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Abstract: The emergence of hyperspectral thermal infrared imaging spectrometers makes it possible to
retrieve both the land surface temperature (LST) and the land surface emissivity (LSE) simultaneously.
However, few articles focus on the problem of how the instrument’s spectral parameters and
instrument noise level affect the LST and LSE inversion errors. In terms of instrument development,
this article simulated three groups of hyperspectral thermal infrared data with three common spectral
parameters and each group of data includes tens of millions of simulated radiances of 1525 emissivity
curves with 17 center wavelength shift ratios, 6 full width at half maximum (FWHM) change ratios
and 6 noise equivalent differential temperatures (NEDTs) under 15 atmospheric conditions with 6
object temperatures, inverted them by two temperature and emissivity separation methods (ISSTES
and ARTEMISS), and analyzed quantitatively the effects of the spectral parameters change and noise
of an instrument on the LST and LSE inversion errors. The results show that: (1) center wavelength
shifts and noise affect the inversion errors strongly, while FWHM changes affect them weakly; (2) the
LST and LSE inversion errors increase with the center wavelength shift ratio in a quadratic function
and increase with FWHM change ratio slowly and linearly for both the inversion methods, however
they increase with NEDT in an S-curve for ISSTES while they increase with NEDT slightly and linearly
for ARTEMISS. During the design and development of a hyperspectral thermal infrared instrument,
it is highly recommended to keep the potential center wavelength shift within 1 band and keep NEDT
within 0.1K (corresponding LST error < 1K and LSE error < 0.015) for normal applications and within
0.03K (corresponding LST error < 0.5K and LSE error < 0.01) for better application effect and level.

Keywords: hyperspectral thermal infrared; temperature and emissivity separation; inversion error;
center wavelength shift; FWHM change; instrument noise

1. Introduction

The land surface temperature (LST) and land surface emissivity (LSE) are key parameters for
many areas such as mineral identification [1,2], gas plume detection [3], plant species [4], soil moisture
retrieval [5]. The emergence of many hyperspectral thermal infrared (HTIR) imaging spectrometers,
which have hundreds of contiguous spectral bands in the atmospheric window of 8–14 µm with spectral
resolution higher than 100 nm, especially the commercial ones, has helped move thermal infrared
hyperspectral remote sensing from concept to reality. We can retrieve simultaneously the LST and LSE
of one pixel from the HTIR data with a temperature and emissivity separation (TES) algorithm. With
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the development of thermal infrared technology, many HTIR imaging spectrometers have appeared, for
example, SEBASS [6], MAKO [7], Hyper-Cam LW [8], Sieleters B3 [9], hyperspectral thermal emission
spectrometer (HyTES) [10], AisaOWL [11] and the airborne thermal infrared hyperspectral imaging
system (ATHIS) [12].

Different from single-band, dual-band or multispectral thermal infrared remote sensing which
focus on the retrieval of LST, HTIR remote sensing is able to retrieve the LST and LSE simultaneously
with higher quantitative inversion accuracy, which a way for an important application mode of HTIR
data, namely using the retrieval LSE spectrum to identify ground objects. The spectral information in
the LSE reflects the pattern characteristics of an object, which can also be understood as the changing
characteristics of the emissivity curve. However, most ground objects have high emissivity and their
emissivity changes are relatively small (for example, the average emissivity of water is about 0.98, and
its fluctuation is only 0.02.) Such small changes are general characteristics of low-reflection ground
objects in reflective optical remote sensing. On the one hand, it naturally comes to mind to improve
the performance of the HTIR instrument when we want to obtain high-quality emissivity curves from
HTIR data to describe the emission features of ground objects, or even to build connection between the
emissivity curve of an object and its physical properties. On the other, from the principle of thermal
infrared imaging, it is known that the spectral response accuracy and noise level of the instrument
directly affect the quality of the acquired data and further affect HTIR inversion results. Therefore, it is
necessary to study the quantitative influence of spectral response change (namely center wavelength
shift and FWHM change) and instrument noise level on the LST and LSE inversion, which will provide
significant support for the instrument design and development and the HTIR applications.

The difficulty of inversing the LST and LSE simultaneously from the hyperspectral or multispectral
thermal infrared data observed in the same phase, namely separating the temperature and emissivity,
lies in solving N equations (one sensor output radiance spectrum with N bands) to get N + 1 unknowns
(N emissivities and one temperature), which is an underdetermined equation problem. It is necessary
to introduce additional conditions in order to solve the problem, usually increasing the number of
equations by proposing assumptions about the target emissivity spectrum shape or target temperature.
There are several existing TES algorithms provided for multispectral thermal infrared data, such as
reference band method (MBR) [13], normalized emissivity method [14,15], alpha residues method [16],
temperature-independent spectral indices (TISI) [17], spectral ratio method [18], maximum-minimum
difference (MMD) [19], split-window [20], or grey body emissivity [21]. Compared with single-band
or multispectral thermal infrared data, the hyperspectral thermal infrared data can provide more
hypothetical conditions in line with real physical properties of objects for TES, effectively increasing
the stability of the underdetermined equations to be solved. Most of existing TES algorithms for
hyperspectral thermal infrared data are based on the well-known observation that the emissivity
spectra of most materials are much smoother than the atmospheric transmission features (smoothness
assumption). Based on cost function representations, there are spectral smoothing index class
algorithms, e.g., the iterative spectrally smooth temperature-emissivity separation (ISSTES) [22] and its
improved version, the automatic retrieval of temperature and emissivity using spectral smoothness
(ARTEMISS) [23]; downwelling radiance residual class algorithms, e.g., the downwelling radiance
residual index (DRRI) [24], the correlation-based temperature and emissivity separation (CBTES) [25],
stepwise refining algorithm of temperature and emissivity separation (SRATES) [26]; linear constraint
class, e.g., linear spectral emissivity constraint (LSEC) [27], improved LSEC (I-LSEC) [28], pre-estimate
shape LSEC (PES-LSEC) [29]; and wavelet class algorithms, e.g., wavelet transform method for
separating temperature and emissivity (WTTES) [30], multi-scale wavelet-based temperature and
emissivity separation (MSWTES)[31].

