48 GB Intel Core i7-9700k GeForce RTX 2080Ti
Testing

environment
With GPU Ubuntu 16.04 48 GB Intel Core i7-9700k GeForce RTX 2080Ti

Without GPU Ubuntu 16.04 48 GB Intel Core i7-9700k without

4.1.2. Experimental Datasets

The datasets used in our experiments were PASCAL VOC [28], VisDrone 2018-Det [29], and a ship
dataset of remote-sensing images, which we collected from Google Earth. The PASCAL VOC [28] and
VisDrone 2018-Det datasets [29] were each divided into a training set and a test set (Table 3) such that
our model could be trained under the same experimental settings and compared with the benchmark
model. The following is a detailed description of the three datasets.

Table 3. Overview of PASCAL VOC and VisDrone datasets.

Dataset Training Images Test Images Number of Classes

PASCAL VOC 2007 & 2012 16,511 4952 20
VisDrone 2018-Det 6471 548 10

ShipData 706(Subset A) 303 (Subset B) 1

A. PASCAL VOC
The PASCAL VOC dataset [28] is a public object detection dataset consisting of 20 categories

of objects. These 20 categories are divided into four main categories: Person: person; Animal: bird,
cat, cow, dog, horse, and sheep; Vehicle: airplane, bicycle, boat, bus, car, motorbike, and train; and
Indoor: bottle, chair, dining table, potted plant, sofa, and tv/monitor. In the experiment, a mixed dataset
composed of PASCAL VOC 2007 and 2012 was used for training and testing. The training set consisted
of 16,511 images, and the test set consisted of 4592 images. Each image contained one or more object
that belonged to one or more of the 20 categories used.

B. VisDrone2018-Det
VisDrone2018-Det [29] is a large UAV-based dataset consisting of 8599 images, 6471 of which

were used for training, 1580 for validation, and 1580 for testing. The dataset contains rich annotations,
including object bounding boxes, object categories, occlusions, and truncation rates. The label data of
the training set and validation set have been made public and were used as the training set and test set,

Sensors 2020, 20, 1861 8 of 18

respectively. There are several real-world scenarios in the data. These datasets contain various scenes
(thousands of cities and kilometers) and various weather and light conditions. We mainly focused
on the following object categories in the detection of objects: pedestrians, people, cars, trucks, buses,
bicycles, awning tricycles, and tricycles.

C. ShipData
The ShipData produced in this study is a remote-sensing image ship dataset with 1009 images

collected by Google Earth and labeled in PASCAL VOC format. The backgrounds of the images vary
greatly, and there are many different types of ships. The dataset was randomly divided into subset A
(706 images) and subset B (303 images)—according to the proportion 7:3. Two subsets of data were
used in the experiment. In the first round, subset A was used for training and subset B was used for
testing. In the second round, subset B was used for training and subset A was used for testing.

4.1.3. Evaluation Metrics

In this study, the precision, recall rate, F1 score, and mAP were used to evaluate the detection
accuracy of the model. Floating point operations (FLOPs), the number of parameters, and the model
size were used to evaluate the performance of the model, which was finally reflected in the frames per
second (FPS) index.

The objects considered can be divided into four categories based on their actual and predicted
categories [33]: true positive (TP), fault positive (FP), true negative (TN), and fault negative (FN). The
relationships are shown in Table 4.

Table 4. Confusion matrix.

Actual

Predicted
1 0 Total

1 True Positive
(TP)

False Negative
(FN)

Actual Positive
(TP + FN)

0 False Positive
(FP)

True Negative
(TN)

Actual Negative
(FP + TN)

Total Predicted Positive
(TP + FP)

Predicted Negative
(FN + TN) TP + FN + FP + TN

The precision reflects the proportion of real positive examples in the positive cases determined
by the classifier while the recall rate reflects the proportion of correct positive cases among the total
number of positive cases. F1 is the weighted harmonic average of precision and recall, which combines
the results for precision and recall. When F1 is higher, it indicates that the test method is more effective.
Average precision (AP) is the area under the precision–recall (P–R) curve. For example, Figure 4 shows
the P–R curve for the method in the horse category in the PASCAL VOC dataset. The AP of the horse
category is the area of the shaded part in the figure, which accounts for 65.04% of the area. In general,
the better the classifier, the higher the AP value. The mAP is the average of the AP value in multiple
categories. The calculation method is as follows:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 =
2

1/precision + 1/recall
(3)

Sensors 2020, 20, 1861 9 of 18

Sensors 2020, 20, x FOR PEER REVIEW 9 of 20

21
1 / 1 /

F
precision recall

=
+

 (3)

Figure 4. Mixed YOLOv3-LITE P-R curve of horse category in PASCAL VOC dataset.

FLOP is the number of operations of the model, which can be used to evaluate the time
complexity of the model. The number of parameters of the model consists of two parts: the total
number of parameters and the size of the output feature graph of each layer, which can be used to
evaluate the space complexity of the algorithm and the model. The overall time and space
complexities of the CNN can be calculated as follows:

2 2
1

1
 ~

D

ll l l
l

Time O M C CK −
=

 
⋅ ⋅ ⋅ 

 
 (4)

22
1

1 1
 ~

D D

l l l l l
l l

Space O C C M CK −
= =

 
⋅ ⋅ + ⋅ 

 
  (5)

In Equations (4) and (5), D represents the number of layers of the CNN, i.e., the depth of the
network; l represents the l th convolution layer of the CNN; lM represents the side length of the

output feature map for the l th convolution layer; K represents the side length of each
convolution kernel; -1lC represents the number of input channels of the l th convolution layer, i.e.,

the number of output channels of the (1l −)th convolution layer; and lC represents the number of

output channels of the l th convolution layer, i.e., the number of convolution kernels of this layer.

