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Abstract: This research presents a novel sample-based path planning algorithm for adaptive sampling.
The goal is to find a near-optimal path for unmanned marine vehicles (UMVs) that maximizes
information gathering over a scientific interest area, while satisfying constraints on collision avoidance
and pre-specified mission time. The proposed rapidly-exploring adaptive sampling tree star (RAST*)
algorithm combines inspirations from rapidly-exploring random tree star (RRT*) with a tournament
selection method and informative heuristics to achieve efficient searching of informative data in
continuous space. Results of numerical experiments and proof-of-concept field experiments demonstrate
the effectiveness and superiority of the proposed RAST* over rapidly-exploring random sampling tree
star (RRST*), rapidly-exploring adaptive sampling tree (RAST), and particle swarm optimization (PSO).

Keywords: path planning; unmanned marine vehicles; adaptive ocean sampling; rapidly-exploring
adaptive sampling tree star

1. Introduction

The ocean is a complex dynamical system. To understand ocean dynamics and increase accuracy
of ocean models, measurements need to be taken with high spatio-temporal resolution according to
the ocean phenomena under investigation [1–4].

Unmanned marine vehicles (UMVs), such as unmanned surface vehicles (USVs), gliders,
and autonomous underwater vehicles (AUVs), equipped with sensors, have been widely employed to
collect informative data of all kinds over scientific interest areas, for example, salinity, temperature,
and chlorophyll content of the ocean, for applications of ecosystem monitoring, pollution management,
marine resources exploration, and utilization [5–10]. However, a key challenge arises in that the
vehicles are subject to limited energy resource or mission time, which limits data collection of the
vehicle in one mission [11–14]. Therefore, it is of vital importance that the UMV can automatically
plan an informative trajectory in variable ocean environments while satisfying constraints on collision
avoidance, limited energy, and pre-specified mission time [15–17].

A variety of informative path planning methods have been proposed for adaptive sampling in an
ocean environment. Mixed integer linear programming (MILP) is applied to find the path of AUV for
adaptive sampling in the region of the greatest uncertainty [18]. The branch and bound (BNB) method is
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proposed for informative path planning to maximize the average reduction in variance of the estimated
field [19]. MILP and BNB methods are easy to be implemented but are limited to discrete domains and
often scale poorly in the size of the ocean environment. Rapidly exploring information gathering (RIG)
algorithms are proposed to find a trajectory that maximizes an information quality metric within a
pre-specified budget constraint [20]. While RIG algorithms can achieve efficient information gathering
in continuous space with motion constraints, informative heuristics is not applied to guide the robot
to higher information quality areas. Ma et al.[21,22] present an informative path planning method
to maximize information gathering through sampling the environment; however, the method only
provides guarantees on suboptimal solutions. A multi-objective particle swarm optimization (MOPSO)
with a fuzzy comprehensive evaluation (FCE) method is proposed to formulate AUVs adaptive
sampling problem while considering a spatiotemporal ocean environment and energy constraints [23].
The method can plan an AUV path in continuous space but requires heavy computational burden in a
high dimensional search space.

Sample-based algorithms, such as rapidly-exploring random tree (RRT) [24], probabilistic
roadmap (PRM) [25], and variants of them, with the advantage of generating a collision-free path
quickly in continuous space, have been studied extensively in the past years. Rapidly-exploring
random tree star (RRT*) [26], a variant of standard RRT, is guaranteed asymptotic optimality and has
been widely used for solving the path planning problem [27–31]. Therefore, RRT* can be an alternative
choice to be employed in the informative path planning problem for adaptive sampling. However,
when it comes to maximum information gathering, standard RRT* is inefficient because the heuristics
of distance in the algorithm structure gives no positive guidance for UMVs to collect informative data
in regions of high scientific interest. Therefore, this research presents a variant of RRT*, referred to as
rapidly-exploring adaptive sampling tree star (RAST*), that combines inspirations from RRT* with the
tournament selection method and informative heuristics to achieve efficient searching of informative
data in continuous space.

The novelty of RAST* includes: (1) utilizing the tournament selection method in replacement
of random sample, so that more new branches will fall in higher scientific interest areas, which can
result in finding optimal solutions quickly and saving computation time; (2) modifying the heuristic
procedure from distance to information gathering per hour in order to grow branches that can gain
more information with less traveling time. To our knowledge, this is the first work to integrate a
tournament selection method, informative heuristic function, and sample-based algorithm into a
unified path planner.

To evaluate the performance of the proposed RAST* path planner, different scenarios are
designed to compare the proposed RAST* path planner with rapidly-exploring random sampling
tree star (RRST*), rapidly-exploring adaptive sampling tree (RAST), and particle swarm optimization
(PSO). Additionally, proof-of-concept field experiments are performed in Lake Zhiyuan to assess the
superiority and effectiveness of the proposed RAST* path planner.

The remainder of this research is organized as follows. Section 2 gives a detailed description of the
mathematical model of the path planning problem for adaptive sampling. Section 3 outlines four path
planning methods. Section 4 presents numerical experiments and results of different scenarios. Section 5
presents field experiments and results. Section 6 draws the conclusions and discusses future works.

2. Problem Formulation

This section formulates the path planning problem for adaptive sampling using a UMV.
The objective is to find optimal path P∗ among all feasible paths P that maximizes information
gathering over an ocean area with features of scientific interest A and ocean currents Vc while
considering constraints of obstacles O and pre-specified mission time T .