As many TES more algorithms are described, more articles are devoted to the sensitivity analysis of
TES algorithms. The impact factors of a TES algorithm performance are: assumptions reasonableness,
robustness, atmospheric correction accuracy, spectral calibration accuracy, instrument noise and
others [32–36]. Among the literature [33] and [36] involve the influence analysis of spectral calibration
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accuracy and instrument noise on the TES algorithms. In [33], an error analysis for the ARTEMISS
algorithm shows that spectral shifts of more than 1/20th of the spectral sampling can produce fitting
errors of the order of the sensor noise and errors in the FWHM of up to 10% still yield useful
results. In [36], the researchers studied the influence of the instrument spectral properties (the center
wavenumber shifts were 4%, 20%, 40%, 60% and FWHM were widen by 5%, 10%, 20%) and noise
(Gaussian random, 0.1 K, 0.2 K) on the retrieval results for five TES algorithms, and the results shows
that even if some spectral response changes cause only a slight change in the observed radiance or the
bright temperature spectral data they have a great impact on the LST and LSE retrieval. The above
studies both have shown that the changes in spectral response characteristics have a great impact on
the TES inversion results, however these related studies have paid more attention to exploring the
application boundary conditions of the newly proposed TES algorithm or to prove the performance
of the new method, moreover the number of samples are small, for example 54 in [36], and the
emissivity values of the samples in their experiments are high. Although TES algorithm improvements
are helpful to improve the application of HTIR data under certain conditions, the advancement
in the manufacturing level of HTIR instruments and quantification level of HTIR data can better
promote the development of HTIR remote sensing from the source. Therefore, from the perspective
of instrument manufacturing, we analyzed quantitatively the influence of the spectral parameters
change and noise of an instrument on the TES inversion results, in order to provide a reference for
HTIR instruments manufacturing and provide guidance on the application scope for a HTIR data with
a given spectral parameters.

In terms of the instrument development, this article selected three instruments with currently
common spectral resolutions (100 nm, 50 nm, and 35 nm) as representative examples, simulated tens of
millions of radiances of 1525 emissivity curves with 17 center wavelength shift ratios, 6 FWHM change
ratios and 6 noise equivalent differential temperatures (NEDTs) under 15 atmospheric conditions
with 6 object temperatures, inverted them with two TES methods (ISSTES [22] and ARTEMISS [23])
respectively, and quantitatively analyzed the relationship between the LST and LSE inversion errors
and each of the impact factors. After this Introduction section, Section 2 will introduce the data
simulation process, the TES algorithms and the evaluation metrics for the inversion results, and
Sections 3–5 will present the results, discussion and conclusions, respectively.

2. Data and Methods

This study includes three experimental processes: data simulation, the LST and LSE inversion, and
inversion results analysis. Figure 1 shows the flowchart. Firstly, three atmospheric parameters, namely
atmospheric transmittance, atmospheric downwelling radiance and atmospheric upwelling radiance,
are simulated using the MODTRAN 5.3.2 [37] software. The simulated sensor entrance pupil radiances
with 1 nm spectral resolution are calculated with the simulated atmospheric parameters and the
emissivity data calculated from ASTER 2.0 spectral library [38] based on the radiative transfer equation
(RTE), then are convolved with the spectral response functions of three typical HTIR instruments and
are added noise to obtain the noisy simulated sensor output radiances with corresponding spectral
resolution, or called the simulated sensor radiances. Secondly, we use two TES algorithms (ISSTES and
ARTEMISS) to invert the simulated sensor radiance data to obtain the LST and LSE, respectively. Finally,
we evaluate the inversion results with its root mean square error (RMSE), analyze the relationships
between the inversion errors and the center wavelength shift, FWHM change and NEDT and provide
guidance for the development of new HTIR instruments.
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Figure 1. The flowchart of simulated at-sensor radiance generation, retrieval and results evaluation.

2.1. Data Simulation

2.1.1. Ultra-High-Resolution Sensor Entrance Pupil Radiance

The simulated entrance pupil radiance with ultra-high spectral resolution (1nm) is calculated
according to the RTE. Here, the ultra-high-resolution is mainly relative to the wavelength of the thermal
infrared band, because 1nm spectral resolution is ultra-high-resolution relative to the thermal infrared
band. Ignoring multiple scattering, the RTE is:

Lobs(λm, T) =
{
ε(λm) · B(λm, T) + [1− ε(λm)] · Ld(λm)

}
· τ(λm) + Lu(λm) (1)

where, Lobs(λm, T) is the entrance pupil radiance at band m with the LST of T, λm ∈ [7,14] µm, λm-1–λm

= 1 nm, m = 1, 2, 3, . . . , 7001, ε(λm) is the LSE, B(λm, T) is the blackbody radiance at T, τ(λm) is
the atmospheric transmittance, Ld(λm) is the atmospheric downwelling radiance, and Lu(λm) is the
atmospheric upwelling radiance.

According to the RTE, we can calculate the 1nm ultra-high-resolution sensor entrance pupil
radiance Lobs(λm, T) of a certain ground object with temperature T under a certain atmospheric condition,
if we know the ground object emissivity curve ε(λm) and obtain three atmospheric parameters (τ(λm),
Ld(λm) and Lu(λm)) through simulation.

Emissivity data ε(λm) are from the ASTER 2.0 spectral library, commonly used for thermal infrared
remote sensing research, which contains 2445 ground object reflectance spectra covering a rich variety
of samples with different physical and chemical properties. In this study, we choose all the reflectance
curves ranging from 7 to 14 µm in ASTER 2.0, for a total of 1525, consisting of 84 manmade materials,
60 stony meteorites, 910 minerals, 388 rocks, 75 soils, four types of vegetation, four water and five
snow and ice. We obtain the object emissivity data from the reflectance data of ASTER 2.0 based on ε
= 1 – ρ (ρ is the object reflectance) according to the principle of energy conservation and assuming
the object transmittance is 0, then interpolate them to 1 nm spectral resolution. As shown in Figure 2,
there are not only a large amount of emissivity curves with high value (>0.8), but also lots of emissivity
curves with medium value (0.4–0.6) and low value (<0.2), as well as many fluctuating emissivity
curves. These emissivity curves cover most scenarios in the real world.
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Figure 2. The 1525 emissivity curves from ASTER 2.0 Spectral Library.

The object temperature T is set according to the atmospheric temperature Tatom, T = Tatom + ∆T,
where ∆T is the temperature difference between the object and the atmosphere. If Tatom > 280K, the
value range of ∆T is [−5K, 20 K] with an interval of 5K; if Tatom < 280K, the value range of ∆T is [−10K,
15K] with an interval of 5 K.

The atmospheric parameters (τ(λm), Ld(λm) and Lu(λm)) are simulated by the MODTRAN 5.3.2
software. We get 15 groups of atmospheric parameters with five MODTRAN’s atmospheric models and
three sensor altitudes, as shown in Table 1, while the other parameters of MODTRAN are the defaults.

Table 1. Part of the input parameters of MODTRAN.