4.1.4. Experimental Setup

This section describes the network models proposed during the design of Mixed YOLOv3-LITE
and the network structure of each trial, as shown in Table 5. In all trials, 60 epochs of training were
carried out using the PASCAL VOC 2007-2012 training dataset to obtain the final model. The input
image size used in model training and testing was set to 224 × 224, which is consistent with that of
YOLO-LITE. As YOLOv3 did not publish the precision data associated with the PASCAL VOC
dataset, 60 epochs of training with YOLOv3 were performed under the same experimental
environment and parameter settings, which were adopted as the evaluation baseline. The

Figure 4. Mixed YOLOv3-LITE P-R curve of horse category in PASCAL VOC dataset.

FLOP is the number of operations of the model, which can be used to evaluate the time complexity
of the model. The number of parameters of the model consists of two parts: the total number of
parameters and the size of the output feature graph of each layer, which can be used to evaluate the
space complexity of the algorithm and the model. The overall time and space complexities of the CNN
can be calculated as follows:

Time ∼ O

 D∑
l=1

M2
l ·K

2
l ·Cl−1 ·Cl

 (4)

Space ∼ O

 D∑
l=1

K2
l ·Cl−1 ·Cl +

D∑
l=1

M2
l ·Cl

 (5)

In Equations (4) and (5), D represents the number of layers of the CNN, i.e., the depth of the
network; l represents the lth convolution layer of the CNN; Ml represents the side length of the output
feature map for the lth convolution layer; K represents the side length of each convolution kernel;
Cl−1 represents the number of input channels of the lth convolution layer, i.e., the number of output
channels of the (l− 1)th convolution layer; and Cl represents the number of output channels of the lth
convolution layer, i.e., the number of convolution kernels of this layer.

4.1.4. Experimental Setup

This section describes the network models proposed during the design of Mixed YOLOv3-LITE
and the network structure of each trial, as shown in Table 5. In all trials, 60 epochs of training were
carried out using the PASCAL VOC 2007-2012 training dataset to obtain the final model. The input
image size used in model training and testing was set to 224 × 224, which is consistent with that of
YOLO-LITE. As YOLOv3 did not publish the precision data associated with the PASCAL VOC dataset,
60 epochs of training with YOLOv3 were performed under the same experimental environment and
parameter settings, which were adopted as the evaluation baseline. The experimental results for all
the networks—i.e., YOLO-LITE, YOLOv3, MobileNetV1-YOLOv3, and MobileNetV2-YOLOv3—are
shown in Table 6. The details of the experiment are presented below.

Sensors 2020, 20, 1861 10 of 18

Table 5. Network structure description of different trials.

Model Structure Description

YOLO-LITE YOLO-LITE raw network structure [19], as shown in Table 1
YOLOv3 YOLOv3 raw network structure [14], as shown in Figure 1

MobileNetV1-YOLOv3 Backbone uses MobileNetV1 while using YOLOv3 detector part
MobileNetV2-YOLOv3 Backbone uses MobileNetV2 while using YOLOv3 detector part

Trial 1 All convolution layers in YOLOv3 were replaced by depth-separable convolution,
and the number of ResBlocks in Darknet53 was replaced from 1-2-8-8-4 to 1-2-4-6-4.

Trial 2 The convolution layer was reduced in the detector part of Trial 1 by one layer.

Trial 3 The number of ResBlocks in the backbone network of Trial 2 was reduced from
1-2-4-6-4 to 1-1-1-1-1.

Trial 4
A parallel structure was added based on Trial 2, the resolution was reconstructed

using a 1 × 1 convolutional kernel, and the channel was fused using a 3 × 3
convolutional kernel after the connection.

Trial 5 Based on Trial 4, the number of ResBlocks in the backbone network was replaced by
1-1-2-4-2, and the resolution was reconstructed using a 3 × 3 convolutional kernel.

Trial 6 A parallel structure was added based on YOLOv3, which used a 1 × 1 ordinary
convolution.

Trial 7 All convolutions in Trial 6 were replaced by depth-separable convolutions.

Trial 8 The region was exactly the same as that of YOLOv3, and the last layer became
wider when the backbone extracted features.

Trial 9 The backbone was exactly the same as that in Trial 8, and three region levels were
reduced by two layers for each.

Trial 10 Three region levels were reduced by two layers for each, the region was narrowed
simultaneously, and the backbone was exactly the same as that of YOLO-LITE.

Trial 11 The backbone was exactly the same as that in Trial 8, and three region levels were
reduced by four layers for each.

Trial 12
The backbone was exactly the same as that of YOLO-LITE, three region levels were

reduced by four layers for each, and the region was narrowed simultaneously
(three region levels were reduced by two layers for each based on Trial 10).

Trial 13 Three ResBlocks were added based on Trial 12.
Trial 14 Three HR structures were added based on Trial 12.

Trial 15
Based on Trial 14, the downsampling method was changed from the convolution

step to the maximum pool, and a layer of convolution was added after the
downsampling.

Trial 16 The convolution kernel of the last layer of HR was changed from 1 × 1 to 3 × 3
based on Trial 15.

Trial 17 Three ResBlocks were added to Trial 15.
Trial 18 Nine layers of inverted-bottleneck ResBlocks were added to Trial 15.

Trial 19 Based on Trial 18, the output layers of HR structure were increased by one 3 × 3
convolution layer for each, for a total of three layers.

Trial 20 The number of ResBlocks per part was adjusted to three, based on Trial 17.

Trial 21 The last ResBlocks was moved forward to reduce the number of channels, based on
Trial 20.

A. Depthwise-separable convolutions
Depthwise-separable convolution (as shown on the right in Figure 5), which was used in

MobileNets [16] instead of ordinary convolution (as shown on the left in Figure 5), can significantly
reduce the number of parameters and the amount of computation required.

