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Abstract: Log anomaly detection is an efficient method to manage modern large-scale Internet
of Things (IoT) systems. More and more works start to apply natural language processing (NLP)
methods, and in particular word2vec, in the log feature extraction. Word2vec can extract the relevance
between words and vectorize the words. However, the computing cost of training word2vec is high.
Anomalies in logs are dependent on not only an individual log message but also on the log message
sequence. Therefore, the vector of words from word2vec can not be used directly, which needs to be
transformed into the vector of log events and further transformed into the vector of log sequences.
To reduce computational cost and avoid multiple transformations, in this paper, we propose an offline
feature extraction model, named LogEvent2vec, which takes the log event as input of word2vec
to extract the relevance between log events and vectorize log events directly. LogEvent2vec can
work with any coordinate transformation methods and anomaly detection models. After getting the
log event vector, we transform log event vector to log sequence vector by bary or tf-idf and three
kinds of supervised models (Random Forests, Naive Bayes, and Neural Networks) are trained to
detect the anomalies. We have conducted extensive experiments on a real public log dataset from
BlueGene/L (BGL). The experimental results demonstrate that LogEvent2vec can significantly reduce
computational time by 30 times and improve accuracy, comparing with word2vec. LogEvent2vec
with bary and Random Forest can achieve the best F1-score and LogEvent2vec with tf-idf and Naive
Bayes needs the least computational time.

Keywords: log anomaly detection; word2vec; log event; log template; device management; IoT

1. Introduction

Internet of Things (IoT) [1,2] has provided the possibility of easily deploying tiny, cheap, available,
and durable devices, which are able to collect various data in real time, with continuous supply [3–7].
IoT devices are vulnerable and usually deployed in harsh and extreme natural environments, thus
solutions that can improve monitoring services and the security of IoT devices are needed [8–10]. Most
smart objects can accumulate log data obtained through sensors during operation. The logs record
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the states and events of the devices and systems, thus providing a valuable source of information
which can be exploited both for research and industrial purposes. The reason is that a large amount of
log data stored in such devices can be analyzed to observe user behavior patterns or detect errors in
the system. Based on log analysis, better IoT solutions can be developed or updated and presented
to the user [11]. Therefore, logs are one of the most valuable data sources for device management,
root cause analysis, and IoT solutions updating. Log analysis plays an important role in IoT system
management to ensure the reliability of IoT services [12]. Log anomaly detection is a part of log
analysis that analyzes the log messages to detect the anomalous state caused by sensor hardware
failure, energy exhaustion, or the environment [13].

Logs are semi-structured textual data. An important task is that of anomaly detection in log [14],
which is different from the classification and detection in computer vision [15–18], digital time
serial [19–23], and graph data [24]. In fact, the traditional ways of dealing with anomalies in logs
are very inefficient. Operators manually check the system log with regular expression matching or
keyword searching (for example, “failure”, “kill”) to detect anomaly, which is based on their domain
knowledge. However, this kind of anomaly detection is not applicable to large-scale systems.

Many existing works propose schemes to process the logs automatically. Log messages are
free-form texts and semi-structured data which should turn into structured data for further analysis.
Log parsing [25–27] extracts the structured or constant part from log messages. The constant part is
named by the log template or log event. For example, a log message is “CE sym 2, at 0x0b85eee0, mask
0x05”. The log event of the log message is “CE sym < ∗ >, at < ∗ >, mask < ∗ >”.

Although log events are structured, they are still text data. Most machine learning models for
anomaly detection are not able to handle text data directly. Therefore, to extract features of the log
event or derive a digital representation of it is a core step. According to the feature extraction results,
several machine learning models are used for anomaly detection, such as Regression, Random Forest,
Clustering, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) [28].
At first, many statistical features of log event [29,30] are extracted, such as sequence, frequency, surge,
seasonality, event ratio, mean inter-arrival time, mean inter-arrival distance, severity spread, and
time-interval spread.

More and more works start to apply natural language processing (NLP) methods for the log event
vectorization, such as bag-of-words [31], term frequency-inverse document frequency (tf-idf) [32,33]
and word2vec [34,35]. Most of the above works are based on the word. Anomalies in logs mostly
depend on the log message sequence. Meng et al. [32] form the log event vector by the frequency
and weights of words. The log event vector is transformed into the log sequence vector as the input
of the anomaly detection model. The transformation from word vector to log event vector or log
sequence vector is called coordinate transformation. The frequency and weight of words ignore the
relevance between words. Bertero et al. [34] detect the anomaly based on the word vector from
word2vec [36], which is an efficient method to extract the relevance between words. The word vector
is converted to the log event vector, and then the log event vector is converted to the log sequence
vector before anomaly detection. However, the computing cost of training word2vec is high and it
needs to transform the word vector twice.

As the systems become increasingly complex, there is a large amount of log data. The number of
words in each log message is in the range from 10 to 102. Processing words directly is not suitable for
large-scale log anomaly detection. Therefore, He et al. [31] propose to count the occurrence number
of log events to obtain log sequence vectors directly. The coordinate transformation is unnecessary.
In addition, the number of log events is far less than the number of words. The length of the vector
is based on the number of words or log events. The dimension of the vector is shortened, which
further reduces the computational cost. However, the frequency of log events ignores the relevance of
log events.
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Therefore, to extract the relevance between log events, reduce the computational cost, and avoid
multiple transformations, we investigate the log anomaly detection problem by word2vec with log
events as input. The main contributions can be summarized as follows:

• We propose an offline low-cost feature extraction model, named LogEvent2vec, which first takes
log events as input of the word2vec model to vectorize the log event vector directly. The relevance
between log events can be extracted by word2vec. Only one coordinate transformation is necessary
to get the log sequence vector from the log event vector, which decreases the number of coordinate
transformations. Training log events is more efficient because the number of log events is less
than that of words, which reduces the computational cost.