Parameter Value Description

MODEL

1 Tropical Atmosphere (15◦ North Latitude, 299.7 K)
2 Mid-Latitude Summer (45◦ North Latitude, 294.2 K)
3 Mid-Latitude Winter (45◦ North Latitude, 272.2 K)
4 Sub-Arctic Summer (60◦ North Latitude, 287.2 K)
5 Sub-Arctic Winter (60◦ North Latitude, 257.2 K)

H1ALT
2 Low Aerial Sensor Altitude/km

10 High Aerial Sensor Altitude/km
750 Spaceborne Sensor Altitude/km

2.1.2. Sensor Output Radiance

In order to further simulate the noisy sensor radiance with its output spectral resolution, it
is necessary to perform convolution on the simulated entrance pupil radiance with 1nm spectral
resolution and the spectral response function of the HTIR imager and add noise. The sensor output
radiance is simulated by

Li(δλi, δ∆λi) =

∫
Lobs(λ)Si(λ,λi, ∆λi, δλi, δ∆λi)dλ∫

Si(λ,λi, ∆λi, δλi, δ∆λi)dλ
+ L(η) (2)

where Li(δλi, δ∆λi) is the sensor output radiance at the i-th band,i ∈ [1, N], N is the number of bands;
Lobs(λ) is the ultra-high-resolution sensor entrance pupil radiance obtained in 2.1.1; L(η) is the added
noise, η is NEDT (the noise here refers to a comprehensive noise equivalent temperature difference,
namely the random error of the data after calibration with no consideration of systematic calibration
error); Si(λ,λi, ∆λi, δλi, δ∆λi) is the spectral response function at the ith band, which is determined
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according to the adjusted center wavelength (λi + δλi) and FWHM (∆λi + δ∆λi), where λi and δλi are
the center wavelength and its shift respectively, while ∆λi and δ∆λi are the FWHM and its change
respectively. The spectral response function is simulated using a Gaussian function as follows [39]:

Si(λ,λi, ∆λi, δλi, δ∆λi) = exp

− (λ− λi − δλi)
2

(∆λi + δ∆λi)
2/ln 16

 (3)

In this study, three typical spectral resolutions (AisaOWL 100 nm, ATHIS 50 nm, HyTES 35 nm,
details are shown in Table 2) were used to simulate the HTIR sensor spectral parameters and their
different spectral response characteristics. The change in the spectral response function refers to the
shift in the center wavelength and the change in FWHM. In this paper, there are 17 center wavelength
shifts and six FWHM changes for each of the three sensors. The center wavelength shift δλi is the
product of the sensor spectral interval (half of the spectral resolution) and the center wavelength shift
ratio. The center wavelength shift ratios are [0, ± 0.05, ± 0.1, ± 0.3, ± 0.5, ± 0.8, ± 1, ± 2, ± 3], where the
positive sign indicates that the center wavelength shifts to the longer wavelength direction, reversely
the negative sign indicates that the center wavelength shifts to the shorter wavelength direction.
The FWHM change δ∆λi is the product of the spectral resolution and the FWHM change ratio. The
FWHM change ratios are [0,0.1,0.2,0.3,0.4,0.5]. Generally, FWHM increases only, so δ∆λi is set to be
positive. In addition, this study tested six noise levels which are characterized by the NEDT of [0, 0.1,
0.2, 0.3, 0.4, 0.5] K.

Table 2. Parameters of the considered hyperspectral thermal infrared imagers.

Instrument First
Deployed

Spectral
Range /µm

Spectral Resolution
(FWHM) Bands NEDT/K FOV/◦

AisaOWL 2014 7.7–12.3 100 nm 96 0.2 24
ATHIS 2017 8.0–12.5 50 nm 181 0.17 40
HyTES 2013 7.5–12.0 35.2 nm 256 0.2 50

2.2. Temprature and Emissivity Separation Algorithms

The cost function is a key factor that affects the performance of the TES algorithms, whether
it makes the underdetermined equations solvable by increasing constraints like a spectral iterative
smoothing algorithm or by reducing the unknowns of the equations like a piecewise linear constraint
method. Among the many TES algorithms mentioned in the Introduction, the standard deviation of
the simulated sensor entrance pupil radiance and the true sensor entrance pupil radiance are most
used as the cost functions. In the approximate processing of the emissivity curve, boxcar average is
a more classic and commonly used processing method. Therefore, ISSTES and ARTEMISS, the two
representative algorithms of the spectrum iterative smoothing family, are chosen in this study.

2.2.1. ISSTES

The at-ground thermal infrared radiance includes not only the land surface’s own emitting
radiance but also the atmospheric downwelling radiance reflected by the land surface. The basic idea
of ISSTES is to establish a cost function based on such a fact that the emissivity spectrum curve of the
ground is much smoother than the atmospheric downwelling radiance spectrum, then optimize the
estimated temperature iteratively until the cost function is minimum where the land surface emissivity
curve is optimally smoothed. The emissivity is calculated by:

ε(λ) =
Lg(λ, T) − Ld(λ)

B(λ, Test) − Ld(λ)
=

[Lobs(λ, T) − Lu(λ)]/τ(λ) − Ld(λ)

B(λ, Test) − Ld(λ)
(4)

According to Equation (4), given a land surface temperature estimation, the corresponding
emissivity spectrum can be calculated if the atmospheric parameters are known. The land surface
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temperature estimation needs to be accurate to eliminate the atmospheric absorption lines in the
emissivity spectrum to get a relatively smooth emissivity spectrum, otherwise there will be residual
atmospheric absorption lines in the estimated emissivity spectrum, making the emissivity spectrum
rough. In order to evaluate the smoothness of the emissivity spectrum curve, a smoothness index σ(ε)
is considered as the cost function and defined as follows:

σ(ε)= STDEV
[
ε(λi) −

ε(λi−1) + ε(λi) + ε(λi+1)

3

]
, i = 2, . . . , N − 1 (5)

2.2.2. ARTEMISS

Based on ISSTES’s idea of iterative spectral smoothing, ARTEMISS improves its iterative cost
function. Instead of the smoothness index of emissivity spectrum curve, it calculates the corresponding
sensor output radiance spectrum curve estimation according to the RTE and uses the standard deviation
σ of the estimated sensor output radiance and the real sensor output radiance as the cost function. The
estimated sensor output radiance is:

L f it(λ, Test, εest) = τ(λ)[εest(λ)B(λ, Test) + (1− εest(λ))Ld(λ)] + Lu(λ) (6)

The cost function is:

σ(Test, εest) = σ
(
Lobj(λ, T) − L f it(λ, Test, εest)

)
= min (7)

2.3. Evaluation Metrics

This study uses the RMSE of the retrieval results to evaluate the performance of different TES
algorithms on the inversion of the simulated radiances with different spectral resolutions. The RMSE
of a group of retrieval LSTs with a certain spectral response setting and noise level is defined as:

RMSET =

√√√
1

Ns

Ns∑
i=1

(Tri − Toi)
2 (8)

where Tri and Toi are the retrieval and original temperature respectively, i ∈ [1, Ns], and Ns is the
number of samples (1525*15*6) in the case of a certain spectral response setting (a center wavelength
shift and a FWHM change) and noise level.