By comparing YOLOv3 for Trials 1, 2, 3, 6, and 7, it is observed that without changing the network
structure and by replacing ordinary convolution with deep separable convolution, the performance of
the model decreases remarkably as the number of parameters, the amount of computation, and the
model size increase.

B. Shallow network
In Trial 8, Darknet53 of the YOLOv3 backbone network was replaced by the seven-layer structure

of the YOLO-LITE backbone network, and the number of channels in each layer was adjusted to couple
with YOLOv3. Compared to the original YOLOv3, the number of parameters, amount of computation,

Sensors 2020, 20, 1861 11 of 18

and model size were reduced by approximately 50%. However, the mAP, recall rate, and F1 score
of the model only decreased slightly. Thus, the relative efficiency of the YOLO-LITE layer backbone
network structure in the lightweight model was verified.

In Trials 9 and 11, the number of computations and model size were greatly reduced in comparison
to those of Trial 8 as the number of convolution layers in the detection part was gradually reduced.
Meanwhile, the mAP, recall rate, and F1 score of the model decreased slightly. Thus, it was confirmed
that the smaller detection part was effective for the lightweight model.

Table 6. Results of different trials using PASCAL VOC dataset.

Model
Layers Model

Size (MB) GFLOPs
Params

(M) FPS mAP Precision Recall F1
Backbone The Region

YOLO-LITE 7 5 2.3 0.482 not
reported 102 33.77 not

reported
not

reported
not

reported

YOLOv3 52 23 246.9 19.098 61.626 11 55.81 42.29 68.48 52.29

MobileNetV1-YOLOv3 27 23 97.1 6.234 24.246 19 6.27 21.95 17.90 19.72

MobileNetV2-YOLOv3 53 23 93.5 5.622 23.270 21 13.26 27.48 28.34 27.90

Trial 1 43 23 20.8 2.142 5.136 20 26.87 38.27 45.4 41.53

Trial 2 43 17 15.9 1.854 3.911 21 18.46 44 53.11 48.12

Trial 3 19 11 7.7 1.091 1.908 34 13.01 22.86 37.65 28.45

Trial 4 49 17 39.6 3.496 9.83 17 18.22 38.43 33.84 35.99

Trial 5 34 17 35.1 2.832 8.714 26 15.69 44.77 28.91 35.13

Trial 6 58 23 270.3 20.702 67.467 10 37.61 60.09 51.58 55.51

Trial 7 58 23 76.3 5.737 19 18 17.29 60.53 27.58 37.89

Trial 8 7 23 136.8 7.892 34.151 24 49.73 42.8 64.02 51.3

Trial 9 7 17 109.2 6.337 27.265 29 51.69 41.53 64.95 50.67

Trial 10 7 17 14.3 1.975 3.555 76 44.93 38.09 60.66 46.8

Trial 11 7 11 81.6 4.782 20.378 31 49.07 45.12 62.08 52.26

Trial 12 7 11 10.4 1.299 2.66 90 43.08 37.63 58.78 45.88

Trial 13 13 11 17.3 1.688 4.293 76 43.99 38.26 59.72 46.64

Trial 14 13 11 11 1.401 2.727 86 43.13 36.38 59.28 45.09

Trial 15 16 11 13.6 2.091 3.366 74 44.93 35.85 61.06 45.18

Trial 16 16 11 18.8 2.896 4.669 61 46.05 37.02 61.33 46.17

Trial 17 23 11 20.5 2.480 5.089 61 48.25 49.53 69.54 57.85

Trial 18 34 11 18 2.229 4.464 62 47.81 35.36 63.54 45.43

Trial 19 37 11 22.1 2.935 5.483 54 48.94 37.52 63.45 47.15

Trial 20 34 11 34.3 2.867 5.582 48 49.32 39.09 64.15 48.58

Trial 21 34 11 21.7 2.808 5.387 55 48.01 37.17 64.03 47.03

Sensors 2020, 20, x FOR PEER REVIEW 12 of 20

A. Depthwise-separable convolutions

Depthwise-separable convolution (as shown on the right in Figure 5), which was used in
MobileNets [16] instead of ordinary convolution (as shown on the left in Figure 5), can significantly
reduce the number of parameters and the amount of computation required.

3×3 Conv

BN

ReLU

3×3 Depthwise Conv

BN

ReLU

3×3 Conv

BN

ReLU
Figure 5. (Left): standard convolutional layer with batchnorm (BN) and rectified linear unit (ReLU).
(Right): depthwise-separable convolutions with depthwise and pointwise layers, followed by
batchnorm and ReLU.

By comparing YOLOv3 for Trials 1, 2, 3, 6, and 7, it is observed that without changing the
network structure and by replacing ordinary convolution with deep separable convolution, the
performance of the model decreases remarkably as the number of parameters, the amount of
computation, and the model size increase.

B. Shallow network

In Trial 8, Darknet53 of the YOLOv3 backbone network was replaced by the seven-layer
structure of the YOLO-LITE backbone network, and the number of channels in each layer was
adjusted to couple with YOLOv3. Compared to the original YOLOv3, the number of parameters,
amount of computation, and model size were reduced by approximately 50%. However, the mAP,
recall rate, and F1 score of the model only decreased slightly. Thus, the relative efficiency of the
YOLO-LITE layer backbone network structure in the lightweight model was verified.

In Trials 9 and 11, the number of computations and model size were greatly reduced in
comparison to those of Trial 8 as the number of convolution layers in the detection part was
gradually reduced. Meanwhile, the mAP, recall rate, and F1 score of the model decreased slightly.
Thus, it was confirmed that the smaller detection part was effective for the lightweight model.

C. Narrow channel

The backbone network of YOLO-LITE is shown in Table 1. The number of channels of each
layer was significantly reduced compared to that of YOLOv3. Trials 10 and 11 were designed to
verify the effectiveness of the narrow-channel backbone network.