• LogEvent2vec can work with any coordinate transformation methods and anomaly detection
models. After getting the log event vector, the log event vector is transformed into the log
sequence vector by bary or tf-idf. Three kinds of supervised models (Random Forests, Naive
Bayes, and Neural Networks) are trained to detect the anomaly.

• We have conducted extensive experiments on a real public log dataset from BlueGene/L (BGL).
The experimental results demonstrate that our proposed LogEvent2vec can significantly reduce
computational time by 30 times and improve the accuracy of anomaly detection, comparing
with word2vec.

• Among different coordinate transformation methods and anomaly detection models,
LogEvent2vec with bary and Random Forest can achieve the best F1-score and LogEvent2vec
with tf-idf and Naive Bayes needs the least computational time. Tf-idf is weaker than bary in
aspect of accuracy, but it can significantly reduce the computational time.

The rest of the paper is organized as follows. We introduce the related work in Section 2, and
present the general framework of log anomaly detection and the formulation of our work in Section 3.
We further provide an overview of our scheme, the log parsing, feature extraction, and anomaly
detection model in Section 4. Finally, we evaluate the performance of the proposed algorithms through
extensive experiments in Section 5 and conclude the work in Section 6.

2. Related Work

According to the framework of log anomaly detection in Section 3, log anomaly detection consists
of several important steps. We review the related works for each step.

2.1. Log Parsing

Log parsing extracts the log template or log event from the raw log. A log template is a log
event that records events occurring in the execution of a system. FT-tree [25] identifies the longest
combination of frequently occurring words as a log template. He et al. [26] design and implement a
parallel log parser (namely POP) on top of Spark, a large-scale data processing platform. The raw log
is divided into constant and variable, and the same log events are combined into the same clustering
group by hierarchical clustering. He et al. also propose an online log parsing method, namely
Drain [27], which uses a fixed depth parse tree to accelerate parsing. He et al. [37] provide the tools
and benchmarks for automated log parsing.

2.2. Feature Extraction

Extracting the feature of logs is the basis of anomaly detection. Zhang et al. [29] propose Prefix to
extract four features (sequence, frequency, surge, seasonality) from the log sequence and form a feature
matrix. Khatuya et al. [30] select features from system logs, including event count, event ratio, mean
inter-arrival time, mean inter-arrival distance, severity spread, and time-interval spread, and transform
the log events into score matrix. Liu et al. [38] extract 10 features and compress to two features.

In addition, the NLP methods start to attract the researcher’s interest to vectorize the log event,
such as bag-of-words [39], TF-IDF [40], and word2vec.
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He et al. [31] count the occurrence number of each log event to form the event count vector for
each log sequence, whose basic idea draws from bag-of-words. Meng et al. [32] propose LogClass
which combines a word representation method, named tf-idf, with the Positive-unlabeled (PU) learning
model to construct device-agnostic vocabulary with partial labels. Lin et al. [33] propose an approach
named LogCluster which turns each log sequence into a vector by Inverse Document Frequency (IDF)
and Contrast-based Event Weighting.

Bertero et al. [34] consider logs as regular text and first apply a word embedding technique based
on Google’s word2vec algorithm, in which logfiles’ words are mapped to a high dimensional metric
space. Then, the coordinate of the word is transformed into the log event vector, and the coordinate of
the log event vector is transformed into the log sequence vector. Meng et al. [35] propose LogAnomaly,
a framework to model a log stream as a natural language sequence. They propose a novel, simple
feature extraction method, template2vec, to extract the semantic information hidden in log templates
by a distributional lexical-contrast embedding model (dLCE) [41]. The word vector is transformed to
the log event vector, which is fed into the long short-term memory (LSTM) detection model.

According to the type of anomaly detection, the word vector from word2vec needs to form the
log event vector or the log sequence vector. For example, the log event vector is enough for LSTM [35],
while the log sequence vector is needed for Random Forest or Naive Bayes [34].

Table 1 concludes the NLP methods on log feature extraction. To avoid multiple transformations,
the objects of NLP methods become log events from words. Therefore, this paper handles the log
events directly.

Table 1. Feature Extraction based on NLP.

Method Word Log Event

Bag-of-words Forming the log event vector by the
occurrence number of words

Forming the log sequence vector by the
occurrence number of the log event [31]

Idf/Tf-idf Forming the log event vector by the term
frequency and weights of words [32]

Forming the log sequence vector by the term
frequency and weights of the log event [33]

Word2vec Forming the word vector by Word2vec [34,35] –

2.3. Anomaly Detection

After feature extraction, several machine learning models are used for anomaly detection, such as
Regression [30], Random Forest [29,32], and Clustering [33,38,42].

Ridge regression is used to estimate the abnormal score from the features [30], and the total weight
vector obtained by ridge regression is used for express the relative importance of different features.
Random Forest is used to anomaly detection based on the feature matrix in Prefix [29]. LogClass [32]
classifies anomalies based on device logs by Random Forest.