The RMSE of a retrieval LSE is defined as:

RMSEε =

√√√
1
N

N∑
i=1

(εr(λi) − εo(λi))
2 (9)

where εr(λi) and εo(λi) are the retrieval and original emissivity at the i-th band respectively,i ∈ [1, N],
and N is the number of bands of an emissivity curve. The RMSE for a group of retrieval LSEs with a
certain spectral response setting and noise level is the mean of the RMSEs of all the emissivity curves
in the group.

3. Results

3.1. The Overall Distribution Trend of Inversion Errors

The study displayed the overall distribution trend of inversion errors with the center wavelength
shift ratios, FWHM change ratios and instrument noise levels, in order to visualize the comprehensive
influence of the three factors on inversion errors from a global perspective. It was found that the
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results from ISSTES perform differently with those from ARTEMISS, then the performance of the two
algorithms was analyzed in the section.

Figures 3 and 4 show the distribution trend of the retrieval LST and LSE errors obtained from the
experiment, respectively, with the center wavelength shift ratios, FWHM change ratios and instrument
noise levels. Overall, for each of the six groups of data, the relationship of retrieval LST errors with the
three factors in Figure 3 shows the similar morphology and distribution with that of the retrieval LSE
errors in Figure 4.

Figure 3. Distribution trend of the retrieval LST errors with the center wavelength shift ratios, FWHM
change ratios and NEDTs. The sub-images have a same coordinate system with consistent axis ranges
and color bar, where the X axis on the right hand side is the center wavelength shift ratio, the Y
axis on the left hand side is instrument noise NEDT (K), the vertical Z axis is the LST RMSE (K),
and the color is proportional to the error. Each sub-image has a constant the FWHM change ratio.
1–3 rows: LST errors of AISAOWL (100nm), ATHIS (50nm) and HYTES (35 nm) inversed by ISSTES
respectively; 4–6 rows: LST errors of AISAOWL (100nm), ATHIS (50nm) and HYTES (35 nm) inversed
by ARTEMISS respectively.

For LST retrieval errors, taking the first row of Figure 3 as an example, each of the six sub-images
shows the LST retrieval errors on 17 center wavelength shift ratios, six NEDTs and one FWHM change
ratio for AISAOWL (100 nm) inversed by ISSTES. In one sub-image, the trend of LST errors with the
center wavelength shift ratios and NEDTs is like a V-shaped valley with a sloping bottom, where the
valley extends to both sides as the center wavelength shift ratio increases with 0 as the center and
reaches its top as the central wavelength shift ratio reaches ±1.0 for each NEDT, while the bottom of
the valley gradually rises and the width of the opening gradually decreases as NEDT increases. For
FWHM change ratios shown in the six sub-images horizontally, the LST errors increase slightly with
FWHM change ratios, where the bottom of the valley gradually rises as FWHM change ratio increases.
Morphologically, Figure 3 shows the consistent trends of the LST retrieval errors with the three factors
from different HTIR simulated data with different spectral resolutions inversed by different inversion
methods, except that the V-shaped valley of ISSTES becomes flat when NEDT is greater than about
0.2 K while that of ARTEMISS exists for all six NEDTs. In terms of the order of magnitude of the LST
retrieval errors, however, the ones from the same inversion method are similar to each other (e.g.,
1st–3rd rows, 4th–6th rows), but there is big difference between the ones from different inversion
methods, where the LST retrieval errors from ARTEMISS are much smaller than those from ISSTES.
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Figure 4. Distribution trend of the retrieval LSE errors with the center wavelength shift ratios, FWHM
change ratios and NEDTs. The sub-images have a same coordinate system with consistent axis ranges
and color bar, where the X axis on the right hand side is the center wavelength shift ratio, the Y axis on
the left hand side is instrument noise NEDT (K), the Z axis is the LSE RMSE, and the color is proportional
to the error. Each sub-image has a constant the FWHM change ratio. 1–3 rows: LSE errors of AISAOWL
(100 nm), ATHIS (50 nm) and HYTES (35 nm) inversed by ISSTES respectively; 4–6 rows: LSE errors of
AISAOWL (100 nm), ATHIS (50 nm) and HYTES (35 nm) inversed by ARTEMISS respectively.

There are lots of LST retrieval errors of about 20 K (shown in deep red color in Figure 3) among the
results of ISSTES, which is supposed to be related to the temperature inversion strategy used in the study
or the inversion algorithm itself. In order to reduce the computation time by reducing the computation
complexity and avoid the local minimum value issue usually occurring with iterative strategies, the
optimum search method based on a temperature range is used to search the optimal temperature of an
object during the TES process. The cost functions are calculated for all the temperatures in the preset
range, then the smallest cost function is found where the corresponding temperature will be considered
as the optimal temperature. The temperature of one object is a physical parameter within a finite value
range, although it is unknown before measured or estimated. For example, the temperatures of most
ground objects on earth are in the range from −100 to 200 ◦C which can be used in the retrieval of
the real earth observation data. Considering that the real temperature of one object to be inversed is
known in the simulation and inversion experiments of the study, the temperature research range is set
to T + ∆Ts (T is the real object temperature, ∆Ts is set to [−20K, 20K] in the study), which can further
save computation time.

When the theoretical optimal temperature of an object that can be obtained by an inversion
method is out of the temperature search range, its corresponding retrieval temperature will reach the
upper or low limit of the search range where the cost function is the smallest. We call the case the
retrieval temperature error saturation phenomenon, or an inversion failure for it is meaningless in
the practical inversion application. We calculate the percentage of the error saturation cases in four
groups of inversion experiments, shown in Figure 5 where the first three groups are AISAOWL, ATHIS
and HYTES inversion experiments respectively with ∆Ts set to [−20K, 20K] and the fourth group is
AISAOWL inversion experiment with ∆Ts set to [−100K, 100K]. From the first and fourth group of
bars in Figure 5, it can be seen that for the same group of data, namely AISAOWL simulated data,
the ratio of the retrieval temperature error saturation phenomenon when ∆Ts is set to [−100K, 100K]
is nearly same as that when ∆Ts is set to [−20K, 20K]. Therefore, it can be inferred that the retrieval
temperature error saturation phenomenon is not caused by the temperature search range being set
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too small, but may be caused by the limitation of the inversion algorithm itself (this point has little to
do with the research content of this article, so we will not discuss it in detail here). Moreover, if the
temperature search range is doubled, the running time of the inversion algorithm will also be doubled,
however it improves no significant performance for the algorithm. So the temperature search range
is not necessarily as large as possible. Concerning the algorithm performance and the time cost, we
consider it reasonable to set ∆Ts to [−20K, 20K].

Figure 5. Percentage of the retrieval temperature error saturation phenomenon. The first three groups
of bars are the percentages of the cases that the absolute value of retrieval LST error is 20 K in the
retrieval results of ISSTES and ARTEMISS on AISAOWL (100 nm), ATHIS (50 nm) and HYTES (35 nm)
data, respectively, when ∆Ts is set to [−20K, 20K]; the fourth group of bars are the percentages of the
cases that the absolute value of retrieval LST error is 100 K in the retrieval results of the two algorithms
on AISAOWL (100 nm) data respectively when ∆Ts is set to [−100 K, 100 K].