Let A be the utility map generated by the needs of marine scientists and assumed to be known
a priori. UMVs equipped with a CTD sensor or chlorophyll fluorometer can be used to measure the
scientific interest areas. The utility map, a two-dimensional (2D) matrix with probability value in [0, 1],
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is a combination of features of scientific interest, such as salinity, chlorophyll fluorescence, dissolved
oxygen, turbidity, etc. [32] The areas with a higher probability value of interest in the utility map are
where scientists desire the UMVs to detect and collect relevant informative data. Ocean currents data
Vc are obtained from the National Oceanic and Atmospheric Administration (NOAA). The utility map
A is generated based on sea temperature data from NOAA in this research. For more details, see:
https://www.ncdc.noaa.gov/.

In practice, the path planning problem for UMV adaptive sampling operation is generally solved
for long-term missions with durations of several days and trajectory lengths of hundreds of kilometers.
The effect of vehicle dynamics is considered negligible and the vehicle is regarded as a point for the
scale of this planning problem.

Considering that a UMV V is deployed to travel with velocity V from its initial position
P1 = [x1, y1] to detect and collect ocean data, the potential path is represented by a sequence of

discrete points P = {P1,P2, . . . ,Ph}, where h is the number of discrete points along the path and Ph is
the final position for the whole mission.

The path planning problem for adaptive sampling can be expressed as

P∗ = argmax
P∈P

IG(V , V, Vc,A,O, T ) (1)

s.t.
.

V = 0,

∀i ∈ {1, 2, . . . , h} Pi /∈ O
T < T

where IG is the fitness function representing the information gathering for the whole mission.

2.1. Fitness Function Evaluation

Since informative data is associated with probability value of interest in the utility map, the goal
of this research can be equivalently transformed to maximize the total probability value of interest
along a potential path. Therefore, the fitness function can be formulated as the integral of probability
value of interest along a potential path.

IG =
∫ h

1
A(Pi) · εi · di (2)

εi =

{
1, i f distance(Pi,Pj) > dmin, ∀j = 1, . . . , i− 1

0, else
(3)

where A(Pi) is the probability value surrounding sample point Pi, εi is a parameter that evaluates
whether the current position of the UMV in ocean environments has been sampled, dmin is the sensor
range. If the distance between the current position Pi of the UMV and the sampled waypoints is larger
than dmin, the probability value A(Pi) will be recorded, in case of repeated sampling.

2.2. Traveling Time Calculation

The UMV is assumed to keep constant thrust power and, equivalently, constant speed V during
the whole mission. Influenced by ocean currents Vc, the water-referenced velocity of the UMV at a
sample point in position (x, y) at time t can be obtained from Equation (4).

ut = Vt−xy
cu + V cos φt

vt = Vt−xy
cv + V sin φt (4)

Vt =
√

ut2 + vt2

https://www.ncdc.noaa.gov/
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where Vt−xy
cu and Vt−xy

cv are the velocity components of ocean currents Vc in position (x, y) at time t, φt

are the heading angle of the UMV at time t.
Hence, traveling time T for one potential path can be calculated by the sum of time required for

each discrete line segment.

T =
i=h−1

∑
i=1

|Pi+1 −Pi|
Vt

(5)

where Vt should be recalculated for each discrete line segment.

3. Methods

This section presents four path planning methods for adaptive sampling. The key idea is to
generate the trajectory of UMV that maximizes information gathering over an ocean area with
features of scientific interest in variable ocean environments. In addition, constraints of obstacles
in environments and a pre-specified mission time of UMV is taken into consideration. Meanwhile,
configuration space is pre-defined by marine scientists based on their interests. It can be any type
of feature field, such as error variances, represented by uncertainty, or physical features of interest
(temperature, salinity, eddies, etc.). A more generic setting is the higher value of a certain position in
the feature field, indicating that it is generally worthwhile to send the UMV to take measurements.
For close-to-reality test, the data for the features used in this study were obtained from the NOAA,
in which irregularly shaped islands are regarded as obstacles. Normalized sea temperature data are
utilized as the utility map.

3.1. RAST*

RAST* builds a tree structure by connecting a set of nodes sampled from the configuration space
and returns an optimal collision-free path. The pseudocode of RAST* is shown in Algorithm 1.

RAST* starts with initial node qinit in Vertex and empty sets of E and Vinvalid. In the main loop,
instead of using the random sample procedure, the tournament selection method in Algorithm 2 is
newly applied to elect qts among M candidate nodes that are randomly sampled from the configuration
space A. (Line 3) Then, the HeuristicNode function in Algorithm 3, with ocean currents taking into
consideration when calculating the traveling time, is newly developed to find the node qmaximum
among all existing nodes in Vertex such that the vector line from qmaximum to qts is with the maximum
information gathering per hour. If ocean currents are greater than the maximum speed of the UMV,
the algorithm will not generate branches towards this direction and will choose other nodes to extend
branches. (Line 4) After that, qnew is generated by extending a step with step size δ from qmaximum to qts