LogCluster [33] clusters the logs to ease log-based problem identification, which utilizes a
knowledge base to check if the log sequences occurred before. Liu et al. [38] make use of a mixed
attribute clustering method k-prototype, which transforms data from 10 features to a new data set to
reduce feature dimensions. Then, k-Nearest Neighbor (k-NN) classifier is used to identify the real
abnormalities in the new data set, which greatly reduces the calculation scale and time. Loglens [42] is
a real-time log analysis system, which clusters log events by similarity measure.

A comparison among six state-of-the-art log-based anomaly detection methods is presented in [31],
including three supervised methods (Logistic Regression, Decision Tree, and Support Vector Machine
(SVM)) and three unsupervised methods (LogCluster, PCA, Invariant Mining), and an open-source
toolkit allowing ease of reuse.

In addition, deep learning methods [43] are applied in log anomaly detection [35]. Deeplog [44]
uses LSTM to model a certain type of log key sequence of logs, automatically learns the normal mode
from the normal log data, and then judges system exceptions. Refs [45,46] analyze the application of
various LSTM models in anomaly detection, such as bidirectional LSTM, stacked LSTM, etc.
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In this paper, we show that our feature extraction algorithm can work well with various anomaly
detection methods.

3. General Framework and System Model

In this section, we introduce the general framework of log anomaly detection and the formulation
of our work. The general framework of log anomaly detection consists of three steps: log parsing,
feature extraction, and anomaly detection, as shown in Figure 1. Table 2 summarizes the notations and
definitions used in this paper.

 Anomaly detectionRaw Log

Log Sequence 
vector

Log parsing

Raw Log

 Structured 
Data: Log Event

 Feature extraction

Log Event 

Log Event 
vector

Figure 1. The framework of log anomaly detection.

Table 2. List of notations.

Notation Definition

L The log data
N The number of lines in log data
E The set of log events
M The number of log events
LSE The set of log sequences
W The window size which decides the length of a log sequence
T The vector space
li The ith log message
p(.) The mapping function of log parsing
p(li) The log event of log message li
lsei The ith log sequence that is [p(liW+1), p(liW+2), . . . , p(liW+W)]
v(e) The vector of log event e
f (lsei) The prediction of log sequence lsei that is f (v(p(liW+1)), v(p(liW+2)), . . . , v(p(liW+W)))
yi The label of log sequence lsei

3.1. Log Parsing

Logs are semi-structured. A log message can be divided into two parts: a constant part and a
variable part (some specific parameters). A log event is the template (constant part) of a log message.
To turn semi-structured raw logs into structured data, log parsing extracts a set of templates to record
events that occur during the execution of a system. In this paper, we do not distinguish between the
log template and the log event.

The log data from a system are denoted by L. The log data contain N lines of log messages.
The ith log message is denoted by li ∈ L, 1 ≤ i ≤ N. Every log message is generated by an application
of the system to report an event. Every log message consists of a list of words, similar to a sentence.

The log parsing [27] is used to remove all specific parameters from log messages and extract all
the log events. The set of log events is denoted by E, in which the number of log events is M. In this
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way, each log message is mapped into a log event. Log parsing can be represented by the mapping
function p. The log event of the log message li can be described as p(li) ∈ E:

p : L→ E (1)

Then, log data are divided into various chunks. A chunk is a log sequence. We assume that the
fixed window is used and the window size decides the length of log sequences, denoted by W. There
are N/W log sequences, where the set of log sequences is denoted by LSE. The ith sequence consists of
W log messages from liW+1, liW+2, to liW+W . Each log message in a log sequence can be mapped into a
log event [47]. As a result, the log sequence can be treated as a list of log events. The log sequence lsei
is denoted by

lsei = [p(liW+1), p(liW+2), . . . , p(liW+W)], 0 ≤ i ≤ N/W − 1, lsei ∈ LSE. (2)

3.2. Feature Extraction

Although log events are structured, they still consist of text. Therefore, the log event should be
numerically encoded for further anomaly detection. Text of log events can be encoded by NLP models.
The list of logs are divided into various chunks, which are log sequences. A feature vector is generated
to represent a log sequence.

Word2vec [36] is used to extract features of log events. Generally speaking, word2vec maps
words of a text corpus into a Euclidean space. In the Euclidean space, relevant words are close, while
irrelevant words are far away.

In our case, we use word2vec to map log events of log sequence into a Euclidean space. The input
of word2vec is a list of log events instead of a list of words. Thus, every log event gets a coordinate,
denoted by v(e), e ∈ E in a vector space T. After mapping each log event, a log sequence can be
represented by a function of its all log events’ coordinates. It means that each log sequence is also
mapped into the vector space. The mapping of log event and log sequence can be represented as
two functions:

v : E→ T
f : LSE→ T

. (3)

According to the definition of log sequence in Equation (2), the log events of log
sequence lsei are p(liW+1), p(liW+2), . . . , p(liW+W). The coordinate of the log event related
to the log message lj can be denoted by v(p(lj)). Therefore, the coordinates of these
log events are v(p(liW+1)), v(p(liW+2)), . . . , v(p(liW+W)). By the above-described procedure,
the coordinate of the log sequence depends on all its log events’ coordinates. The log sequence
lsei can be assigned to a coordinate by f (lsei) = f ([p(liW+1), p(liW+2), . . . , p(liW+W)]) =

f (v(p(liW+1)), v(p(liW+2)), . . . , v(p(liW+W))).

3.3. Anomaly Detection

All feature vectors of log sequence are the samples, which are trained for machine learning or
deep learning models to detect anomaly. Then, the trained model predicts whether a new log sequence
is anomalous or not.