In the comparative trials between Trials 10 and 9 and between Trials 12 and 11, the number of
convolution layers of the model was exactly the same, but the number of channels of Trials 10 and
11 was remarkably reduced compared to those of Trials 9 and 12. In addition, the mAP of Trials 10
and 11 decreased by 6.76% and 5.99%, respectively, and the amount of computation, the number of
parameters, and the model size were reduced by factors of approximately 3.5, 7.6, and 7.7,
respectively before and after adjustment. This confirmed the relative efficiency of the narrow
channel in the lightweight model.

D. ResBlock

Based on Trial 12, one layer of ResBlock was added before the output of the three-scale feature
maps in Trial 13, and the mAP, recall rate, and F1 score of the model increased by approximately
0.8%. However, the amount of computation, the number of parameters, and the model size were
reduced by approximately 30%, 66%, and 61%, respectively, which is not cost-effective at all.

Figure 5. (Left): standard convolutional layer with batchnorm (BN) and rectified linear unit
(ReLU). (Right): depthwise-separable convolutions with depthwise and pointwise layers, followed by
batchnorm and ReLU.

Sensors 2020, 20, 1861 12 of 18

C. Narrow channel
The backbone network of YOLO-LITE is shown in Table 1. The number of channels of each layer

was significantly reduced compared to that of YOLOv3. Trials 10 and 11 were designed to verify the
effectiveness of the narrow-channel backbone network.

In the comparative trials between Trials 10 and 9 and between Trials 12 and 11, the number of
convolution layers of the model was exactly the same, but the number of channels of Trials 10 and 11
was remarkably reduced compared to those of Trials 9 and 12. In addition, the mAP of Trials 10 and 11
decreased by 6.76% and 5.99%, respectively, and the amount of computation, the number of parameters,
and the model size were reduced by factors of approximately 3.5, 7.6, and 7.7, respectively before and
after adjustment. This confirmed the relative efficiency of the narrow channel in the lightweight model.

D. ResBlock
Based on Trial 12, one layer of ResBlock was added before the output of the three-scale feature

maps in Trial 13, and the mAP, recall rate, and F1 score of the model increased by approximately 0.8%.
However, the amount of computation, the number of parameters, and the model size were reduced by
approximately 30%, 66%, and 61%, respectively, which is not cost-effective at all.

E. Parallel high- to low-resolution subnetworks
In the first set of comparative experiments, parallel high-to low-resolution subnetworks based

on Trial 2 were added and the three-scale feature maps were fused before output for Trials 4 and 5.
All the convolutional layers in the first set of comparative experiments were depthwise-separable
convolutions. The difference between Trials 4 and 5 is that the multi-scale feature maps after the
resolution reconstruction in Trial 4 are connected using the convolution operation for channel feature
fusion, which made its mAP decrease by 0.24% compared with Trial 2. On the basis of Trial 4, Trial 5
reduced the number of residual blocks in the backbone, and its mAP decreased by 2.53% compared with
Trial 4. It can be seen from the comparison that the parallel structure using deep separable convolution
cannot improve the accuracy index of the network. Furthermore, it also reflects the number of residual
blocks, that is, the depth of the backbone, which affects the network performance.

In the second set of comparative experiments, parallel high- to low-resolution subnetworks based
on Trial 12 were added and the three-scale feature maps were fused before output for Trials 14 and 15. All
the convolutional layers in the second set of comparative experiments were standard convolutions. The
difference between Trials 14 and 15 is that the downsampling of Trial 14 was achieved by convolution
with a step size of two, whereas that of Trial 15 was achieved by maximum pooling. The mAP of Trials
14 and 15 was improved by 0.05% and 1.85%, respectively. By this comparison, the effectiveness of
using standard convolutions, the maximum pool, and parallel structure was demonstrated.

F. Comprehensive tests
Trials 16, 17, and 18 were all modified based on the results of Trial 15. In Trial 16, the convolution

kernel of parallel high- to low-resolution subnetworks was replaced from 1 × 1 to 3 × 3. In Trial 17, one
layer of ResBlock was added for each before the output of the three-scale feature map. Further, three
layers of ResBlocks with inverted-bottleneck structures [17] were added for each in Trial 18 before the
output of the three-scale feature map. A comparison of the results of Trials 16, 17, and 18 with those of
Trial 15 shows that the mAP increased by 1.12%, 3.32%, and 2.88%, respectively. Trial 17 exhibited the
best performance in terms of precision, recall rate, and F1 scores, which increased by 13.68%, 8.48%,
and 12.67%, respectively, and the amount of computation of the model increased by 0.389 GFLOPs.

Trial 19 added a 3 × 3 convolution layer before the output of the parallel-structure three-scale
feature map of Trial 18, and Trial 20 adjusted the number of ResBlocks of each part to three layers,
based on the results of Trial 17. Trial 21 moved forward the position of the last part of the ResBlock of
Trial 20 to reduce the number of channels. From the results, we can see that the mAP of Trial 19 and
Trial 20 was slightly higher than that of the original network, but the amount of computation and the
number of parameters increased more significantly. The operation involved in Trial 21 significantly
reduced the amount of computation but sacrificed 1.31% of the mAP.