based on Algorithm 4. (Line 5) If the line segment between qmaximum and qnew is collision free, which is
checked by Algorithm 5 (Line 6), Algorithm 6 will be applied to find out a neighbor nodes set Qm. If the
distance from any nodes in Vertex to qnew is less than radius r, the node will be included in the neighbor
nodes set Qm. Then, Algorithm 7 is executed to find the node qmax that can make the path, from qinit
passing connected nodes until reaching qmax then to qnew, with the maximum information gathering
per hour. (Line 7–15) Searching is performed by the newly developed HeuristicPath function. If the
line segment between qmax and qnew is collision free (Line 16), a new node qnew will be added in Vertex,
a new branch (qmax, qnew) will be added in E, qmax will be the parent node of qnew, the traveling time
and information gathering from qinit to qnew will be calculated. (Line 17–21) Additionally, if traveling
time from qinit to qnew exceeds the pre-specified mission time T , qnew will be marked as the invalid
nodes Vinvalid. (Line 22–24) At the end of the main loop, the ratio Pr is calculated as the number of
invalid nodes to the number of all existing nodes. (Line 27) The operator terminates the optimization
when the first time that P exceeds a predefined maximum ratio value Pr and outputs the optimal path
together with correlated information gathering.
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RAST* differentiates itself from the other variants of RRT* in that tournament sample procedure
and informative heuristic function are newly developed for path optimization in the algorithm
structure. The arrangement of the tournament sample makes RAST* attempt to grow branches
towards high scientific interest areas. The reason why the informative heuristic function is denoted as
information gathering per hour is that it is beneficial to gain more information with less traveling time.
To this end, these two contributions will result in generating the optimized path of UMV with more
information gathering for an adaptive sampling mission.

Algorithm 1 RAST*

Input: Utility map A, ocean currents data Vc, velocity of UMV V, initial position of UMV qinit,
obstacles O, pre-specified mission time T , tournament parameter M, step size δ, radius r,
predefined maximum ratio value Pr.

1: Vertex←{qinit}; Edge←∅; Vinvalid←∅; Graph = (Vertex, Edge);
2: while P < Pr do
3: qts←TournamentSample(A, M);
4: qmaximum←HeuristicNode(qts,Vertex);
5: qnew←Steer(qmaximum,qts,δ);
6: if CollisionFree(qmaximum,qnew) then
7: Qm ← Near(Vertex, qnew, r);
8: qmax←qmaximum;
9: cmax←HeuristicPath(qnew,qmaximum,qinit);

10: for each qm ∈ Qm do
11: if HeuristicPath(qnew,qm,qinit)>cmax then
12: cmax←HeuristicPath(qnew,qm,qinit);
13: qmax←qm;
14: end if
15: end for
16: if CollisionFree(qmax,qnew) then
17: Vertex ← Vertex ∪ {qnew};
18: Edge← Edge ∪ {(qmax, qnew)};
19: qnew.Parent← qmax;
20: qnew.T ← Time(qnew, Vertex, Edge);
21: qnew.IG ← FitnessFun(qnew, Vertex, Edge);
22: if qnew.T > T then
23: Vinvalid ← Vinvalid ∪ {qnew};
24: end if
25: end if
26: end if
27: P = Ratio(Vinvalid, Vertex);
28: end while
29: return Graph = (Vertex, Edge);
Output: The best fitness value and its correlated paths as the optimal solutions.

Algorithm 2 Tournament Sample

1: function TOURNAMENTSAMPLE(A,M)
2: Select M random points {q1, q2, . . . , qM} from the utility map A;
3: qts ← q1;
4: for i = 2 to M do
5: if A(qi) > A(qts) then
6: qts ← qi;
7: end if
8: end for
9: return qts

10: end function
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Algorithm 3 Heuristic Node

1: function HEURISTICNODE(qts,Vertex)
2: vn = Length(Vertex); %Find out how many nodes exist in Vertex
3: mr = 0;
4: for i = 1 to vn do
5: IGi = In f ormation(qi, qnew); %The information can be gathered from qi to qnew
6: Ti = Time(qi, qnew);
7: ratei = IGi/Ti;
8: if ratei > mr then
9: qmaximum ← qi.

10: mr = ratei;
11: end if
12: end for
13: return qmaximum
14: end function

Algorithm 4 Steer

1: function STEER(qmaximum,qts,δ)
2: D = distance(qmaximum,qts);
3: if D>δ then
4: qnew = qts + (qmaximum − qts) ∗ δ/D
5: else
6: qnew ← qmaximum
7: end if
8: return qnew
9: end function

Algorithm 5 Collision Free

1: function COLLISIONFREE(qi, qj)
2: if Line segment from qi to qj doesn’t collide with obstacles. then
3: return 1
4: else
5: return 0
6: end if
7: end function

Algorithm 6 Near

1: function NEAR(Vertex, qnew, r)
2: Qm ← ∅
3: Find out how many nodes exist in Vertex and record the number as v.
4: for i = 1 to v do.
5: if distance(qi, qnew) < r then
6: Qm ← Qm ∪ qi
7: end if
8: end for
9: return Qm

10: end function
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Algorithm 7 Heuristic Path

1: function HEURISTICPATH(qnew,qm,qinit)
2: P = Connection(qnew, qm, qinit); %Connect branches from (qnew, qm) back to the initial position

qinit
3: IG = FitnessFun(P);
4: T = Time(P);
5: cmax = IG/T;
6: return cmax
7: end function

3.2. RRST*

RRST* is a variant of RRT*, and the idea behind this variant is similar to RAST* except that
RRST* retains the random sample procedure of RRT* in Line 3. As for RRST*, Line 3 is replaced as
qts ← RandomSample(A); and the rest of the procedures of RRST* are the same as RAST*, shown in
Algorithm 8. The RRST* randomly selects a point qts from the configuration space to extend its branch.
Hence, the main advantage of RRST* is that it samples the configuration space with more randomness.
Due to the randomness of RRST*, RRST* may need more iterations to find the optimized solution,
and result in requiring more computational time than RAST*.