A binary classifier c is trained on f (lsei|lsei ∈ LSE) ∈ T. This kind of classifier c can be treated
as an ideal separation function: c : T → [0, 1]. The classifier determines whether a log sequence lsei
is anomalous (label yi = 1 denotes an anomalous log sequence and yi = 0 denotes a normal log
sequence) or not. When the anomalous event occurs, the log message at that time is labeled anomalous.
If an anomalous log message belongs to a log sequence, this log sequence is labeled as an anomaly.
Otherwise, the log sequence is normal when all log messages in it are normal. In the case log sequence
contains log events which do not occur, those are simply ignored.
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4. Methodology

The overview of LogEvent-to-vector based log anomaly detection is shown in Figure 2. The first
block shows nine raw logs in the BGL dataset. The second block is the log parsing step which extracts
five log events from the raw logs by the Drain. Each log is mapped into a log event. The third block is
the feature extraction step. Logs are divided into log sequences by a fixed window. Each log event
vector is obtained by logEvent2vec which takes the log event as the processing object. The log sequence
vector is calculated by all log event vectors in the log sequence according to bary or tf-idf. The fourth
block is the anomaly detection. The anomalies are marked by the red line. Three kinds of supervised
models (Random Forests, Naive Bayes, and Neural Networks) are trained to detect the anomaly.
The detailed process of each step is described below.

1.- 1117838978 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-
15.49.38.026704 R02-M1-N0-C:J12-U11 RAS KERNEL 

INFO instruction cache parity error corrected
2.- 1117842440 2005.06.03 R23-M0-NE-C:J05-U01 2005-06-03- 
16.47.20.730545 R23-M0-NE-C:J05-U01 RAS KERNEL INFO 

63543 double-hummer alignment exceptions
3.- 1117848119 2005.06.03 R16-M1-N2-C:J17-U01 2005-06-03-
18.21.59.871925 R16-M1-N2-C:J17-U01 RAS KERNEL INFO

 CE sym 2, at 0x0b85eee0, mask 0x05
4.- 1117942120 2005.06.04 R30-M0-N7-C:J08-U01 2005-06-04-
20.28.40.767551 R30-M0-N7-C:J08-U01 RAS KERNEL INFO

 CE sym 20, at 0x1438f9e0, mask 0x40
5.- 1117955341 2005.06.05 R25-M0-N7-C:J02-U01 2005-06-05-

00.09.01.903373 R25-M0-N7-C:J02-U01 RAS KERNEL 
INFO generating core.2275

6.- 1117955392 2005.06.05 R24-M1-N8-C:J09-U11 2005-06-05-
00.09.52.516674 R24-M1-N8-C:J09-U11 RAS KERNEL 

INFO generating core.862
7.- 1117984246 2005.06.05 R30-M1-N3-C:J02-U01 2005-06-05-

08.10.46.344235 R30-M1-N3-C:J02-U01 RAS KERNEL
 FATAL data TLB error interrupt

8.- 1118070512 2005.06.06 R01-M1-NB-C:J03-U11 2005-06-06-
08.08.32.984716 R01-M1-NB-C:J03-U11 RAS KERNEL INFO 

CE sym 20, at 0x01228120, mask 0x10
9.- 1118079221 2005.06.06 R02-M1-N0-C:J12-U11 2005-06-06-
10.33.41.093251 R02-M1-N0-C:J12-U11 RAS KERNEL INFO 

instruction cache parity error corrected

Raw Log 

 Log Parsing

E1:instruction cache parity error corrected
E2:<*> double-hummer alignment exceptions
E3:CE sym <*>, at <*>, mask <*>
E4:generating core.<*>

E5:data TLB error interrupt

Log Event: 

Each log message is mapped into a log event:

 Log1→E1  Log2→E2 
 Log3→E3  Log4→E3
 Log5→E4  Log6→E4
 Log7→E5  Log8→E3
 Log9→E1

Fixed Windows

 Feature Extraction


1

2

3

[ 1, 2, 3]

[ 3, 4, 4]

[ 5, 3, 1]

lse E E E

lse E E E

lse E E E







Logevent2vec

Bary,Tf-idf

Log Sequence Matrix

'E1': [1，2，1，0，1]

 'E2': [2，1，3，0，0]

 'E3': [1，2，2，3，1]

 'E4': [0，0，1，2，3]

 'E5': [1，0，2，0，3]

Anomaly DetectionW  W  W
W=3 

1lse

2lse

3lse

Random Forests, Naive 
Bayes, Neural Networks

1.33 1.67 2 1 0.6

0.33 0.67 1.33 2.33 2.33

1 1.33 1.67 1 1.67

 
 
 
  

Figure 2. Overview of Log Event to vector based log anomaly detection.

4.1. Log Parsing

There are nine raw log messages of BGL in the first block of Figure 2. Each log message contains
timestamp, date, node, time, node repeat, message type, component (message generation location),
level, and content. For example, the third log message is “1117848119 2005.06.03 R16-M1-N2-C:J17-U01
2005-06-03-18.21.59.871925 R16-M1-N2-C:J17-U01 RAS KERNEL INFO CE sym 2, at 0x0b85eee0, mask
0x05”. 1117848119 is the time stamp, 2005.06.03 is the data, R16-M1-N2-C:J17-U01 is the node,
2005-06-03-18.21.59.871925 is the time, R16-M1-N2-C:J17-U01 is the node repeat, RAS is the message
type, KERNEL is the component, INFO is the level, and CE sym 2, at 0x0b85eee0, mask 0x05 is the content.