Sensors 2020, 20, 1861 13 of 18

4.2. Experimental Results

4.2.1. PASCAL VOC

A total of 21 different trials were performed in this study; the results are shown in Table 6.
The precision, recall rate, F1 score, mAP, and FPS of YOLO-LITE, YOLOv3, MobileNetV1-YOLOv3,
MobileNetV2-YOLOv3, and the different trials obtained using the PASCAL VOC 2007 test dataset are
illustrated in Figure 6. As seen from the experimental results, YOLO-LITE achieved 102 FPS (non-GPU)
in the experimental environment with a high speed. However, its mAP was only 33.77%. The mAP
of YOLOv3 was 55.81%, but its speed was only approximately 11 FPS (non-GPU), which is lower
than that of YOLO-LITE. Based on the same parameter settings in the experimental environment,
MobileNetV1-YOLOv3′s mAP is approximately 6.27% and the detection speed is approximately 19 FPS,
whereas MobileNetV2-YOLOv3’s mAP is 13.26% and the detection speed is 21 FPS. These results
demonstrate that it is difficult to achieve real-time object detection with non-GPU-based computers or
mobile terminals. Considering the precision, recall rate, and F1 score together, Trial 17 yielded the best
performance (Mixed YOLOv3-LITE) by achieving 49.53%, 69.54%, and 57.85% for the above indices,
respectively. The amount of computation of the model was 2.48 GFLOPs, which is only 13% of that
of YOLOv3. The model size was 20.5 MB, which is only 8.3% of that of YOLOv3, and 60 FPS was
achieved in the non-GPU based experimental environment, which is approximately 5.5 times that
of YOLOv3. Meanwhile, when the speed was relatively slow, the mAP was 14.48% higher than that
of YOLO-LITE. A portion of the experimental results for the Mixed YOLOv3-LITE model using the
PASCAL VOC 2007 testing dataset is shown in Figure 7.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 20

non-GPU-based computers or mobile terminals. Considering the precision, recall rate, and F1 score
together, Trial 17 yielded the best performance (Mixed YOLOv3-LITE) by achieving 49.53%, 69.54%,
and 57.85% for the above indices, respectively. The amount of computation of the model was 2.48
GFLOPs, which is only 13% of that of YOLOv3. The model size was 20.5 MB, which is only 8.3% of
that of YOLOv3, and 60 FPS was achieved in the non-GPU based experimental environment, which
is approximately 5.5 times that of YOLOv3. Meanwhile, when the speed was relatively slow, the
mAP was 14.48% higher than that of YOLO-LITE. A portion of the experimental results for the
Mixed YOLOv3-LITE model using the PASCAL VOC 2007 testing dataset is shown in Figure 7.

Figure 6. Comparison of the effects of different trials using the PASCAL VOC 2007 dataset during
the construction of Mixed YOLO3-LITE.

0

20

40

60

80

100

120

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

FP
S

Pr
ec

es
io

n,
 R

ec
al

l,
F1

 S
co

re
, m

A
P

Precision, Recall, F1 Score, mAP and FPS of Trials

Precision Recall F1 mAP FPS

Figure 6. Comparison of the effects of different trials using the PASCAL VOC 2007 dataset during the
construction of Mixed YOLO3-LITE.

4.2.2. VisDrone 2018

We selected Trial 17 (i.e., Mixed YOLOv3-LITE), which yielded the best results using the PASCAL
VOC dataset, to train on the VisDrone 2018 dataset. Sixty epochs of training were performed using
the training set with input image data of size 832 × 832, tested using the validation dataset, and
compared with the data for SlimYOLOv3 [34]. The results are shown in Table 7. The mAP of Mixed
YOLOv3-LITE was clearly higher than those of the tiny-YOLOv3 and SlimYOLOv3 series networks,
and it exceeded the performance of the other two networks in terms of the evaluation index of the

Sensors 2020, 20, 1861 14 of 18

amount of computation and model size. Mixed YOLOv3-LITE achieved 47 FPS in the test environment
when an NVIDIA RTX 2080Ti GPU was used.Sensors 2020, 20, x FOR PEER REVIEW 15 of 20

Figure 7. Partial test results of Mixed YOLOv3-LITE using the PASCAL VOC 2007 test set.

4.2.2. VisDrone 2018

We selected Trial 17 (i.e., Mixed YOLOv3-LITE), which yielded the best results using the
PASCAL VOC dataset, to train on the VisDrone 2018 dataset. Sixty epochs of training were
performed using the training set with input image data of size 832 × 832, tested using the validation
dataset, and compared with the data for SlimYOLOv3 [34]. The results are shown in Table 7. The
mAP of Mixed YOLOv3-LITE was clearly higher than those of the tiny-YOLOv3 and SlimYOLOv3
series networks, and it exceeded the performance of the other two networks in terms of the
evaluation index of the amount of computation and model size. Mixed YOLOv3-LITE achieved 47
FPS in the test environment when an NVIDIA RTX 2080Ti GPU was used.

Table 7. Evaluation results for baseline models and Mixed YOLOv3-LITE for VisDrone 2018-Det.

Model Name Precision
(%)

Recall
(%)

F1
(%)

mAP
(%)

GFLOPs Model
Size (MB)

FPS

Mixed YOLOv3-LITE 39.19 37.80 37.99 28.50 2.48 20.5 47
tiny-YOLOv3 23.40 20.10 21.00 11.00 21.82 33.1 52
YOLOv3-spp1 42.90 36.70 39.20 25.50 262.84 239 15
YOLOv3-spp3 43.50 38.00 40.20 26.40 284.10 243 14

SlimYOLOv3-spp3-50 45.90 36.00 39.80 25.80 122 79.6 23
SlimYOLOv3-spp3-90 36.90 33.80 34.00 23.90 39.89 30.6 24
SlimYOLOv3-spp3-95 36.10 31.60 32.20 21.20 26.29 19.4 28

Note: Tiny-YOLOv3 and SlimYOLOv3 series network FPS data were measured in the NVIDIA GTX1080Ti
environment used in Reference [34].

The detection efficacy of Mixed YOLOv3-LITE (832 × 832) for each type of object using the
VisDrone2018-Det validation dataset is shown in Table 8. The data category distribution of the
VisDrone2018-Det dataset is highly uneven, which is more challenging. For example, instances of

Figure 7. Partial test results of Mixed YOLOv3-LITE using the PASCAL VOC 2007 test set.

