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Abstract: This paper is concerned with imaging techniques for mapping and locating underground
pipeline leakage. Ground surface vibrations induced by the propagating axisymmetric wave can be
measured by an array of acoustic/vibration sensors, with the extraction of magnitude information
used to determine the position of leak source. A method of connected graph traversal is incorporated
into the vibroacoustic technique to obtain the spatial image with better accuracy compared to the
conventional magnitude contour plot. Measurements are made on a dedicated cast iron water pipe
by an array of seven triaxial geophones. The spectral characteristics of the propagation of leak
noise signals from underground water pipes to the ground surface are reported. Furthermore, it is
demonstrated that suspicious leakage areas can be readily identified by extracting and fusing the
feature patterns at low frequencies where leak noise dominates. The results agree well with the real
leakage position in the underground pipeline.

Keywords: connected graph traversal; ground surface vibration; sensor array; pipeline leakage;
leakage detection

1. Introduction

As an important modern lifeline, the water supply network is closely connected to all aspects
of our society, and the integrity of which provides essential services to production and residential
life. Delayed and ineffective maintenance of the underground network may quickly trigger chain
interruptions of public services [1]. However, the methods currently available to detect and repair
the underground water supply network are prone to damage to other infrastructures such as road
surface, imposing large impacts on the residential environment and public transport. It is estimated
that billions of dollars are spent annually on maintaining these networks and other infrastructures
in a country such as Australia [2], with the majority of the expense due to direct excavation damage.
Therefore, to reduce the social, environmental, and economic consequences, methods for effective and
accurate detection and location of pipeline leakage are urgently required [3].

Previous studies have shown that the vibroacoustics technique can be adopted to locate the
leakage in buried pipelines through measurements using acoustic/vibration sensors either installed
along the pipeline or on the ground surface due to the dispersion and radiation characteristics of
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leakage signals [4–14]. Moreover, the principle of interior detection is based on leak noise propagation
in a tube: a microphone is mounted within a sphere that runs with the water flowing in the pipe [15];
when the sphere moves to the vicinity of the leakage point, the acoustic signal collected by the sensor
will increase rapidly, resulting in larger signal amplitude when the distance between them gets shorter.
Although the sensor is sensitive to leakage, it is difficult to control the movement of the sphere,
and therefore difficult to accurately determine the leakage position. Alternatively, exterior detection
methods have been developed by analyzing the signals measured on the pipe wall [16,17]. In these
methods, signals are collected by two sensors located either side of a suspected leak, with the phase
spectrum in the frequency domain (or time difference in the time domain) used to determine whether
there is a leak or not and to locate the leak position. The disadvantages of this method are that (1) the
leakage detection range is relatively low in the presence of background noise and (2) it is not applicable
to the multi-leakage detection.

Listening devices have been used on the ground to pinpoint the leak position for a long time,
which generally require a single detector composed of a transducer (for example a ground microphone),
a signal processor, and an earphone [18]. A ground transducer collects the vibrational signals
on the ground surface induced by leakage, which are then transformed into electrical signals for
amplification and filtering through the signal processors before the leakage position can be determined
by human perception. Albeit straightforward, this method greatly relies on human experience and
large interference caused by human factors that may be involved. In theory, the leak noise, which is
predominantly governed by the axisymmetric (n = 0) fluid-borne (s = 1) wave at lower frequencies,
can radiate to the ground surface [19]. This wave has been studied in much of the previous work by
Gao et al. [14,17,19]. It is a predominantly fluid-borne wave displaying approximately non-dispersive
behavior at lower frequencies. Based on the radiation characteristics of the propagation s = 1 wave in
the soil, the sensor array on the ground surface has been developed and used for pipeline location [20].
It has been suggested that the magnitude information is beneficial to the identification of a leak, as
the leakage detection on the ground surface follows the same principle. In this circumstance, the
leakage can be detected more accurately even in the occurrence of multiple leakage without resorting
to the experience of the user. Imaging processing has shown its potential in combination with the
vibroacoustic methods in the application of mapping and locating the pipeline leakage. Nevertheless,
there are still a number of gaps in the existing techniques. Methods of connected graph and moment
estimation are effective for the division of unconnected regions [21–25]. This indicates that attempting
to analyze the contour distribution of the vibroacoustic signals by image fusion may lead to the
improved image results for leakage detection.