After parsing by Drain [27], the log event is shown in the last row of Table 3. The semi-structured
raw log message is converted into structured information. The variable part in the log message is
replaced by a wildcard, and the constant part remains unchanged. Each log event has a unique log
event and event template. The event template of the third log message is “CE sym < ∗ >, at < ∗ >,
mask < ∗ >” with log event E3 as shown in the second block of Figure 2. Similarly, we get five log
events E1–E5 in the second block from the nine raw log messages. Each raw log message is mapped
into a log event. For example, the first log message is mapped into log event E1, and the second log
message is mapped into log event E2.
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Table 3. Raw log and log event.

Item Content

Time stamp 1117848119
Data 2005.06.03
Node R16-M1-N2-C:J17-U01
Time 2005-06-03-18.21.59.871925

Node repeat R16-M1-N2-C:J17-U01
Message type RAS
Component KERNEL

Level INFO
Content CE sym 2, at 0x0b85eee0, mask 0x05

Log event “CE sym < ∗ >, at < ∗ >, mask < ∗ >”

4.2. Feature Extraction

LogEvent2vec takes the log event as input of the word2vec model, and then transforms the log
event vector to the log sequence vector. Because the number of log events is far less than the number
of words, LogEvent2vec reduces the training cost. In addition, only one coordinate transformation is
necessary to get the log sequence vector from the log event vector.

4.2.1. LogEvent2vec: Log Event Training Via Word2vec

Word2vec maps words to vectors, which is divided into two models, namely continuous skip-gram
model (skip-gram) and continuous bag-of-words model (cbow) [48]. The training input of cbow model
is the context word vector of a target word, and the output is the word vector of the target word.
The idea between skip-gram and cbow is opposite, that is, the input is the word vector of a target word,
and the output is the context word vector of the target word. Cbow model is used in this paper.

Cbow model consists of three layers [49]: input layer, hidden layer, and output layer, as shown in
Figure 3. For example, the corpus is “I drink coffee every day”. We can get the embedding of “coffee”
from the rest four words “I”, “drink”, “every”, and “day” which are taken as input. Similarly, we can
get the embedding of all words.

LogEvent2vec takes the log event as the input of word2vec to get the embedding of each log event
in vector space T. The space dimension is dim(T). If the target is log event p(liW+j), the rest log events
p(liW+1), p(liW+2), . . . , p(liW+j−1), p(liW+j+1), . . . , p(liW+W) in the log sequence lsei are taken as input,
as shown in Figure 3. For example, we assume that the fixed window size is 3, as shown in the third
block of Figure 2. The nine log messages are divided into three sequences (lse1, lse2, lse3) which are
[E1, E2, E3], [E3, E4, E4], and [E5, E3, E1], respectively. LogEvent2vec takes log events E1 and E3 in
the first sequence as the input and log event E2 as the output. Similarly, log events E3 and E4 in the
second sequence are taken as the input of word2vec while the target is log event E4. Log events E5
and E1 in the third sequence are taken as the input of word2vec while the target is log event E3.

In detail, the one-hot vector with |E| dimension is used to represent the log event. There are
W − 1 one-hot vectors in the input layer. The output layer is the one-hot vector of the target log event.
The hidden layer’s dimension is dim(T). After training the model, we can get the embedding of a log
event by multiplying its one-hot vector and the weight matrix WM ∈ R|E|×dimT . Assuming that the
dimension is set to 5, the embedding vectors of log events E1− E5 are [1,2,1,0,1], [2,1,3,0,0], [1,2,2,3,1],
[0,0,1,2,3], [1,0,2,0,3], as shown in the third block of Figure 2.
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|E|-dim
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1( )iWp l 
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WM*dim(T)×|E|

Figure 3. Log event as input of the word2vec model. The target is log event p(liW+j), and the rest log
events p(liW+1), p(liW+2), . . . , p(liW+j−1), p(liW+j+1), . . . , p(liW+W) in the log sequence lsei are taken
as input.

4.2.2. From Log Event Vector to Log Sequence Vector

All log event vectors in space T are produced by LogEvent2vec. To get the log sequence vector in
space T, we transform log event vector to log sequence vector by bary or tf-idf:

• Bary defines the vector of log sequence as the average of all its log events in Equation (4):

f (lsei) =de f 1/|lsei|
k=W
∑

k=1
v(p(liW+k)), lsei ∈ LSE. (4)

• Tf-idf defines the vector of log sequence as the weighted average of all its log events. The weight
depends on the frequency of log events. A rare log event has a higher weight than a frequent
log event.

According to bary, the vector of first log sequence lse1 is the average position of E1, E2, E3, which
is ([1, 2, 1, 0, 1] + [2, 1, 3, 0, 0] + [1, 2, 2, 3, 1])/3 = [1.33, 1.67, 2, 1, 0.6], as shown in the third block of
Figure 2. Similarly, we can calculate the vectors of lse2 and lse3, which are [0.33, 0.67, 1.33, 2.33, 2.33],
[1, 1.33, 1.67, 1, 1.67], respectively.

After transformation, we can obtain all log sequences’ vector, which is a matrix with
N/W × dim(T).

4.3. Anomaly Detection

Anomaly detection can be treated as a binary classification problem. Many classifiers are available.
In this paper, we use three supervised algorithms to detect anomaly: Random Forests, Naive Bayes,
and Neural Networks in this part. The log sequence matrix is the input of the anomaly detection model.
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5. Evaluation

5.1. Datasets

To evaluate the performance of our proposed algorithms, we use the BGL dataset from the
BlueGene/L supercomputer system at Lawrence Livermore National Labs (LLNL) [50]. Table 4 shows
the basic information of the BGL dataset. There are 4,747,963 log messages and 348,460 anomalous log
messages in the BGL dataset.