Table 7. Evaluation results for baseline models and Mixed YOLOv3-LITE for VisDrone 2018-Det.

Model Name Precision
(%)

Recall
(%) F1 (%) mAP

(%) GFLOPs Model
Size (MB) FPS

Mixed
YOLOv3-LITE 39.19 37.80 37.99 28.50 2.48 20.5 47

tiny-YOLOv3 23.40 20.10 21.00 11.00 21.82 33.1 52
YOLOv3-spp1 42.90 36.70 39.20 25.50 262.84 239 15
YOLOv3-spp3 43.50 38.00 40.20 26.40 284.10 243 14

SlimYOLOv3-spp3-50 45.90 36.00 39.80 25.80 122 79.6 23
SlimYOLOv3-spp3-90 36.90 33.80 34.00 23.90 39.89 30.6 24
SlimYOLOv3-spp3-95 36.10 31.60 32.20 21.20 26.29 19.4 28

Note: Tiny-YOLOv3 and SlimYOLOv3 series network FPS data were measured in the NVIDIA GTX1080Ti
environment used in Reference [34].

The detection efficacy of Mixed YOLOv3-LITE (832 × 832) for each type of object using the
VisDrone2018-Det validation dataset is shown in Table 8. The data category distribution of the
VisDrone2018-Det dataset is highly uneven, which is more challenging. For example, instances of
cars as objects accounted for approximately 36.29% of the total instances, whereas awning tricycles
accounted for relatively few sample objects, precisely only 1.37% of the total number of instances. This
introduces problems of imbalance to the detector optimization. The AP achieved for cars was 70.79%,
whereas that for awning tricycles it was only 6.24%. In the Mixed YOLOv3-LITE design process,
the convolution layer structure was reorganized and deleted, but the problem of category imbalance
was not dealt with, which provides guidance for further optimization of the network in the future.

Sensors 2020, 20, 1861 15 of 18

A portion of the results for Mixed YOLOv3-LITE obtained using the VisDrone2018-Det validation
dataset is shown in Figure 8.

Table 8. Detection performance of Mixed YOLOv3-LITE (832 × 832) for each category using
VisDrone2018-Det validation dataset.

Class Images Instances Precision (%) Recall (%) F1 (%) mAP (%)

awning-tricycle 548 532 26.12 13.16 17.50 6.24
bicycle 548 1287 20.08 19.35 19.71 7.92

bus 548 251 47.60 47.41 47.50 40.87
car 548 14,064 61.36 76.54 68.11 70.79

motor 548 5125 44.08 43.61 43.85 32.74
pedestrian 548 8844 34.57 45.66 39.35 34.50

people 548 4886 42.32 35.45 38.58 23.39
tricycle 548 1045 33.38 24.69 28.38 15.25
truck 548 750 33.81 31.47 32.60 21.94
van 548 1975 48.55 40.71 44.29 31.31

overall 548 38,759 39.19 37.80 37.99 28.50

Sensors 2020, 20, x FOR PEER REVIEW 16 of 20

cars as objects accounted for approximately 36.29% of the total instances, whereas awning tricycles
accounted for relatively few sample objects, precisely only 1.37% of the total number of instances.
This introduces problems of imbalance to the detector optimization. The AP achieved for cars was
70.79%, whereas that for awning tricycles it was only 6.24%. In the Mixed YOLOv3-LITE design
process, the convolution layer structure was reorganized and deleted, but the problem of category
imbalance was not dealt with, which provides guidance for further optimization of the network in
the future. A portion of the results for Mixed YOLOv3-LITE obtained using the VisDrone2018-Det
validation dataset is shown in Figure 8.

Table 8. Detection performance of Mixed YOLOv3-LITE (832 × 832) for each category using
VisDrone2018-Det validation dataset.

Class Images Instances Precision (%) Recall (%) F1 (%) mAP (%)
awning-tricycle 548 532 26.12 13.16 17.50 6.24

bicycle 548 1287 20.08 19.35 19.71 7.92
bus 548 251 47.60 47.41 47.50 40.87
car 548 14,064 61.36 76.54 68.11 70.79

motor 548 5125 44.08 43.61 43.85 32.74
pedestrian 548 8844 34.57 45.66 39.35 34.50

people 548 4886 42.32 35.45 38.58 23.39
tricycle 548 1045 33.38 24.69 28.38 15.25
truck 548 750 33.81 31.47 32.60 21.94
van 548 1975 48.55 40.71 44.29 31.31

overall 548 38,759 39.19 37.80 37.99 28.50

Figure 8. Partial test results obtained with Mixed YOLOv3-LITE using VisDrone2018-Det Val
dataset. (a) Static object image, (b) dynamic object image, (c) orthographic image, and (d) bad light
image.

4.2.3. ShipData Results

Mixed YOLOv3-LITE and YOLOv3 were trained using the ShipData dataset. The experiment
was divided into two parts: (1) training using subset A and testing using subset B; (2) training using
subset B and testing using subset A. The input image size was 224 × 224, other training and test

Figure 8. Partial test results obtained with Mixed YOLOv3-LITE using VisDrone2018-Det Val dataset.
(a) Static object image, (b) dynamic object image, (c) orthographic image, and (d) bad light image.

4.2.3. ShipData Results

Mixed YOLOv3-LITE and YOLOv3 were trained using the ShipData dataset. The experiment was
divided into two parts: (1) training using subset A and testing using subset B; (2) training using subset
B and testing using subset A. The input image size was 224 × 224, other training and test parameter
values were the same, and 60 epochs of training were conducted. The results are shown in Table 9.
The results for a single category dataset show that when the proportion of the training data was 70%,
the mAPs of Mixed YOLOv3-LITE and YOLOv3 were 98.88% and 98.60%, respectively. When the
proportion of training data was 30%, the recall rates of mAP of Mixed YOLOv3-LITE and YOLOv3
were 64.68% and 51.65%, respectively. However, the precision and F1 scores were slightly lower. The
results for the two groups of experiments show that the network proposed in this study yields better
detection results for a single category of the remote-sensing image ShipData set. A portion of the
detection results for Mixed YOLOv3-LITE in the first experiment is shown in Figure 9.