In this paper, image fusion is exploited and incorporated into the vibroacoustic technique to map
the ground surface vibration, thereby demonstrating a feasible approach for remote sensing and locating
underground pipeline leakage by using a sensor array installed on the ground surface. Following the
introduction of the method of connected graph traversal, a description of the experimental rig is given,
along with the spectral characteristics of the propagation of leak noise. Further analysis on image
fusion is carried out to show the promise of the proposed method for improving the accuracy of leak
position over the conventional vibroacoustic method. To assist the reader for better understanding the
rationale behind our method, in Appendix A, image fusion is applied to the ground surface vibration
measurements for the pipe location reported in [20], confirming the improved performance of the
vibroacoustic technique.

2. Methodology

Before considering image fusion in combination with the vibroacoustic technique for mapping and
locating underground pipeline leakage, the concepts of connected subgraphs and moment estimation
are briefly introduced in this section.
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2.1. Search of Connected Subgraphs

In an undirected graph G, if there is a path <V1, V2> from vertex V1 to vertex V2, and then V1

and V2 are considered to be connected. If any two vertices Vi and Vj (Vi, Vj∈Vertex) are connected,
then the undirected graph G is a connected graph. As illustrated in Figure 1, the undirected graph is
a connected graph, whereas the undirected graph in Figure 2 is a non-connected graph, despite the
existence of three connected components. Here, the terminology “connected component” [21,24,25]
refers to the maximum connected subgraph in an undirected graph.
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The path edge <V1, V2> in the undirected graph G represents the position and adjacency between
vertices. In a directed graph, however, this adjacency represents a path, and the path edges <V1, V2>

and <V2, V1> are different paths, representing different ways of linkage, thereby leading to different
search paths. In the undirected graph, however, the path edge <V1, V2> is a relative concept, because
there is no direction defined in the undirected graph. Therefore, this adjacent edge can point either
from V1 to V2, or from V2 to V1. By definition, with respect to the logical structure of the whole graph,
there is no total order relationship between the vertices of an undirected graph. Thus, it is impossible
to arrange the vertices in the graph into a unique and fixed linear sequence, in that each vertex can be
treated as the starting vertex. When sorting the points adjacent to a particular vertex, there may be
multiple sorting results without a special order of sequence for the nodes in the sorting.

In the process of the traversing graph, we start from one vertex to visit the rest of the vertices of
the graph, to ensure that each vertex is visited only once. In this paper, to better search the connected
subgraph, each node is allowed to pass through many times. The algorithm of the connected graph
traversal provides the basis for solving the connectivity problem of graph. It is noted that because
any vertex of a graph may be adjacent to other vertices, after accessing a vertex, the algorithm may
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search along a path and return to the vertex again. For example, the larger connected component as
illustrated in Figure 2 can be accessed to V3 along the edge (V5, V3) after accessing V1, V2, V3, V4, and
V5 because of the presence of loop. Generally, there are two paths of graph traversal including the
depth-first search and the breadth-first search, which are both applicable to undirected graphs.

2.2. Moment Estimation

In the maximum connected subgraph and the feature region containing each connected component,
all nodes are calculated as matrix elements. The method of moment estimation [22,23] can be used to
calculate the origin moment and central moment of the whole matrix, based on which the centroid of
the feature region can be derived.

For the feature region f (x, y) of M * N, the (p + q)-th order mixed origin moment is given by

mpq =
M∑

x=1

N∑
y=1

xpyqf(x, y) (1)

The central moment of the (p + q)-th order mixing is obtained by

µpq =
M∑

x=1

N∑
y=1

(x− x0)
p(y− y0)

qf(x, y) (2)

where x0 and y0 are the centroid coordinates selected in the current round of calculation. The normalized
central moment of the (p + q)-th order is given by

ηpq =
µpq

µr
00

(3)

Based on the first-order origin moment, the coordinates of the centroid of each continuous region
can be solved as

x =
m10

m00
(4)

y =
m01

m00
(5)

3. Initial Experiments on Test Rig

3.1. Experimental Set-Up

The aim of the experimental measurements is to explore the use of ground surface vibration
signals for mapping and locating the leakage from buried pipeline. Experiments were carried out at
the Hefei Institute of Public Security, Tsinghua University. Pipes with different calibers were laid out
on the integrated pipeline platform of the institute. The pipe rig layout under construction is shown in
Figure 3. It consisted of five pipes in parallel, three of which as shown in Figure 3a were chosen to be
tested, including two cast iron and one PE water pipes with diameters of 300 mm, 100 mm, and 100
mm from right to left in Figure 3b, respectively. The total length of each pipe was 91 m.