Table 4. Summary of BGL dataset.

System #Time Span #Data Size #Log Messages #AnomaliesLog

BGL 7 months 708M 4,747,963 348,460

5.2. Experimental Setup

All experiments are run on Baidu AI Studio (Beijing, China), which provides a server with
an Intel(R) Xeon(R) Gold 6148 CPU (Beijing, China) with 8 core, NVIDIA Tesla V100 with 16 GB
VideoMem GPU (Beijing, China), and 32 GB RAM.

After Drain [27] log parsing, we obtain 376 log events. By default, according to [34], the window
size of fixed windows is set to 5000 and the dimension of vector dim(T) is set to 20. It means that the
length of each log sequence is 5000. After dividing, there are 943 log sequences. We randomly choose
the 90% log sequence as the training data, and the remaining 10% as the testing data. All results are
averages of five times results.

We compare our feature extraction scheme with the method in [34] with different coordinate
transformation and anomaly detection models. The two kinds of feature extraction schemes have two
kinds of coordinate transformations: bary and tf-idf. There are three kinds of supervised methods:
Random Forests, Naive Bayes, and Neural Networks. The two kinds of feature extraction schemes are
described as follows:

• Word [34]: It takes words as input of the word2vec model after removing the non-alphanumeric
characters. After getting the words vector, it performs coordinate transformation twice to get the
log file vector.

• LogEvent: our approach takes log events as input of the word2vec model after log parsing.
After getting the log event vector, it performs coordinate transformation once to get the log
sequence vector.

As shown in Table 5, we have 12 kinds of schemes. We use three combined characters to
represent the schemes. For example, “W-b-NB” means the method in [34] with two bary coordinate
transformations and Naive Bayes anomaly detection model. “LE-t-NN” means our approach with a
tf-idf coordinate transformation and Neural Networks anomaly detection model. The implementations
of tf-idf, Random Forests, Naive Bayes, and Neural Networks are from the scikit-learn (http://scikit-
learn.org/) standard library.

Table 5. The component of comparison schemes.

Steps Models

Word2vec input unit Word/Log event
Coordinate transformation Bary/Tf-idf
Anomaly detection model Random Forests/Naive Bayes/Neural Networks

F1-score, Area Under Curve (AUC), and computational time are used to evaluate the accuracy of
anomaly detection methods. F1-score is an index used to measure accuracy of binary classification

http://scikit-learn.org/
http://scikit-learn.org/
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model in statistics. It takes into account both accuracy and recall of classification model. F1-score can
be regarded as the harmonic average of precision and recall in Equation (5). It has its best value at 1
and worst at 0. AUC is a kind of evaluation index to measure the quality of the binary classification
model, which indicates the probability that the positive example prediction is in front of the negative
example. Computational time includes the time of feature extraction, the time of training anomaly
detection model, the time of issuing all predictions in the test set, and the total time. The computational
time of feature extraction consists of training word2vec and coordinate transformations. The total
time is from word2vec training to the anomaly detection model without preprocessing because of the
different preprocessing in our scheme and [34]:

F = 2× precision× recall/(precision + recall) (5)

5.3. Experiment Results

5.3.1. Impact of Anomaly Detection Model

To investigate the effect of different anomaly detection models, we analyze the F1-score, AUC, and
computational time of Random Forests, Naive Bayes, and Neural Networks, while other parameters
are set to the default values and the coordinate transformation method is bary.

The results are as shown in Figure 4. In the aspect of the detection model, we can see that the
anomaly detection performance of W-b-RF (F1-score = 0.83, AUC = 0.96) and W-b-NN (F1-score = 0.80,
AUC = 0.94) are far higher than that of W-b-NB (F1-score = 0.72, AUC = 0.89). In the case of log event as
input, the detection performance of LE-b-RF (F1-score = 0.88, AUC = 0.97) and LE-b-NN(F1-score = 0.89,
AUC = 0.95) is better than that of LE-b-BN (F1-score = 0.78, AUC = 0.94). The detection performance of
Random Forest and Neural Network as classifier is better than Naive Bayes. The reason is that Random
Forest is a set of decision trees, in which each decision tree processes samples and predicts output
labels. The decision trees in the set are independent, and each decision tree can predict the final result.
Neural Networks are fully connected. They are grouped by layers and process the data in each layer
and deliver it to the next layer. The last layer of neurons is responsible for the prediction. Therefore,
those two detection models consider the relevance between features. The premise of Naive Bayes
algorithm is that the features are independent. There is a certain relevance between the log events in
the log sequence. Therefore, Random Forest and Neural Network are better than Naive Bayes.

In the aspect of the input, the results of anomaly detection using log events as input are better
than using words as input. The AUC score of LE-b-RF is 0.97. The reason is that the representation of
the log sequence vector is more accurate in LogEvent2vec. Inputting words to word2vec [34] needs to
transform word vectors into the vector of log sequence by two coordinate transformations, so there
will be some bias in the representation of the log sequence vector and affect the final anomaly detection
results. Our schemes only need to perform one coordinate transformation to get the log sequence
vector. Therefore, the log sequence vector is more accurate in representation. Logevent2vec reduces
the number of coordinate transformations and obviously improves its F1-score. The results confirm
the rationality of LogEvent2vec.