For intuitively evaluating the performances of ISSTES and ARTEMISS on three groups of HTIR
data with three spectral resolutions, the study draws the histograms for the LST and LSE absolute
errors (the retrieval LST or LSE minus the real LST or LSE), shown in Figures 6 and 7, for AISAOWL
(100 nm), ATHIS (50 nm) and HYTES (35 nm) simulated data inversed by the two TES algorithms.

Figure 6a–c show that a substantial part of the retrieval LSTs of ISSTES method have a maximum
boundary temperature error of ±20 K, the retrieval LST errors excluding ±20 K are approximately
normally distributed with 0 K as the center, and the RMSE of overall retrieval LST errors of AISAOWL,
ATHIS, and HYTES simulated data are 16.09 K, 13.93 K, and 14.92 K, respectively. Figure 6d–f show
that the proportions of LST errors with the maximum boundary error of ±20 K in the retrieval results of
AISAOWL, ATHIS, and HYTES by ARTEMISS method is much less than those by ISSTES, the overall
retrieval LST errors are approximately normally distributed with 0 K as the center too but more LST
errors are negative than positive, and the RMSE of overall retrieval LST errors of AISAOWL, ATHIS,
and HYTES are 4.84 K, 5.77 K, and 4.07 K, respectively. In the retrieval results of both ISSTES and
ARTEMISS, the frequency of temperature error near 0K is less than 0.1.
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Figure 6. The overall LST error histogram. The X axis is the temperature error, the Y axis is the
logarithm of frequency distribution of all retrieval LST errors with RMSE. (a–c) LST error histograms
of AISAOWL (100 nm), ATHIS (50 nm) and HYTES (35 nm) inversed by ISSTES respectively; (d–f)
LST error histograms of AISAOWL (100 nm), ATHIS (50 nm) and HYTES (35 nm) inversed by
ARTEMISS respectively.

Figure 7a–c show that due to the existence of many inversion failure cases, there are two peaks in
the frequency distribution charts of the retrieval LSE errors resulted from ISSTES for AISAOWL, ATHIS
and HYTES simulated data. One is between 0−0.05 and the other is between 0.3−0.4. Obviously, the
latter is caused by those inversion failure cases. The RMSE of overall retrieval LSE errors inversed by
ISSTES on AISAOWL, ATHIS, and HYTES are 0.2788, 0.2213 and 0.2747 respectively. Figure 7d–f show
that the frequency distributions of the retrieval LSE errors resulted from ARTEMISS for AISAOWL,
ATHIS and HYTES are unimodal, and their RMSE are 0.1325, 0.1170 and 0.1090, respectively.

The above results suggest that neither of the two TES methods can effectively overcome the
effects of spectral calibration uncertainty and instrument noise. In terms of the proportion of inversion
failures and the overall distribution of errors, the ARTEMISS method performs much better than the
ISSTES method.
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Figure 7. The overall LSE error histogram. The X axis is the LSE error, the right Y axis is the frequency
distribution of all retrieval LSE errors and scales the red histogram with RMSE, and the left Y axis is the
frequency distribution of the corresponding retrieval LSE errors excluding LST errors of ± 20K and
scales the blue histogram in order to highlight the frequency distribution of the LSE error near 0. (a–c)
LSE error histograms of AISAOWL (100 nm), ATHIS (50 nm) and HYTES (35 nm) inversed by ISSTES
respectively; (d–f) LSE error histograms of AISAOWL (100 nm), ATHIS (50nm) and HYTES (35 nm)
inversed by ARTEMISS respectively.

3.2. The Single-Factor Analysis for Inversion Errors

In order to study the separate influence of one of the instrument’s three impact factors (center
wavelength shift ratio, FWHM change ratio and instrument noise) on the LST or LSE error, this paper
analyses the relationship between the retrieval LST or LSE error and each of the three impact factors for
the inversion results of the AISAOWL (100 nm), ATHIS (50 nm), and HYTES (35 nm) simulated data by
ISSTES or ARTEMISS, respectively. In single-factor analysis, we draw the plots of the LST or LSE error
(shown in the graphs in Figures 3 and 4) on the third factor by averaging over the other two dimensions
of the three factors. The following subsections will show the results of three factors respectively.

3.2.1. The Relationship between Inversion Errors and Center Wavelength Shift Ratio

Figure 8 is a graph of the LST and LSE errors varying with center wavelength shift ratio. It shows
that both the LST and LSE errors are basically centered on 0 and increase as the center wavelength shift
ratio away from 0. The error trends between different sensors are relatively close, but the error trends
of different TES methods are quite different. The errors of ISSTES are several times those of ARTEMISS.
It suggests that when the spectral resolution of the HTIR data is on the order of tens of nanometers, the
inversion method has a greater impact on the inversion results than the spectral resolution.

There is a special phenomenon that when the center wavelength shift ratio is extended from ±1
to ±3, the errors of LST and LSE remain nearly the same, even decrease in some cases of ARTEMISS
when the center wavelength shift is equal to 3. This may be due to the rapid increase in the percentage
of inversion failures when the central wavelength shift is beyond ±1. In the cases, the proportion of
inversion failures determine the average error at a certain center wavelength shift ratio. The frequency
of inversion failures shown in Figure 9 is highly consistent with the trend of the errors in Figure 8.
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Furthermore, with the improvement of equipment development technology, current equipment’s
center wavelength shift ratio rarely exceeds ±1. Therefore, in order to quantitatively describe the
influence of the center wavelength shift ratio on the LST and LSE inversion errors, we fit the points in
Figure 8 within the range of the center wavelength shift ratio of [−1,1], and obtain the fitting functions
shown in Tables 3 and 4. In terms of the fitting functions, the LST and LSE errors both increase rapidly
from 0 to both sides as a quadratic function as the center wavelength shift ratio expands to both sides
when the center wavelength shift is within the range of [−1,1].

Figure 8. The graph of LST or LSE errors varying with center wavelength shift ratio. The X axis is the
center wavelength shift ratio, and the Y axis is the LST error in (a) and is the LSE error in (b).

Figure 9. The frequency of inversion failure varying with the center wavelength shift ratio. The
X axis is the center wavelength shift ratio, the left and right Y axis scale the results of ISSTES and
ARTEMISS respectively.
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Table 3. The LST error fitting function about center wavelength shift ratio.