In the experiments, slots of 1 mm × 10 mm were opened as simulated leakage sources at different
positions on the pipe walls. Leak sources were covered by soil of different depths, and mechanical
equipment was used to compact the soil. As shown in Figure 4, in each measurement, an array of
7 SM-24 tri-axial geophones with spacing of 0.25 m were positioned on the ground surface aligned
perpendicular to the pipelines. This led to the vibrational velocities measured in three axial directions
representing vertical measurement, horizontal measurement in line with the pipe, and horizontal
measurement perpendicular to the pipeline. It is found that the data collected in line with the pipeline
is the most informative and thereby being selected in the analysis for determination of the leakage



Sensors 2020, 20, 1896 5 of 20

position. The data was collected for a duration of 60 s at a sampling rate of 8192 Hz, by using the
acquisition system of Type-MKII produced by BBM PAK. Experiments were carried out at night to
minimize the influence of environmental noise.Sensors 2020, 20, x FOR PEER REVIEW 5 of 20 
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3.2. Determination of the Frequency Range for Leakage Detection

Previous investigations [20] have shown that the choice of frequency range is crucially important
to accurately map and locate the pipeline, suggesting that the dominant s = 1 wave can be effectively
radiated into the soil in the frequency range of interest. It must be kept in mind that the s = 1 wave
is also the main energy carrier due to water leakage in underground piping system. Therefore, for
the vibroacoustic technique to be effective for the leakage location, the frequency range needs to be
carefully determined prior to the imaging process in the next section. In this subsection, the effects of
the measurement position and burial depth (calculated above the pipe) are studied as follows.

(1) Effect of the horizontal distance from the leakage source
Three sets of measurements were conducted at three different distances using the sensor array to

collect the vibrational signals on the ground surface induced by the same leak source from the cast iron
pipe (with the diameter of 300 mm). The pipelines were buried in clay soil at a depth of 1 m, and the
water pressure in the pipe was 0.2 MPa. The sensor array was allocated at the distances of 1.5 m, 1 m,
and 0.5 m form the leak, as illustrated in Figures 5–7.
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Figure 7. Ground surface vibration measurement using the sensor array at the distance of 0.5 m from
the leak.

Figure 8 shows the frequency response of ground surface vibration signals measured by the
middle sensor in the array at different distances away from the leak. It is apparent, the magnitude
of the vibrational signal increases when the sensor array moves towards the leak, in particular the
magnitude at higher frequencies. This demonstrates that the soil heavily attenuates the leak noise
signal, especially at higher frequencies. The frequency range of the vibrational signal is thus chosen
based on its frequency response for further imaging processing. For the distances between the sensor
array and leak source of 1.5 m and 1 m, the frequency range is set to be 20 Hz to 100 Hz; for the distance
of 0.5 m, the frequency range is set to be 20 Hz to 130 Hz.
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(2) Effect of the burial depth
To investigate the effect of the burial depth on the frequency range due to leakage, the vibrational

velocity was measured on the ground surface just above the leak source on the same cast iron pipe as
mentioned above in the measurements. The buried depths were set to be 0.5 m, 1 m, and 1.5 m, and
the water pressure in the pipe remained as 0.2 MPa.

Figure 9 shows the frequency response of the measured ground surface vibration. It can be seen
that for the pipe buried deeper, the frequency range where the leak noise is dominant becomes narrower.
For the burial depth of 0.5 m, the effective bandwidth is 20–240 Hz, with the central component at
~130 Hz. For the burial depth of 1 m, the frequency range becomes 20 to 160 Hz, with the central
component at ~40 Hz. Note that the peaks at 50 Hz and 100 Hz are caused by power frequency
disturbance. Because of the interference of the power frequency, several peaks can be found at integral
times of 50 Hz. For the burial depth of 1.5 m, the effective bandwidth reduces to 20–100 Hz, with the
central component at ~30 Hz. It has been demonstrated that the burial depth has large influence on the
magnitude of vibrational signals included by leakage at higher frequencies.
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4. Image Analysis

In the experiments, an array of seven geophones (as mentioned in Section 3) was positioned on
the ground surface with the one of the sensors directly above the pipeline. Five sets of measurements
were made over a rectangular grid of measurement points up to 3 m along the pipeline and 0.75 m
either side. The grid spacing was set at 0.25 m and 0.75 m in the x- and y-directions, respectively,
leading to a total of 7x5 measurement points, as shown in Figure 10. The simulated leak was located
near (0.5, 0.75) as marked by a red star in the figure. It must be pointed out that the experimental rig
was built to verify the effectiveness of the proposed image fusion method. Thus, the data collected in
the measurements is analyzed to reveal the suspected leakage position in comparison with the actual
leakage area. As suggested in the preceding section, the soil has a great influence on the frequency
range of the ground surface vibration signals due to leakage. A further check on the frequency domain
vibrational velocities measured shows that the magnitude levels are significant between 60 Hz and 100
Hz for all dataset. Thus, the image analysis is now conducted on the data set spaced every 10 Hz in
this frequency range.
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Steps for the mapping and locating the pipe leakage based on ground surface vibration
measurements are illustrated in Figure 11. Ground surface measurements are first made by using
sensor array in Step 1. Based on the attenuation characteristics described in Section 2, filtering
operation is conducted on the data to determine the frequency range for the image analysis (being
60–100 Hz for the test data here). The remaining steps for the imaging process will be discussed in the
following subsections.
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Figure 11. Steps for the mapping and locating the pipe leakage based on ground surface
vibration measurements.