Figures 5 and 6 show the computation time for three classifiers to detect anomaly. Figure 5a shows
the time of feature extraction from training word2vec to coordinate transformation, where training
word2vec consumes the majority of the time. It can be seen that the time required for feature extraction
in Random Forest is the highest, and the time required for feature extraction in Naive Bayes is the
lowest. The number of words in the BGL dataset is 1,405,168, while the number of log events is only
376. The training time of log events in word2vec is far less than that of words. The final experimental
results show that LogEvent2vec (32.97 s < 955.33 s) takes less time to train word2vec.
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Figure 4. Performance of different schemes with bary and tf-idf coordinate transformations. (a) F1-score;
(b) AUC.

Figures 5b and 6a show the time needed to train the classifier with 848 log sequences and issue
95 log sequences for prediction. We can see that LogEvent2vec and word2vec consume the same time
in training the classifier and issuing the test set for prediction. Figure 6b shows the total time from
training word2vec to finally completing anomaly detection. The total time is mainly determined by
the time of feature extraction: the less time word2vec training takes, the less time it takes. Finally,
the experiment shows that LogEvent2vec shortens time by 30 times than word2vec.

5.3.2. Impact of Coordinate Transformation

We analyze the performance of bary and tf-idf with other parameters set to the default values.
The results are shown in Figure 4.

Taking Random Forest as an example, the performances of W-b (F1-score = 0.83, AUC = 0.96),
W-t (F1-score = 0.82, AUC = 0.94), LE-b (F1-score = 0.88, AUC = 0.97), and LE-t (F1-score = 0.87, AUC
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= 0.97) are not very different from each other. The results of other anomaly detection models are
similar. The way of coordinate transformation (bary and tf-idf) has little influence on the result of the
anomaly detection.

However, different inputs of word2vec have a great influence on anomaly detection results. We
can see that the method of LogEvent2vec (LE-b (F1-score = 0.88, AUC = 0.97), LE-t (F1-score = 0.869,
AUC = 0.97)) is better than word2vec (W-b (F1-score = 0.834, AUC = 0.959), W-t (F1-score = 0.825, AUC
= 0.944)) with the Random Forest model.

Random Forests(RF) Naive Bayes(NB) Neural Networks(NN)
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tim
e(
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(a) Feature extraction
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(b) Anomaly detection model training

Figure 5. Computational time of the feature extraction and anomaly detection with bary and tf-idf
coordinate transformations. (a) computational time of feature extraction; (b) computational time of
anomaly detection model training.
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Figure 6. Computational time of training and testing with bary and tf-idf coordinate transformations.
(a) computational time of issuing all predictions in test set; (b) total computational time.

Figures 5 and 6 show the time consumed with tf-idf coordinate transformations.
The computational time of feature extraction in W-t-NN is the longest (351.73 s) and LE-t-NN is
the shortest (9.95 s), as shown in Figure 5a. In addition, the computational time of feature extraction in
W-b-RF is 959.31 s, while that in W-t-RF is only 347.67 s. It can be seen that tf-idf can reduce the time
consumption in feature extraction. Figures 5b and 6a show the time consumed by training the anomaly
detection model and issuing all predictions in the test set. It can be seen that different coordinate
transformations have less impact on the time consumed by training the anomaly detection model
and issuing predictions. Figure 6b shows the total consumption time of anomaly detection with tf-idf
coordinate transformation, which is still mainly determined by the computational time of feature
extraction. Therefore, the performance of tf-idf is weaker than that of bary, but tf-idf can significantly
reduce the computational time.
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5.3.3. Impact of the Dimension

To investigate the effect of the dimension of feature space, the number of dimensions is set from 5
to 500 while other parameters are set to the default values.

In Tables 6 and 7, LE-b-NN has the best performance in all classification when dimensions are
from 5 to 50. The performance of LE-b-RF is the best when dimensions are from 100 to 500.

Although the AUC score of W-b-RF (F1-score = 0.81) is the highest at 200 dimensions, its F1-score
of correct classification is lower than that of LE-b-RF (F1-score = 0.84). The difference of AUC
score between LE-b-RF and W-b-RF is 0.008, while the difference of F1-score is 0.03. Therefore,
the performance of LE-b-RF is better than that of W-b-RF in 200 dimensions. Generally speaking, we
use log events as input of the word2vec model, and the effect of anomaly detection is better than using
words as input of the word2vec model. The final experimental results also confirm that the effect of
LogEvent2vec is better than that of word2vc.

Tables 8–11 depict the time of feature extraction, the time of training anomaly detection model,
the time of issuing all predictions in the test set, and the total time with bary coordinate transformation,
respectively. No matter which kind of anomaly detection models and feature extraction, the time of
feature extraction and training the anomaly detection model increases as the dimension increases.
Therefore, the total time is also increasing with the increase of dimensions. However, the dimension
has less impact on the time of issuing all predictions in the test set.