Algorithm 8 RRST*

Input: Utility map A, ocean currents data Vc, velocity of UMV V, initial position of UMV qinit,
obstaclesO, pre-specified mission time T , step size δ, radius r, predefined maximum ratio value Pr.

1: Vertex←{qinit}; Edge←∅; Vinvalid←∅; Graph = (Vertex, Edge);
2: while P < Pr do
3: qts←RandomSample(A);
4: qmaximum←HeuristicNode(qts, Vertex);
5: qnew←Steer(qmaximum, qts, δ);
6: if CollisionFree(qmaximum, qnew) then
7: Qm ← Near(Vertex, qnew, r);
8: qmax←qmaximum;
9: cmax←HeuristicPath(qnew, qmaximum,qinit);

10: for each qm ∈ Qm do
11: if HeuristicPath(qnew, qm, qinit) > cmax then
12: cmax←HeuristicPath(qnew, qm, qinit);
13: qmax←qm;
14: end if
15: end for
16: if CollisionFree(qmax, qnew) then
17: Vertex ← Vertex ∪ {qnew};
18: Edge← Edge ∪ {(qmax, qnew)};
19: qnew.Parent← qmax;
20: qnew.T ← Time(qnew, Vertex, Edge);
21: qnew.IG ← FitnessFun(qnew, Vertex, Edge);
22: if qnew.T > T then
23: Vinvalid ← Vinvalid ∪ {qnew};
24: end if
25: end if
26: end if
27: P = Ratio(Vinvalid, Vertex);
28: end while
29: return Graph = (Vertex, Edge);
Output: The best fitness value and its correlated paths as the optimal solutions.
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3.3. RAST

RAST is a variant of RRT. The main loop of the RAST follows the general structure outlined in
Algorithm 9. As can be seen from Algorithms 1 and 9, the difference between these two algorithms
lies in that RAST lacks the procedures of connecting more “informative” branches in Line 7–15 in
Algorithm 1. Even though, this approach can guide the branches to grow towards high scientific
interest areas. However, similar to RRT, RAST is not asymptotically optimal.

Algorithm 9 RAST

Input: Utility map A, ocean currents data Vc, velocity of UMV V, initial position of UMV qinit,
obstacles O, pre-specified mission time T , tournament parameter M, step size δ, predefined
maximum ratio value Pr.

1: Vertex←{qinit}; Edge←∅; Vinvalid←∅; Graph = (Vertex, Edge);
2: while P < Pr do
3: qts←RandomSample(A, M);
4: qmaximum←HeuristicNode(qts,Vertex);
5: qnew←Steer(qmaximum, qts, δ);
6: if CollisionFree(qmax, qnew) then
7: Vertex ← Vertex ∪ {qnew};
8: Edge← Edge ∪ {(qmax, qnew)};
9: qnew.Parent← qmax;

10: qnew.T ← Time(qnew, Vertex, Edge);
11: qnew.IG ← FitnessFun(qnew, Vertex, Edge);
12: if qnew.T > T then
13: Vinvalid ← Vinvalid ∪ {qnew};
14: end if
15: end if
16: P = Ratio(Vinvalid, Vertex);
17: end while
18: return Graph = (Vertex, Edge);
Output: The best fitness value and its correlated paths as the optimal solutions.

3.4. PSO

PSO is a population-based stochastic optimization algorithm discovered through simulation of
the social behavior of a bird flock [33]. PSO is possessed with the advantages of easy implementation
and sufficient solution diversity. Therefore, PSO is compared with the three aforementioned methods.
The overview of the PSO path planner can be found in [34,35], and the pseudo code of PSO is shown
in Algorithm 10.

3.5. Computational Complexity

The time complexity for RRT is discussed in detail in [26] and given as O(n log n), where n denotes
the total number of iterations. Time complexity is defined as the amount of time that is required by the
algorithm to find the solution. RAST*, RRST*, and RAST are inspired by RRT, the additional steps of
intelligent sampling procedure that have been introduced in these three algorithms have complexities
that are insignificant enough to have an effect on the complexity of the algorithm. Hence, these three
algorithms have almost the same time complexity as that of RRT, but the value of n can be significantly
reduced in terms of RAST*. RAST* is able to generate better solutions because the newly generated
nodes are concentrated towards high scientific interest regions.
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Algorithm 10 PSO

Input: Utility mapA, ocean currents data Vc, velocity of UMV V, initial position of UMV P1, obstacles
O, pre-specified mission time T , parameter c1, c2, w and wdamp, population size K, maximum
number of iterations Iter and number of control points n.

1: Initialize the position and velocity of each particle.
2: for i = 1 to Iter do
3: for k = 1 to K do
4: vk(i + 1) = w · vk(i) + c1 · Rand1 · (ppbest(i)− p(i)) + c2 · Rand2 · (pgbest(i)− pk(i))
5: pk(i + 1) = pk(i) + vk(i + 1)
6: IGk(i + 1) = FitnessFun(pk(i + 1))
7: if IGk(i + 1) < IGpbest(i) then
8: ppbest(i + 1) = pk(i + 1)
9: else

10: ppbest(i + 1) = ppbest(i)
11: end if
12: if IGpbest(i + 1) < IGgbest then
13: pgbest(i + 1) = ppbest(i + 1)
14: else
15: pgbest(i + 1) = pgbest(i)
16: end if
17: end for
18: w = w · wdamp
19: end for
Output: The best fitness value and its correlated paths as the optimal solutions.