Simulated Data and
TES Method Error Fitting Function RMSE(K)

AISAOWL ISSTES e11,t_rmse =

{
−0.387rδλi

2
− 0.7881rδλi + 14.97, rδλi < 0

−0.1851rδλi
2 + 0.535rδλi + 14.96, rδλi ≥ 0

0.02

ATHIS ISSTES e21,t_rmse =

{
−0.718rδλi

2
− 1.368δλi + 12.43, rδλi < 0

−0.7059δλi
2 + 1.363δλi + 12.41, rδλi ≥ 0

0.02

HYTES ISSTES e31,t_rmse =

{
−0.2974rδλi

2
− 0.8846rδλi + 13.82, rδλi < 0

−0.8403rδλi
2 + 1.519rδλi + 13.72, rδλi ≥ 0

0.05

AISAOWL ARTEMIISS e12,t_rmse =

{
0.3079rδλi

2
− 1.165rδλi + 3.757, rδλi < 0

−0.3319rδλi
2 + 1.984rδλi + 3.802, rδλi ≥ 0

0.06

ATHIS ARTEMIISS e22,t_rmse =

{
−0.2088rδλi

2
− 2.573rδλi + 4.249, rδλi < 0

−0.0864rδλi
2 + 2.076rδλi + 4.328, rδλi ≥ 0

0.06

HYTES ARTEMIISS e32,t_rmse =

{
−0.337rδλi

2
− 1.576rδλi + 3.075, rδλi < 0

−0.3902rδλi
2 + 1.87rδλi + 3.12, rδλi ≥ 0

0.05

Table 4. The LSE error fitting function about center wavelength shift ratio.

Simulated Data and
TES Method Error Fitting Function RMSE

AISAOWL ISSTES e11,e_rmse =

{
−0.0013rδλi

2
− 0.0103rδλi + 0.2202, rδλi < 0

0.0025rδλi
2 + 0.0025rδλi + 0.2202, rδλi ≥ 0

2.305 × 10−4

ATHIS ISSTES e21,e_rmse =

{
0.0017rδλi

2
− 0.0076rδλi + 0.1568, rδλi < 0

0.0022rδλi
2 + 0.0057rδλi + 0.1568, rδλi ≥ 0

8.276 × 10−5

HYTES ISSTES e31,e_rmse =

{
0.0008rδλi

2
− 0.0122rδλi + 0.0196, rδλi < 0

−0.003rδλi
2 + 0.0144rδλi + 0.0196, rδλi ≥ 0

7.565 × 10−4

AISAOWL ARTEMIISS e12,e_rmse =

{
0.0304rδλi

2
− 0.0168rδλi + 0.0532, rδλi < 0

0.0206rδλi
2 + 0.0097rδλi + 0.0532, rδλi ≥ 0

8.011 × 10−4

ATHIS ARTEMIISS e22,e_rmse =

{
0.0305rδλi

2
− 0.0197rδλi + 0.0461, rδλi < 0

0.0299rδλi
2 + 0.0155rδλi + 0.0461, rδλi ≥ 0

1.152 × 10−3

HYTES ARTEMIISS e32,e_rmse =

{
0.0195rδλi

2
− 0.0149rδλi + 0.0487, rδλi < 0

0.0188rδλi
2 + 0.0149rδλi + 0.0487, rδλi ≥ 0

8.751 × 10−4

3.2.2. The Relationship between Inversion Errors and FWHM Change Ratio

Figure 10 is the graph of the LST and LSE errors versus FWHM change ratio. It shows that as
the FWHM change ratio increases, both the LST and LSE errors appear to increase slightly. The error
trends of different sensors with same TES method are relatively close, but the error trends of the two
inversion methods are quite different. The inversion errors of ARTEMISS for the simulated data of
different sensors are almost the same. Coinciding with the effect of the center wavelength shift ratio on
the errors, the errors of ISSTES are several times those of ARTEMISS.
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Figure 10. The graph of LST or LSE errors varying with the FWHM change ratio. The X axis is the
FWHM change ratio, and the Y axis is LST error in (a) and is LSE error in (b).

In order to quantitatively describe the influence of FWHM change ratio on the LST and LSE
inversion errors, we fit the points in Figure 10 and obtain the fitting functions shown in Tables 5 and 6.
In terms of the fitting functions, the errors increase linearly with FWHM change ratio. However, the
slopes of all the linear fitting functions are small. It implies that the change of FWHM has little effect
on inversion errors.

Table 5. The LST error fitting function about FWHM change ratio.

Simulated Data and TES Method Error Fitting Function RMSE(K)

AISAOWL ISSTES e11,t_rmse = 0.0558rδ∆λi + 15.14 0.02
ATHIS ISSTES e21,t_rmse = 0.0211rδ∆λi + 12.77 0.03
HYTES ISSTES e31,t_rmse = 0.1372rδ∆λi + 14.07 0.02

AISAOWL ARTEMIISS e12,t_rmse = 3.128rδ∆λi + 3.662 0.14
ATHIS ARTEMIISS e22,t_rmse = 4.438rδ∆λi + 4.147 0.34
HYTES ARTEMIISS e32,t_rmse = 3.043rδ∆λi + 2.957 0.23

Table 6. The LSE error fitting function about FWHM change ratio.

Simulated Data and TES Method Error Fitting Function RMSE

AISAOWL ISSTES e11,e_rmse = 0.0005rδ∆λi + 0.223 6.216 × 10−4

ATHIS ISSTES e21,e_rmse = 0.0005rδ∆λi + 0.1601 9.994 × 10−4

HYTES ISSTES e31,e_rmse = −0.0009rδ∆λi + 0.2018 5.734 × 10−4

AISAOWL ARTEMIISS e12,e_rmse = 0.0497rδ∆λi + 0.0542 1.167 × 10−3

ATHIS ARTEMIISS e22,e_rmse = 0.0661rδ∆λi + 0.0463 1.771 × 10−3

HYTES ARTEMIISS e32,e_rmse = 0.042rδ∆λi + 0.0504 1.039 × 10−3

3.2.3. The Relationship between Inversion Errors and NEDT

Figure 11 is the graph of t the LST and LSE errors varying with NEDT. It shows that with the
increase of instruments noise, the errors of the two TES methods show a different trend. Coinciding
with the effect of FWHM change ratio and center wavelength shift ratio on the inversion errors, the
error trends of different sensors are closer, while those of different TES methods are quite different, and
the errors of ISSTES are several times those of ARTEMISS. As NEDT increases, the errors of ISSTES
increase in an S-curve, while the errors of ARTEMISS increase slightly and linearly.
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Figure 11. The graph of LST or LSE errors varying with NEDT. The X axis is NEDT, and the Y axis is
LST error in (a) and is LSE error in (b).

In order to quantitatively describe the influence of NEDT on the LST and LSE inversion errors, we
fit the points in Figure 11 and obtain the fitting functions shown in Tables 7 and 8. From the expression
of the fitting functions, as the increase of the noise, the ISSTES inversion errors increase in an S-curve,
while the ARTEMISS inversion error increases linearly. However, the slopes of all ARTEMISS linear
fitting functions are small, which implies that ARTEMISS method has some degree of noise immunity,
which agrees with the result of a previous research [23].