Table 6. F1-score with different dimensions.

dim(T) W-b-RF W-b-BN W-b-NN LE-b-RF LE-b-BN LE-b-NN

5 0.821788573 0.638914042 0.599454543 0.848245935 0.654693534 0.86068197
10 0.826054636 0.715535678 0.707411424 0.827861155 0.745818201 0.849900514
20 0.834107143 0.72259094 0.803393267 0.879608688 0.782222222 0.886912543
50 0.785066632 0.732549521 0.80844075 0.877704266 0.776404488 0.880865736
100 0.814447561 0.751401056 0.747072721 0.885832862 0.777671294 0.829474969
200 0.811296155 0.70370138 0.808328189 0.840172605 0.800541113 0.826401595
500 0.761251469 0.72595185 0.766749974 0.855822584 0.8009675 0.846823786

Table 7. AUC with different dimensions.

dim(T) W-b-RF W-b-BN W-b-NN LE-b-RF LE-b-BN LE-b-NN

5 0.952121313 0.893721708 0.851681379 0.966854572 0.888070647 0.973852043
10 0.946359642 0.910339212 0.883053652 0.960652723 0.913831019 0.940199701
20 0.959049752 0.88620832 0.940347094 0.969534015 0.939435145 0.950155508
50 0.936857925 0.909702317 0.932487478 0.979603173 0.921604084 0.941439031
100 0.952108191 0.918905966 0.912478988 0.959295558 0.928927259 0.911241156
200 0.965241513 0.890634611 0.903616499 0.957165279 0.929082466 0.921258002
500 0.939609334 0.869648164 0.882033281 0.963988762 0.917090636 0.92435774

Table 8. Computational time of the feature extraction with different dimensions.

dim(T) W-b-RF W-b-BN W-b-NN LE-b-RF LE-b-BN LE-b-NN

5 928.467184365 928.154774189 928.213744521 33.440349197 32.785332489 33.096653652
10 950.101264000 949.874471283 948.049470901 33.298034906 32.398853445 33.481590986
20 959.311112213 955.330675745 955.955496573 33.588190031 32.973171473 33.414360476
50 963.718184471 965.015199471 964.497252941 34.691981173 33.850553179 33.587378836
100 1006.996418762 1008.646436644 1009.821412706 33.849840307 33.255211973 33.166025877
200 1060.622915459 1063.216091013 1070.170886092 35.303260088 34.084345007 36.286307726
500 1244.848617029 1245.274248505 1252.219076300 40.350662804 38.923700237 39.244319487
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Table 9. Computational time of the anomaly detection with different dimensions.

dim(T) W-b-RF W-b-BN W-b-NN LE-b-RF LE-b-BN LE-b-NN

5 0.129946113 0.002494335 0.091389656 0.118011236 0.002314472 0.092924643
10 0.174678040 0.002696085 0.088878870 0.140994787 0.002168465 0.098157644
20 0.200891352 0.002576542 0.111003637 0.162158251 0.002343321 0.103493547
50 0.302109051 0.003390408 0.131638622 0.226914167 0.002695179 0.140838718
100 0.419996023 0.003537750 0.628135109 0.280465174 0.002766132 0.576955175
200 0.592480183 0.003967857 1.132779264 0.374702978 0.003175211 0.917661619
500 0.874522972 0.005608940 1.402945185 0.557642794 0.005089426 1.660369825

Table 10. Computational time of issuing all prediction in test set with different dimensions.

dim(T) W-b-RF W-b-BN W-b-NN LE-b-RF LE-b-BN LE-b-NN

5 0.030201614 0.007484496 0.007597148 0.030419779 0.008524370 0.008317709
10 0.030166960 0.007774067 0.008397007 0.028655720 0.007569742 0.008075190
20 0.030082989 0.007681179 0.007875299 0.030849648 0.007559681 0.008102942
50 0.031879997 0.007841539 0.008520412 0.031287003 0.007819939 0.007965803
100 0.031735134 0.008501720 0.008821011 0.029254770 0.007116508 0.007657909
200 0.031595659 0.009186029 0.091766162 0.029769993 0.007659483 0.006997528
500 0.030633450 0.010237265 0.014094353 0.030339813 0.009008598 0.008466959

Table 11. Total computational time with different dimensions.

dim(T) W-b-RF W-b-BN W-b-NN LE-b-RF LE-b-BN LE-b-NN

5 928.627332091 928.164753020 928.312731326 33.588780212 32.796171331 33.197896004
10 950.306108999 949.884941435 948.146746778 33.467685413 32.408591652 33.587823820
20 959.542086554 955.340933466 956.074375510 33.781197929 32.983074474 33.525956964
50 964.052173519 965.026431417 964.637411976 34.950182343 33.861068296 33.736183357
100 1007.448149920 1008.658476114 1010.458368826 34.159560251 33.265094614 33.750638962
200 1061.246991301 1063.229244900 1071.395431519 35.707733059 34.095179701 37.210966873
500 1245.753773451 1245.290094709 1253.636115837 40.938645411 38.937798262 40.913156271

6. Conclusions

We propose LogEvent2vec, an offline feature extraction approach that takes the log event as the
input of word2vec to extract the relevance between log events, and reduce the time of training and
coordinate transformation. LogEvent2vec can work with any coordinate transformation methods
and anomaly detection models. The experimental results demonstrate that our approach is effective
and outperforms the state-of-the-art work. Compared with Neural Network and Naive Bayes model,
the performance of Random Forest as classifier working with LogEvent2vec is better. Different
coordinate transformation methods (bary and tf-idf) have less influence on the accuracy of anomaly
detection, but tf-idf can significantly reduce the computational time. LogEvent2vec working with
LSTM is our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
NLP Natural language processing
tf-idf Term frequency-inverse document frequency
Word2vec Word-to-vector
LogEvent2vec LogEvent-to-vector
PCA Principal component analysis
ICA Independent component analysis
BGL BlueGene/L
POP Parallel log parser
PU Learning Positive-unlabeled Learning
dLCE Distributional lexical-contrast embedding model
LSTM Long short-term memory
k-NN k-nearest neighbor
SVM Support vector machine
skip Gram continuous skip-gram model
cbow Continuous bag-of-words model
LLNL Lawrence Livermore National Labs
AUC Area under curve
ROC Receiver operating characteristics
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