4. Numerical Experiments

To evaluate the performance of the proposed RAST* for solving the path planning problem for
adaptive sampling, all numerical experiments are carried out in Matlab R2018a under Windows 10 on
a computer with Intel(R) Core(TM) i7-6700HQ CPU @ 3.40GHz / 16.0 GB RAM. The proposed RAST*
is compared with RRST*, RAST, and standard PSO. The parameters of PSO are set as c1 = 1, c2 = 1,
w = 1, and wdamp = 0.98, population size K = 500, maximum number of iterations Iter = 100 and
number of control points n = 5. The sensor range dmin is set as 1 km. In particular, the influence of
parameters (step size δ, maximum ratio value Pr) of RAST* is analyzed before performing scenarios.

The utility map is generated based on sea temperature data from NOAA in the Gulf of Mexico in
this research. The website of NOAA provides netCDF files for users to do research. Matlab can decode
the netCDF files and draw a figure based on a two dimensional array. Figure 1 shows the geographical
map for the Gulf of Mexico, and two areas are selected for scenario 1 and 2.
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Figure 1. The geographical map for Gulf of Mexico. Two areas are selected for scenario 1 and 2.

4.1. Preliminary: Parameter Analysis

RAST* has two parameters to adjust that are step size δ and maximum ratio value Pr, since the
best values of these two parameters differ on different problems. To find proper values, statistical
parameter analyses are performed over a scientific interest area of 100 km × 70 km for adaptive
sampling in a variable ocean environment without obstacles. Computation time and information
gathering are applied to evaluate the performance. Results are presented in Figure 2.

(a) (b)

Figure 2. Comparison of parameter analysis for RAST*. (a) Step size, (b) maximum ratio value.

Step size sets the distance between the current node and newly generated node. As can be
observed from Figure 2a, the larger the step size is, the lower the computation time is, but the less the
information gathering is. A step size of 1 km is too computation time consuming when compared to
the other three step sizes, although it returns the maximum information gathering. A step size of 7 km
is the other way around. A step size of 3 and 5 km have almost the same information gathering, but a
step size of 3 km has a higher computation time. Therefore, δ = 5 is the proper value for the step size
in this research.

The maximum ratio value determines the termination condition. It can be noted from Figure 2b
that the larger the ratio value is, the higher the computation time is and the more the information
gathering is. Since Pr = 30% and Pr = 50% have almost the same information gathering and Pr = 30%
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is with less computation time, Pr = 30% is the proper value for the maximum ratio value in this
research.

4.2. Scenario 1: Adaptive Sampling in Variable Ocean Environment without Obstacles

This scenario discusses the performance of RAST*, RRST*, RAST, and PSO over a scientific interest
area without obstacles in the Gulf of Mexico on 24 December 2017. The utility map is the normalized
sea temperature data of 100× 70 grids and each grid represents an area of 1 km × 1 km.

Figure 3 displays the results of the optimized paths produced by the four path planners. A UMV,
with a constant speed of 2 m/s, starts from (20, 5) and follows the planned path to collect information
within pre-specified mission time of 50 h. The utility map denotes the probability value of scientific
interest (blue = low scientific interest, yellow = high scientific interest), from which we can observe that
the proposed RAST* produces the optimal path that explores and covers high scientific interest areas.

Figure 3. Illustration of optimized paths produced by RAST*, RRST*, RAST, and PSO over a scientific
interest area without obstacles. (Scenario 1) The utility map denotes the probability value of scientific
interest (blue = low scientific interest, yellow = high scientific interest). White arrows represent variable
ocean currents.

Moreover, a 50-run Monte Carlo simulation, which refers to that the numerical simulation is run
repeatedly 50 times to check the performance (standard deviation) of each algorithm, is conducted,
and results are shown in Table 1. It can be noted that RAST* and RRST* return a similar mean fitness
value and standard deviation, but RAST* is computationally faster than RRST*. It is clearly discussed
in Section 3.5 that RAST*, RRST*, and RAST have the same time complexity as that of RRT, that is
O(n log n), where n denotes the total number of iterations. It means that RAST* can find the optimal
solution with less iterations. The main reason for this is that RRST* searches the configuration space
with randomness, while RAST* focuses more on high scientific interest areas. This demonstrates
the advantage of applying the tournament selection method in the sample phase. RAST, without
checking a more "informative” branch, performs poorly in all respects, which reveals that RAST needs
significantly more number of iterations to find the optimized solution than that of RAST*. PSO is
suboptimal compared to RAST*.
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Table 1. Performance comparison of rapidly-exploring adaptive sampling tree star (RAST*), rapidly-
exploring random sampling tree star (RRST*), rapidly-exploring adaptive sampling tree (RAST), and
particle swarm optimization (PSO) for Scenario 1.

Algorithms Maximum IG Mean IG Std Mean Computation Time (s)

RAST* 244.3 222.0 9.67 35.7
RRST* 247.2 227.5 9.65 115.6
RAST 213.6 192.3 9.65 3463.7
PSO 239.9 212.2 14.01 60.9

We can conclude that the proposed RAST* is superior to RRST* in terms of computation time,
and RAST* is more efficient and effective than RAST and PSO, when performing adaptive sampling in
a variable ocean environment without obstacles.