Table 7. The LST error fitting function about NEDT.

Simulated Data and TES Method Error Fitting Function RMSE(K)

AISAOWL ISSTES e11,t_rmse = 1/
(
0.0684 + 1.637e−18.31η

)
+ 6 0.55

ATHIS ISSTES e21,t_rmse = 1/
(
0.0686 + 3.429e−14.57η

)
+ 5.923 0.21

HYTES ISSTES e31,t_rmse = 1/
(
0.0645 + 0.527e−8.796η

)
+ 6.095 0.38

AISAOWL ARTEMIISS e12,t_rmse = 1.065η+ 4.178 0.05
ATHIS ARTEMIISS e22,t_rmse = 0.4793η+ 5.137 0.01
HYTES ARTEMIISS e32,t_rmse = 0.2301η+ 3.66 0.01

Table 8. The LSE RMSE error fitting function about NEDT.

Simulated Data and TES Method Error Fitting Function RMSE

AISAOWL ISSTES e11,e_rmse = 1/
(
3.3 + 1178e−29.83η

)
+ 0.0448 5.603 × 10−3

ATHIS ISSTES e21,e_rmse = 1/
(
3.292 + 499.9e−16.86η

)
+ 0.0323 4.626 × 10−3

HYTES ISSTES e31,e_rmse = 1/
(
2.702 + 48.49e−10.34η

)
+ 0.0331 0.0132

AISAOWL ARTEMIISS e12,e_rmse = 0.0773η+ 0.0473 2.344 × 10−3

ATHIS ARTEMIISS e22,e_rmse = 0.0286η+ 0.0557 1.126 × 10−3

HYTES ARTEMIISS e32,e_rmse = 0.0661η+ 0.0444 9.203 × 10−4

From the analyses above, it can be concluded that the center wavelength shift has a greater effect
on the inversion errors, but the FWHM change has little effect on the inversion errors. Generally, the
center wavelength shift can be corrected by the scene-based spectral calibration algorithm using the
atmospheric absorption channel as a reference, and the minimum error is less than 1 nm under the
influence of atmospheric conditions (such as atmospheric water vapor content) [40]. Here we assume
that the scene-based spectral shift correction error is less than 0.05 band and analyze the characteristics
of LST and LSE inversion errors after the spectral shift is corrected.
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Figure 12 is a scatter plot of LST and LSE inversion errors varying with NEDT when the center
wavelength shift ratio extracted from Figures 3 and 4 is in [−0.05, 0, 0.05] and the FWHM change is 0.
Tables 9–14 show the optimal functions obtained by fitting the data in Figure 12. These charts show
that the performance of ISSTES is much worse than ARTEMISS. When the NEDT exceeds 0.3 K, the
inversions of ISSTES are almost entirely failed, while there are few failure cases in the inversions of
ARTEMISS. When both the center wavelength shift ratio and NEDT are 0, the LST and LSE inversion
errors of ISSTES and ARTEMISS, except the LST error of AISAOWL inversed by ISSTES, are almost the
same. With the increase of the center wavelength shift ratio and NEDT, the errors of ISSTES increase
rapidly and exponentially, while the errors of ARTEMISS only increase slowly and linearly with a
small base.

Figure 12. Cont.
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Figure 12. The graph of LST or LSE errors varying with NEDT when center wavelength shift ratio is in
[−0.05, 0, 0.05] and FWHM change ratio is 0. The X axis is NEDT, and the Y axis is the LST error in
(a,c,e)and is the LSE error in (b,d,f). (a,b) Center wavelength shift ratio is 0. (c,d) Center wavelength
shift ratio is 0.05. (e,f) Center wavelength shift ratio is −0.05.

Table 9. The LST error fitting function about NEDT when center wavelength shift ratio = 0 and FWHM
change ratio = 0.

Simulated Data and TES Method Error Fitting Function RMSE(K)

AISAOWL ISSTES e11,t_rmse = 1/
(
0.0579 + 0.8993e−18.54η

)
+ 3 0.33

ATHIS ISSTES e21,t_rmse = 1/
(
0.0479 + 0.5041e−11.19η

)
0.35

HYTES ISSTES e31,t_rmse = 1/
(
0.0045 + 0.0005e−4.24η

)
− 199.3 0.58

AISAOWL ARTEMIISS e12,t_rmse = 5.246η+ 1.002 0.06
ATHIS ARTEMIISS e22,t_rmse = 4.641η+ 0.3268 0.04
HYTES ARTEMIISS e32,t_rmse = 4.01η+ 0.1364 0.06

Table 10. The LSE error fitting function about NEDT when center wavelength shift ratio = 0 and
FWHM change ratio = 0.

Simulated Data and TES Method Error Fitting Function RMSE

AISAOWL ISSTES e11,e_rmse = 1/
(
2.848 + 133.2e−21.67η

)
9.035 × 10−3

ATHIS ISSTES e21,e_rmse = 1/
(
2.953 + 172e−14.84η

)
5.580 × 10−3

HYTES ISSTES e31,e_rmse = 1/
(
2.053 + 12.35e−7.877η

)
− 0.0662 0.0152

AISAOWL ARTEMIISS e12,e_rmse = 0.1196η+ 0.0032 5.725 × 10−4

ATHIS ARTEMIISS e22,e_rmse = 0.0658η+ 0.0007 2.239 × 10−4

HYTES ARTEMIISS e32,e_rmse = 0.105η+ 0.0023 1.634 × 10−3

Table 11. The LST error fitting function about NEDT when center wavelength shift ratio = 0.05 and
FWHM change ratio = 0.

Simulated Data and TES Method Error Fitting Function RMSE(K)

AISAOWL ISSTES e11,t_rmse = 1/
(
0.0681 + 2.875e−22.22η

)
+ 5.51 0.22

ATHIS ISSTES e21,t_rmse = 1/
(
0.0555 + 1.053e−12.5η

)
+2.72 0.21

HYTES ISSTES e31,t_rmse = 1/
(
0.0459 + 0.1547e−7.504η

)
0.46

AISAOWL ARTEMIISS e12,t_rmse = 5.083η+ 1.044 0.07
ATHIS ARTEMIISS e22,t_rmse = 4.432η+ 0.3506 0.01
HYTES ARTEMIISS e32,t_rmse = 3.168η+ 0.3831 0.07
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Table 12. The LSE error fitting function about NEDT when center wavelength shift ratio = 0.05 and
FWHM change ratio = 0.