Sensors 2020, 20, 1861 16 of 18

Table 9. Evaluation results for YOLOv3 and Mixed YOLOv3-LITE for ShipData.

Train
Dataset Test Dataset Model Name Precision

(%) Recall (%) F1 (%) mAP (%)

Subset A Subset B
YOLOv3 98.83 98.68 97.24 98.60
Mixed

YOLOv3-LITE 96.15 99.01 97.56 98.88

Subset B Subset A
YOLOv3 58.79 62.04 60.37 51.65

Mixed
YOLOv3-LITE 31.03 83.29 45.21 64.68

Sensors 2020, 20, x FOR PEER REVIEW 17 of 20

parameter values were the same, and 60 epochs of training were conducted. The results are shown in
Table 9. The results for a single category dataset show that when the proportion of the training data
was 70%, the mAPs of Mixed YOLOv3-LITE and YOLOv3 were 98.88% and 98.60%, respectively.
When the proportion of training data was 30%, the recall rates of mAP of Mixed YOLOv3-LITE and
YOLOv3 were 64.68% and 51.65%, respectively. However, the precision and F1 scores were slightly
lower. The results for the two groups of experiments show that the network proposed in this study
yields better detection results for a single category of the remote-sensing image ShipData set. A
portion of the detection results for Mixed YOLOv3-LITE in the first experiment is shown in Figure 9.

Table 9. Evaluation results for YOLOv3 and Mixed YOLOv3-LITE for ShipData.

Train
Dataset

Test
Dataset

Model Name Precision
(%)

Recall
(%)

F1
(%)

mAP
(%)

Subset A Subset B
YOLOv3 98.83 98.68 97.24 98.60
Mixed

YOLOv3-LITE 96.15 99.01 97.56 98.88

Subset B Subset A
YOLOv3 58.79 62.04 60.37 51.65

Mixed
YOLOv3-LITE

31.03 83.29 45.21 64.68

Figure 9. Partial test results for Mixed YOLOv3-LITE for ShipData.

4.2.4. Performance Tests Based on Embedded Platform

Mixed YOLOv3-LITE was tested with a Jetson AGX Xavier device; the results are shown in
Table 10. When inputting an image with a size of 224 × 224, it reached 43 FPS. When used in UAV
imaging with an adjusted image size of 832 × 832, it still reached 13 FPS. In summary, the proposed
method can meet the real-time requirements established.

Figure 9. Partial test results for Mixed YOLOv3-LITE for ShipData.

4.2.4. Performance Tests Based on Embedded Platform

Mixed YOLOv3-LITE was tested with a Jetson AGX Xavier device; the results are shown in
Table 10. When inputting an image with a size of 224 × 224, it reached 43 FPS. When used in UAV
imaging with an adjusted image size of 832 × 832, it still reached 13 FPS. In summary, the proposed
method can meet the real-time requirements established.

Table 10. Comparison of experimental results for different network architectures.

Model Input Size FPS

Mixed YOLOv3-LITE 224 × 224 43
Mixed YOLOv3-LITE 832 × 832 13

5. Conclusions

In this study, we proposed an efficient lightweight object detection network that uses a
shallow-layer, narrow-channel, and multi-scale feature image parallel fusion structure. On the
one hand, the residual block and the parallel structure fuse the deep and shallow features and output
multi-scale feature maps to maximize the utilization of the original features to improve the accuracy
rate. On the other hand, the detector is constructed using shallower and narrower convolutional layers
than YOLOv3, so as to reduce the amount of calculation and the number of trainable parameters and

Sensors 2020, 20, 1861 17 of 18

speed up the network operation. Thus, we proposed Mixed YOLOv3-LITE, which has a narrower
and shallower structure than that of YOLOv3. Our proposed method has fewer trainable parameters,
thereby significantly reducing the amount of computation and increasing running speed. Compared to
YOLO-LITE, the detection precision is greatly improved. Computing power and power consumption
are generally limited with non-GPU-based devices, mobile terminals, and all types of intelligent devices;
thus, efficient lightweight-depth neural networks are needed to ensure a longer battery life for all types
of devices and make them work stably. After comprehensive consideration, Mixed YOLOv3-LITE
has been proven capable of achieving higher efficiency and better performance than YOLOv3 and
YOLO-LITE on mobile terminals and other devices.

Author Contributions: Conceptualization, H.Z., Y.Z., L.Z., and X.H.; methodology, H.Z. and Y.Z.; formal analysis,
H.Z., Y.Z., L.Z., Y.P., X.H., H.P. and X.C.; investigation, H.Z., Y.Z. and L.Z.; resources, H.Z. and Y.Z.; data curation,
H.Z., Y.Z. and X.H.; writing—original draft preparation, H.Z. and Y.Z.; writing—review and editing, H.Z., Y.Z.,
L.Z., Y.P., X.H., H.P. and X.C.; visualization, H.Z., Y.P. and X.C.; supervision, Y.Z.; project administration, H.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Masi, I.; Rawls, S.; Medioni, G.; Natarajan, P. Pose-Aware Face Recognition in the Wild. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1
July 2016; pp. 4838–4846.

2. Zhang, F.; Zhu, X.; Ye, M. Fast Human Pose Estimation. In Proceedings of the 2019 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 3517–3526.