4.3. Scenario 2: Adaptive Sampling in Variable Ocean Environment with Obstacles

In this scenario, we examine the performance of RAST*, RRST*, RAST, and PSO over a scientific
interest area with obstacles in the Gulf of Mexico on 24 December 2017. The utility map is the
normalized sea temperature data of 100× 70 grids, and each grid represents an area of 1 km × 1 km.

Figure 4 shows a comparison of the optimized paths produced by the four path planners in an
obstacle environment. A UMV, with a constant speed of 2 m/s, starts from (95, 5) and follows the
planned path to collect information within a pre-specified mission time of 50 h. As can be noticed, the
way passing through obstacles differs on different algorithms. The path of RAST goes downstream
and makes good use of ocean currents so as to save traveling time, but the chosen road is with low
scientific interest. The path of RRST* makes a detour around obstacles and wastes traveling time on
where scientific interest is not high. RAST* and PSO choose the road that will encounter a short period
of counter current but leads to high scientific interest areas quickly. Consequently, RAST* and PSO
result in gaining more information than RRST* and RAST, as shown in "Maximum IG” in Table 2.

Figure 4. Illustration of optimized paths produced by RAST*, RRST*, RAST, and PSO over a scientific
interest area with obstacles. (Scenario 2) The utility map denotes the probability value of scientific
interest (blue = low scientific interest, yellow = high scientific interest, darkest blue = obstacles). White
arrows represent ocean currents.
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Table 2. Performance comparison of RAST*, RRST*, RAST, and PSO for Scenario 2.

Algorithms Maximum IG Mean IG Std Mean Computation Time (s)

RAST* 237.8 220.1 9.83 103.1
RRST* 229.7 220.1 5.45 609.9
RAST 213.3 191.0 8.89 2161.7
PSO 236.6 198.2 12.85 149.4

From Table 2, it can be concluded that neither PSO nor RAST can be selected for practical
application because the standard deviation of PSO is too large and RAST is computation time
consuming. RRST* lacks competitiveness due to low computational efficiency when compared
to RAST*.

Among the four path planners, RAST* outperforms RRST*, RAST, and PSO, when performing
adaptive sampling in variable ocean environment with obstacles.

4.4. Robustness Assessment

To further verify the performance of each algorithm, three different tests with different grid maps
are presented to assess the robustness and performance of these algorithms. The first test involves
ten randomly selected grid maps of 50× 35 grids, and each grid represents an area of 3 km × 3 km.
The second test involves ten randomly selected grid maps of 100× 70 grids and each grid represents
an area of 1 km× 1 km. The third test involves ten randomly selected grid maps of 200× 140 grids and
each grid represents an area of 0.5 km × 0.5 km. The above three tests were performed with randomly
selected areas from NOAA in the Gulf of Mexico on 24 December 2017. The input parameter of each
algorithm is the same as those in Section 4.1. The information gathering of each algorithm about the
three tests are shown in Tables 3–5.

As can be seen from the results in these tables, it is worth noting that in such scenarios, the RAST*
still has a significantly higher chance of collecting more ocean data than the other three algorithms
within pre-specified mission time. This indicates that the ability of information gathering of RAST*
outperforms the RRST*, RAST, and PSO. In summary, these three tests demonstrate the robustness and
performance of the proposed RAST*.

Table 3. Information gathering of RAST*, RRST*, RAST, and PSO over ten randomly selected scientific
interest areas with 50× 35 grids. The maximum information gathering for each scenario has been
highlighted in bold.

Scenario RAST* RRST* RAST PSO

1 85.5 83.7 74.0 83.4
2 89.7 85.1 83.5 86.9
3 76.3 71.8 70.8 71.1
4 96.6 97.0 92.5 96.4
5 78.6 75.0 74.8 73.6
6 81.2 80.5 75.6 76.5
7 85.0 83.6 81.9 81.6
8 88.1 85.5 83.2 86.3
9 83.3 81.2 78.5 80.9
10 91.5 90.3 86.2 89.2
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Table 4. Information gathering of RAST*, RRST*, RAST, and PSO over ten randomly selected scientific
interest areas with 100× 70 grids. The maximum information gathering for each scenario has been
highlighted in bold.

Scenario RAST* RRST* RAST PSO

1 153.7 152.1 152.8 155.4
2 224.2 203.9 182.3 219.6
3 214.6 212.5 208.5 198.7
4 200.3 178.8 179.7 197.3
5 218.8 205.9 199.8 214.7
6 214.2 175.8 148.2 200.1
7 165.5 160.7 158.4 169.5
8 187.3 189.8 165.6 185.9
9 225.6 158.9 161.5 219.7
10 186.4 185.6 181.8 172.9

Table 5. Information gathering of RAST*, RRST*, RAST, and PSO over ten randomly selected scientific
interest areas with 200× 140 grids. The maximum information gathering for each scenario has been
highlighted in bold.