Simulated Data and TES Method Error Fitting Function RMSE

AISAOWL ISSTES e11,e_rmse = 1/
(
3.003 + 261.6e−24.28η

)
+ 0.0166 8.898 × 10−3

ATHIS ISSTES e21,e_rmse = 1/
(
3.003 + 262.2e−24.29η

)
+ 0.0166 8.898 × 10−3

HYTES ISSTES e31,e_rmse = 1/
(
2.251 + 18.64e−8.704η

)
− 0.0322 0.0146

AISAOWL ARTEMIISS e12,e_rmse = 0.1173η+ 0.0039 9.61 × 10−4

ATHIS ARTEMIISS e22,e_rmse = 0.0653η+ 0.001 3.597 × 10−4

HYTES ARTEMIISS e32,e_rmse = 0.0995η+ 0.0044 6.017 × 10−4

Table 13. The LST error fitting function about NEDT when center wavelength shift ratio = −0.05 and
FWHM change ratio = 0.

Simulated Data and TES Method Error Fitting Function RMSE(K)

AISAOWL ISSTES e11,t_rmse = 1/
(
0.0687 + 3.04e−22.45η

)
+ 5.635 0.35

ATHIS ISSTES e21,t_rmse = 1/
(
0.0555 + 1.044e−12.45η

)
+ 2.733 0.33

HYTES ISSTES e31,t_rmse = 1/
(
0.046 + 0.153e−7.506η

)
0.52

AISAOWL ARTEMIISS e12,t_rmse = 5.132η+ 1.029 0.07
ATHIS ARTEMIISS e22,t_rmse = 4.354η+ 0.3748 0.03
HYTES ARTEMIISS e32,t_rmse = 3.139η+ 0.4118 0.08

Table 14. The LSE error fitting function about NEDT when center wavelength shift ratio = −0.05 and
FWHM change ratio = 0.

Simulated Data and TES Method Error Fitting Function RMSE

AISAOWL ISSTES e11,e_rmse = 1/
(
3.002 + 254.5e−24.21η

)
+ 0.0166 9.081 × 10−3

ATHIS ISSTES e21,e_rmse = 1/
(
2.945 + 162.1e−14.62η

)
4.79 × 10−3

HYTES ISSTES e31,e_rmse = 1/
(
2.183 + 16.2e−8.3η

)
− 0.04 0.0113

AISAOWL ARTEMIISS e12,e_rmse = 0.1175η+ 0.0041 9.654 × 10−4

ATHIS ARTEMIISS e22,e_rmse = 0.0648η+ 0.0012 3.929 × 10−4

HYTES ARTEMIISS e32,e_rmse = 0.1η+ 0.0043 6.212 × 10−4

From the perspective of fitting functions of the LST errors of ARTEMISS, the order of the intercepts
of the functions is AISAOWL < ATHIS < HYTES. It seems that the smaller the NEDT and the higher
the spectral resolution, the smaller the LST inversion error. As the NEDT increases, the LST inversion
errors with a higher spectral resolution increase faster. However, there is no clear evidence that the
relationship between the LSE errors and the spectral resolution is regular.

Through comprehensive observation of the fitting functions of the LST and LSE errors when
center wavelength shift ratio is within [−0.05, 0, 0.05] and FWHM change ratio is 0, we find that when
NEDT is 0.1 K, the LST errors of the instruments except AISAOWL are within 1 K; the LSE errors of all
the three instruments are within 0.015. When the LST errors of the ATHIS and HYTES is within 0.5 K,
NEDT is 0.03K where LSE error is within 0.01. Therefore, for meeting the requirements of some basic
applications (LST error < 1 K) [20,41–43], the instrument’s NEDT should be designed at least within
0.1 K; for further improving the effect and level of the applications (LST error < 0.5 K), the instrument’s
NEDT should be designed within 0.03 K.

4. Discussion

The research in this paper focused on the influence of the core performance indicators, in
terms of spectra and noise, of the common HTIR instruments on the LST and LSE inversion errors.
It provided valuable references for the performance improvement and data processing of HTIR
instruments. However, further research is needed on the relationship between the inversion errors and
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the performance of the HTIR instruments with higher spectral resolution and the validation of the
modelled effects with real thermal infrared hyperspectral data. Moreover, during the result analysis,
we found that ISSTES method has its own limitations. It is intelligible that after all, every TES method
has certain assumptions. This also results in some TES methods (for example, ISSTES) being strong
sensitive to data distortion while some TES methods (for example, ARTEMISS) being weakly sensitive
to data distortion. Therefore, while committed to improving the performance of the instrument, we
should also pay attention to how to further improve the anti-data-distortion ability of the TES method,
especially noise. Instrument noise cannot be avoided or precisely corrected with the data itself, while
center wavelength shift and FWHM change can usually be corrected by some methods to reduce the
errors. Besides, atmospheric correction error is also affected by factors such as center wavelength
shift, FWHM change and NEDT, which in turn affects the error of the TES algorithms. It needs further
research, especially, whether the superposition effect will amplify the influence of instrument spectral
parameter changes and noise on the TES algorithms.

5. Conclusions

From the perspective of instrument development, this article took the development of the
instrument as the requirement, selected three instruments with common spectral resolutions, two TES
methods and ASTER 2.0 spectral library as the representative data, and analyzed the influence of the
core performance indicators, in terms of spectral and noise, of the instrument on the LST and LSE
inversion errors. After simulation, inversion and result analysis, the following conclusions are reached:

(1) For instruments with the spectral resolution of tens of nanometers, the difference in the instrument
spectral resolutions has a small effect on the inversion errors, but the error trends of different
inversion methods are quite different. The errors of ISSTES are several times those of ARTEMISS.
ARTEMISS performs much better than ISSTES.

(2) Considering only the center wavelength shift, the LST and LSE inversion errors increase with center
wavelength shift ratio in a quadratic function. When the center wavelength shift ratio exceeds ±1,
the proportion of inversion failures rapidly increases. Therefore, it is highly recommended to
keep the center wavelength shift ratio within ±1 as much as possible during instrument design
and development, even if you may correct the center wavelength shift relying on the data after
data acquisition.

(3) Compared with the center wavelength shift and instrument noise, FWHM change has the
least influence on the inversion error among the three factors. The errors of the two inversion
methods on three groups of simulated data with different spectral resolutions increase slowly
and linearly with the increase of FWHM change ratio, and the slopes of all linear fitting functions
are relatively small.

(4) The influences of instrument noise on the errors of different inversion methods behave differently.
The errors of ISSTES increase with NEDT in an S-curve, while the errors of ARTEMISS increase
with NEDT slightly and linearly.

(5) After the center wavelength shift of some data can be corrected by a method using the atmospheric
absorption channel as a reference and the correction error is within 0.05 bands, if we use ARTEMISS
method to inverse the corrected data, we will obtain a smaller inversion error. The smaller the
NEDT and the higher the spectral resolution, the smaller the LST inversion errors of ARTEMISS.
With the increase of NEDT, the LST inversion errors with high spectral resolution are growing
fast. The instrument whose NEDT is within 0.1 K can meet the basic application (LST error < 1
K), and that whose NEDT within 0.03 K can further improve the application effect and level (LST
error < 0.5 K).
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