4.1. Contour Image Analysis

To accurately identify the leakage area, an image pattern recognition algorithm in Step 4 is
proposed and developed here for analyzing the combination of the initial magnitude contour plots of
the ground surface vibration measurements in Step 3. In the contour image, the x- and y-coordinates
match with the x- and y-axes as shown in Figure 10, with the origin set at the position of the middle
sensor in Test 1. The reader is referred to the work in [20] for detailed information on the description of
magnitude contour image using all dataset (not repeated here). Figure 12 shows the contour plots at
five frequencies. The energy bar in each figure determines the range of the energy distribution, based
on which different weights are applied to individual images according to the difference between the
upper and lower bounds of the energy bar.
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Three submodes are now identified from the contour images at different frequencies plotted in
Figure 12, with their combination used in mathematical modeling for accurately detecting and locating
the leakage area. This combination of sub-modes is termed “CobMode”, and the three submodes
include the following

(1) Submode S (Surround) is a wrap mode, for which gradual variation of gradient is present
around the leakage point, leading to a uniform closed-loop. Moreover, more complete envelopes can
be obtained between the closed-loop contours seen as a more distinct mode of gradual variation of the
“maximum–minimum” value close to leakage.

(2) Submode D (density) represents features of contour density and gradient change. Both the
density and the absolute value of gradient of contour are considerably large around the leak source,
which attenuate from the leak source signal outwards.

(3) Submode I (intensity) is obtained based on the magnitude of each contour line or the color
depth value of the image. In general, an actual leak leads to ground surface vibration with great
intensity just above it, thus a comparison of the magnitude values is used to judge whether there is a
leak from the contour map.

Consider the contour line corresponding to the path formed during the movement of each sensor
in the array. Based on the distribution patterns of the three submodes in the contour lines of a target
region and the variation of its adjacent region, the three submodes can be identified and combined as
plotted in Figure 13. The distributions of the submodes (S, D, and I) can be observed in the figures. In
each contour map at an individual frequency, the region where the three submodes are most highly
concentrated and coupled is selected as the possible position corresponding to the leakage area. In
most cases, the areas where the energy is relatively strong represent those where the three modes are
concentrated. Comparing the mapping images at all frequencies considered as shown in Figure 13, it
is clear that the area near (0.5, 0.75) is highlighted in each figure, implying a suspected leakage area
directly below it. The prediction is in good agreement with the actual leakage position in buried water
pipes at the test site.
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4.2. Image Fusion

Possible leakage areas are highlighted at different frequencies in Figure 12. It is difficult to infer
the suspicious leakage position using a single image, so multi-frequency data needs to be used for
further analysis. A multi-image fusion algorithm in Step 5 is proposed based on the algorithm of
pattern extraction, the method of maximum variance between classes, and the algorithm of image
superposition, and applied to the plots in Step 4 to offer a framework for automatic determination of
the most likely leakage position. Each contour image is first converted to an image file in the “.png”
format. Based on the intensity corresponding to the top-down color of the energy bar, the areas with
more concentrated large intensity are extracted from the image to construct another image which only
contains the suspected leakage areas with the relatively weak signals in other areas filtered out. In
the image extracted, the original relationship is preserved between the intensity and color value. The
image at each frequency is converted to a gray-scale image with different depths. The upper part of
the energy bar, such as yellow and red, has larger intensity, corresponding to larger color depth in the
gray image, whereas the part with smaller intensity displays lighter color in the grayscale image.

Image fusion is subsequently applied to the image sequence in Figure 13 to lead to a single
image as plotted in Figure 14, according to the original coordinates in each grayscale image with the
features being attenuated. The grayscale image, in contrast to the color image, is more conductive to
the calculation of moment estimation. To avoid the overflow of color value, the fused image needs
to be attenuated. The level of attenuation is determined by the number of image sequences and the
intensities in Figure 13, thus ensuring that the feature extracted from each image can reflect the same
color depth corresponding to the same intensity in the fusion image. The energy bars in the processed
images coincide with those in Figure 12. As a result, the fused image is still a grayscale image with
different color depths, which possess different fusion weights to the image sequence according to the
number and upper and lower bounds of amplitude.
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Figure 14. Grayscale image after fusion.