Scenario RAST* RRST* RAST PSO

1 409.5 372.4 405.6 407.8
2 488.6 456.0 458.4 454.4
3 476.7 432.6 426.6 465.4
4 409.4 365.9 335.8 387.6
5 415.2 402.3 389.6 359.1
6 389.1 380.4 365.0 390.5
7 495.8 455.9 468.9 489.2
8 438.0 408.9 398.6 388.4
9 491.6 495.4 466.1 480.3
10 377.9 355.1 341.2 358.6

5. Field Experiments

To assess the superiority and effectiveness of the four path planners, field experiments were
performed in Lake Zhiyuan, Shanghai, China. An autonomous surface vehicle (ASV), with easy
deployment and real time data transmission, is employed to maximize water sample acquisition
over a virtual scientific interest area with a pre-specified mission time. The ASV, shown in Figure 5a,
is actuated by one thruster and one rudder at the back, and equipped with a lithium-ion rechargeable
battery, an inertial measurement unit (IMU) and real-time kinematic GPS for localization, a pixhawk
and wireless data transmission module for remote control, and some measurement devices, such as
temperature sensor and depth sensor.

It is assumed that the lake is calm with very little movement of water and the currents of the
lake are ignored. The ASV is tasked to travel with the speed of 1.2 m/s and finish the sampling
mission in 60 s. The utility map for field experiments is a combination of real obstacles in the Zhiyuan
Lake and the NOAA temperature data in a randomly selected region. Numerical experiments are
performed to generate the off-line optimal path for field experiments, shown in Figure 5b. During
field experiments, the ASV follows discrete waypoints of an optimized trajectory generated by the
four path planners. The performance characteristics of ASV are recorded and transmitted back to the
ground station through a data transmission module in real time and the Mission Planner software can
output the executed trajectory of the ASV, as shown in Figure 5c,d,e,f.

Table 6 records information gathering of ASV along executed paths based on the four path
planners in the virtual utility map with the same constant speed of ASV and the same mission time.
It can be noted that the ASV, following the optimized path generated by the RAST* path planner,
can gather more information than the other three path planners.
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Experimental results further demonstrate the superiority and robustness of the proposed RAST*.

(a) (b)

(c) (d)

(e) (f)

Figure 5. (a) Filed experiments of an ASV developed by Shanghai Jiao Tong University. (b) Numerical
results of off-line paths produced by the four path planners. The background is the simulated utility
map of Lake Zhiyuan. (c) Interface of the recorded executed path produced by the proposed RAST*
path planner in Mission Planner. (d–f) Interface of the recorded executed path produced by RRST*,
RAST, and PSO path planners in Mission Planner.
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Table 6. Information gathering of the autonomous surface vehicle (ASV) in field experiments.

Algorithms IG

RAST* 29.03
RRST* 28.68
RAST 23.75
PSO 25.88

6. Conclusions

In this research, we presented a novel variant of the sample-based path planning method
for adaptive sampling. The proposed RAST* method integrates a tournament selection method,
informative heuristic function, and tree structure of RRT* into a unified path planner. This arrangement
enhances exploration and coverage in high scientific interest areas while saving computation time.
We validate the proposed RAST* path planner through numerical experiments with a variable ocean
environment. The numerical results show that RAST* generates a collision-free and near optimal path
of the UMV with more information gathering and less computation time while satisfying constraints
on pre-specified mission time, when compared to RRST*, RAST, and PSO. Furthermore, results of field
experiments demonstrate the superiority and effectiveness of the proposed RAST* path planner.

In the future, we plan to consider more complicated scenarios, such as avoiding dynamic
obstacles [36,37], real-time path re-planning [38–40] and cooperation of multiple vehicles [41,42].
Another extension of this work is to develop adaptive stepsize [43] in the RAST* algorithm for further
saving computation time.
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3. Hernández, J.; Istenič, K.; Gracias, N.; Palomeras, N.; Campos, R.; Vidal, E.; García, R.; Carreras, M.
Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments. Sensors
2016, 16, 1174. [CrossRef] [PubMed]

4. Khan, J.; Cho, H.S. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks:
A Multihop Approach. Sensors 2016, 16, 1626. [CrossRef] [PubMed]

5. Rudnick, D.L. Ocean Research Enabled by Underwater Gliders. Annu. Rev. Mar. Sci. 2016, 8, 519–541.
[CrossRef] [PubMed]

6. Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges.
Annu. Rev. Control 2015, 41, 71–93. [CrossRef]

7. Chu, Z.; Xiang, X.; Zhu, D.; Luo, C.; Xie, D. Adaptive Fuzzy Sliding Mode Diving Control for Autonomous
Underwater Vehicle with Input Constraint. Int. J. Fuzzy Syst. 2018, 20, 1460–1469. [CrossRef]

8. Zeng, Z.; Lian, L.; Sammut, K.; He, F.; Tang, Y.; Lammas, A. A survey on path planning for persistent
autonomy of autonomous underwater vehicles. Ocean Eng. 2015, 110, 303–313. [CrossRef]

9. Ryan, N.; Ellen, C.; Beth, A.; David, A.; Burton, H.; Gaurav, S. USC CINAPS Builds bridges: observing and
monitoring the southern california. IEEE Robot. Autom. Mag. 2010, 17, 20–30. [CrossRef]

http://dx.doi.org/10.3390/s16010028
http://www.ncbi.nlm.nih.gov/pubmed/26712763
http://dx.doi.org/10.1002/rob.21722
http://dx.doi.org/10.3390/s16081174
http://www.ncbi.nlm.nih.gov/pubmed/27472337
http://dx.doi.org/10.3390/s16101626
http://www.ncbi.nlm.nih.gov/pubmed/27706042
http://dx.doi.org/10.1146/annurev-marine-122414-033913
http://www.ncbi.nlm.nih.gov/pubmed/26291384
http://dx.doi.org/10.1016/j.arcontrol.2016.04.018
http://dx.doi.org/10.1007/s40815-017-0390-2
http://dx.doi.org/10.1016/j.oceaneng.2015.10.007
http://dx.doi.org/10.1109/MRA.2010.935795