3. Hossain, S.; Lee, D. Deep Learning-Based Real-Time Multiple-Object Detection and Tracking from Aerial
Imagery via a Flying Robot with GPU-Based Embedded Devices. Sens. Basel 2019, 19, 3371. [CrossRef]
[PubMed]

4. Lawrence, T.; Zhang, L. IoTNet: An Efficient and Accurate Convolutional Neural Network for IoT Devices.
Sens. Basel 2019, 19, 5541. [CrossRef] [PubMed]

5. Körez, A.; Barışçı, N. Object Detection with Low Capacity GPU Systems Using Improved Faster R-CNN.
Appl. Sci. 2020, 10, 83. [CrossRef]

6. Pan, J.; Sun, H.; Song, Z.; Han, J. Dual-Resolution Dual-Path Convolutional Neural Networks for Fast Object
Detection. Sens. Basel 2019, 19, 3111. [CrossRef] [PubMed]

7. Xie, Z.; Wu, D.T.; Wu, K.W.; Li, Y. The Cascaded Rapid Object Detection with Double-Sided Complementary
in Gradients. Acta Electron. Sin. 2017, 45, 2362–2367.

8. Qin, X.Y.; Yuan, G.L.; Li, C.L.; Zhang, X. An Approach to Fast and Robust Detecting of Moving Target in
Video Sequences. Acta Electron. Sin. 2017, 45, 2355–2361.

9. Cui, J.H.; Zhang, Y.Z.; Wang, Z.; Li, Y. Light-Weight Object Detection Networks for Embedded Platform.
Acta Opt. Sin. 2019, 39, 0415006.

10. Wang, X.Q.; Wang, X.J. Real-Time Target Detection Method Applied to Embedded Graphic Processing Unit.
Acta Opt. Sin. 2019, 39, 0315005. [CrossRef]

11. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July
2016; pp. 770–778.

12. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 4700–4708.

13. Chen, Y.; Li, J.; Xiao, H.; Jin, X.; Yan, S.; Feng, J. Dual Path Networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, California, USA, 4–9 December 2017;
pp. 4467–4475.

14. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.

http://dx.doi.org/10.3390/s19153371
http://www.ncbi.nlm.nih.gov/pubmed/31370336
http://dx.doi.org/10.3390/s19245541
http://www.ncbi.nlm.nih.gov/pubmed/31847434
http://dx.doi.org/10.3390/app10010083
http://dx.doi.org/10.3390/s19143111
http://www.ncbi.nlm.nih.gov/pubmed/31337121
http://dx.doi.org/10.3788/AOS201939.0315005

Sensors 2020, 20, 1861 18 of 18

15. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation.
arXiv 2019, arXiv:1902.09212.

16. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

17. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520.

18. Redmon, J. Darknet: Open Source Neural Networks in C. 2013–2016. Available online: http://pjreddie.com/

darknet/ (accessed on 15 February 2020).
19. Pedoeem, J.; Huang, R. YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU

Computers. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA,
USA, 10–13 December 2018; pp. 2503–2510.

20. Wong, A.; Famuori, M.; Shafiee, M.J.; Li, F.; Chwyl, B.; Chung, J. YOLO Nano: A Highly Compact You Only
Look Once Convolutional Neural Network for Object Detection. arXiv 2019, arXiv:1910.01271.

21. Heimer, R.Z.; Myrseth, K.O.R.; Schoenle, R.S. Yolo: Mortality beliefs and household finance puzzles. J. Financ.
2019, 74, 2957–2996. [CrossRef]

22. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

23. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 26 June–1 July 2016; pp. 779–788.

24. Fu, C.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017,
arXiv:1701.06659.

25. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox
Detector. In Proceedings of the 2016 14th European Conference on Computer Vision (ECCV), Amsterdam,
The Netherlands, 8–16 October 2016; pp. 21–37.

26. Wong, A.; Shafiee, M.J.; Li, F.; Chwyl, B. Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural
Network for Real-time Embedded Object Detection. In Proceedings of the 2018 15th Conference on Computer
and Robot Vision (CRV), Toronto, ON, Canada, 8–10 May 2018; pp. 95–101.

27. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

28. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes
(VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

29. Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision Meets Drones: A Challenge. arXiv 2018, arXiv:1804.07437.
30. Nvidia JETSON AGX XAVIER: The AI Platform for Autonomous Machines. Available online: https:

//www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/ (accessed on 5 December 2019).
31. Jetson AGX Xavier Developer Kit. Available online: https://developer.nvidia.com/embedded/jetson-agx-

xavier-developer-kit (accessed on 5 December 2019).
32. NVidia Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics. Available online: https:

//devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/ (accessed on 5 December 2019).
33. Liu, D.; Hua, G.; Viola, P.; Chen, T. Integrated feature selection and higher-order spatial feature extraction

for object categorization. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

34. Zhang, P.; Zhong, Y.; Li, X. SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications.
In Proceedings of the 2019 IEEE International Conference on Computer Vision Workshops, Seoul, Korea, 27
October–2 November 2019.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://dx.doi.org/10.1111/jofi.12828
http://dx.doi.org/10.1007/s11263-009-0275-4
https://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Complex Networks with High Precision
	Deep Residual Network (ResNet), DenseNet, and Dual-Path Network (DPN)
	YOLOv3
	High-Resolution Network (HRNet)

	Lightweight Networks
	MobileNetV1 and MobileNetV2
	Tiny-YOLO and YOLO-LITE

	Mixed YOLOv3-LITE Network
	Mixed YOLOv3-LITE Network Structure
	Mixed YOLOv3-LITE Network Module
	Shallow Network and Narrow Channel
	ResBlock and Parallel High-to-Low Resolution Subnetworks

	Experiment and Discussion
	Experimental Details
	Experimental Environment Setup
	Experimental Datasets
	Evaluation Metrics
	Experimental Setup

	Experimental Results
	PASCAL VOC
	VisDrone 2018
	ShipData Results
	Performance Tests Based on Embedded Platform

	Conclusions
	References