In the grayscale image, the method of maximum interclass variance is used to extract the limited
edge. Through edge detection, the weaker area in Figure 13 becomes even weaker and is eliminated
after the processing of fusion attenuation, whereas the areas with stronger features are retained. The
method of maximum variance between classes is an adaptive method to determine the threshold,
which divides the image into two parts including background and feature, according to the gray
level of the image. The variance between the background and features reflects the difference between
the two parts of the image. Therefore, the segmentation with the largest variance between classes
corresponds to the misclassification with the minimum probability.

After the aforementioned processing, the pattern in the fusion image is displayed as many points
and line segments. These line segments constitute many undirected graphs, including unconnected
graphs, connected graphs, and connected subgraphs. By searching each connected subgraph of
undirected graph as discussed in Section 2.1, the most likely leakage position can be readily identified
as follows: (1) search the region based on the features of connected subgraph; (2) find all of the
connected graphs in the fusion image; (3) compare and sort all the connected graphs based on the
number of connected components; and (4) find the largest connected subgraph. If the image is not clear
enough, the filling operation is suggested to quantify the surrounding area of the suspected leakage
point. This can be achieved by filling the closed connected components with a specific color so as to
compare the size of the smaller connected components.

For the fused image in Figure 15, the connected subgraph is used to divide multiple analysis
areas, and then the energy distribution of the target area is analyzed. The discrete edges or points
in Figures 14 and 15 are composed of similar connected components as discussed in Section 2.1.
The method of connected graph traversal is used to search not only the edges or nodes covered by
connected subgraphs, but also the discrete, independently connected subgraphs or nodes surrounded
by connected subgraphs. These scattered connected subgraphs and nodes together constitute the
energy distribution map of the suspected leakage area. The existence of discontinuous points or edges
in the fusion image after the final feature extraction does not suggest that the energy does not exist or is
discontinuous at that point. The discontinuity may be caused by filtering out the weak signal edge in
the earlier feature extraction between Figures 12 and 14, or the signal is largely attenuated owing to the
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low-pass filtering characteristics of the soil medium between the source and sensors. Figure 15 show
the maximum three suspicious leakage areas and their leakage points with red stars drawn in the fusion
image, and the actual leakage position is marked with a blue star. The three suspected leakage areas
are the three connected subgraphs with the most connected components within all connected graphs.
For the fused image, the moment estimation method is used to solve the centroid in the divided region
to obtain the accurate leakage location. The exact coordinate position can be obtained by picking up
the coordinates of the leakage point. The central leakage point is indicated by red asterisk in the figure.Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 
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5. Conclusions

In this paper, image fusion algorithms have been proposed and incorporated into the contour
images obtained using vibroacoustic technique for mapping and locating the underground pipe
leakage. Experimental investigations have been conducted on a dedicated cast iron water pipe, and
ground surface vibration measurements have been made using an array of geophones. For the selected
frequency range where the leakage signals dominate, a single contour image has been obtained by
combining the image sequence at different frequencies. A method of connected graph traversal has been
introduced to reveal the possible leakage area and hence leakage position. Experimental results using
the method proposed in this paper have shown good agreement with the actual leakage area. It offers
a potential improvement over the conventional vibroacoustic technique for automatically mapping
and locating the suspected leakage area, which is beneficial to the practical application. In addition,
this method greatly reduces the error caused by the subjective judgment and operator experience.
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Appendix A Imaging Fusion on the Application of Pipe Location

The currently available vibroacoustic method for pipe location follows the same principle as the
one for water leakage detection and location based on the ground surface measurements [20]. Although
pipe location is not the main objective in this paper, it is, however, noteworthy that better performance
may be achieved when adopting the proposed image fusion method for this application, and further
confirming the improvements over the conventional vibroacoustic method. In this appendix, pipe
location from ground surface measurements reported in [20] is analyzed. The detailed test procedures
and frequency analysis are not simply repeated. The reader is referred to [20] for more information. The
grid measurement points are shown in Figure A1. Analysis of the all dataset leads to the magnitude
contour plots as plotted in Figure A2 at five frequencies. Instead of leakage position, the excitation
point is found in the origin of the contour plots as suggested in [20]. Following the steps for image
fusion proposed in the paper, a contour image is eventually obtained and plotted in Figure A3, with
the excitation point clearly can be deduced. This implies that the image fusion algorithms are suited to
pipe location.
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