Sensors 2020, 20, 2515 17 of 18

10. Yu, C.; Xiang, X.; Wilson, P.A.; Zhang, Q. Guidance-Error-Based Robust Fuzzy Adaptive Control for Bottom
Following of a Flight-Style AUV with Saturated Actuator Dynamics. IEEE Trans. Cybern. 2020, 50, 1887–1899.
[CrossRef]

11. Yazdani, A.M.; Sammut, K.; Yakimenko, O.; Lammas, A. A survey of underwater docking guidance systems.
Robot. Auton. Syst. 2020, 124, 103382. [CrossRef]

12. Lu, D.; Xiong, C.; Zeng, Z.; Lian, L. Adaptive Dynamic Surface Control for a Hybrid Aerial Underwater
Vehicle With Parametric Dynamics and Uncertainties. IEEE J. Ocean. Eng. 2019, 1–19. [CrossRef]

13. Zhang, Q.; Zhang, J.; Chemori, A.; Xiang, X. Virtual Submerged Floating Operational System for Robotic
Manipulation. Complexity 2018, 2018. [CrossRef]

14. Yu, C.; Xiang, X.; Lapierre, L.; Zhang, Q. Robust Magnetic Tracking of Subsea Cable by AUV in the Presence
of Sensor Noise and Ocean Currents. IEEE J. Ocean. Eng. 2018, 43, 311–322. [CrossRef]

15. Mahmoud Zadeh, S.; Powers, D.M.W.; Sammut, K.; Yazdani, A.M. A novel versatile architecture for
autonomous underwater vehicle’s motion planning and task assignment. Soft Comput. 2018, 22, 1687–1710.
[CrossRef]

16. McMahon, J.; Plaku, E. Autonomous Data Collection with Limited Time for Underwater Vehicles. IEEE Robot.
Autom. Lett. 2017, 2, 112–119. [CrossRef]

17. Ryan, N.; Monitoring, O.; Blackwell, W.; Wiley, J.; Link, C.; Smith, R.N.; Smith, S.L. Persistent ocean
monitoring with underwater gliders: Adapting sampling resolution. J. Field Robot. 2014, 28, 714–741.
[CrossRef]

18. Yilmaz, N.; Evangelinos, C.; Lermusiaux, P.; Patrikalakis, N. Path Planning of Autonomous Underwater
Vehicles for Adaptive Sampling Using Mixed Integer Linear Programming. IEEE J. Ocean. Eng. 2008,
33, 522–537. [CrossRef]

19. Binney, J.; Sukhatme, G.S. Branch and bound for informative path planning. In Proceedings of the 2012 IEEE
International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2147–2154.
[CrossRef]

20. Hollinger, G.A.; Sukhatme, G.S. Sampling-based robotic information gathering algorithms. Int. J. Robot. Res.
2014, 33, 1271–1287. [CrossRef]

21. Ma, K.C.; Liu, L.; Heidarsson, H.K.; Sukhatme, G.S. Data-Driven Learning and Planning for Environmental
Sampling. J. Field Robot. 2017. [CrossRef]

22. Ma, K.C.; Liu, L.; Sukhatme, G.S. An information-driven and disturbance-aware planning method for
long-term ocean monitoring. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2102–2108. [CrossRef]

23. Zhou, H.; Zeng, Z.; Lian, L. Adaptive Re-planning of AUVs for Environmental Sampling Missions: A Fuzzy
Decision Support System Based on Multi-objective Particle Swarm Optimization. Int. J. Fuzzy Syst. 2017.
[CrossRef]

24. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Available online: http:
//msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf (accessed on 25 April 2020).

25. Kavraki, L.E.; Švestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

26. Karaman, S.; Frazzoli, E. Sampling-based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 2010,
30, 20. [CrossRef]

27. Viseras, A.; Shutin, D.; Merino, L. Robotic Active Information Gathering for Spatial Field Reconstruction
with Rapidly-Exploring Random Trees and Online Learning of Gaussian Processes. Sensors 2019, 19, 1016.
[CrossRef]

28. Carreras, M.; Hernandez, J.D.; Vidal, E.; Palomeras, N.; Ribas, D.; Ridao, P. Sparus II AUV—A Hovering
Vehicle for Seabed Inspection. IEEE J. Ocean. Eng. 2018, 43, 344–355. [CrossRef]

29. Wei, K.; Ren, B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle
Avoidance Based on an Improved RRT Algorithm. Sensors 2018, 18, 571. [CrossRef]

30. Cho, K.; Suh, J.; Tomlin, C.J.; Oh, S. Cost-Aware Path Planning under Co-Safe Temporal Logic Specifications.
IEEE Robot. Autom. Lett. 2017, 2, 2308–2315. [CrossRef]

31. Elbanhawi, M.; Simic, M. Sampling-Based Robot Motion Planning: A Review. IEEE Access 2014, 2, 56–77.
[CrossRef]

http://dx.doi.org/10.1109/TCYB.2018.2890582
http://dx.doi.org/10.1016/j.robot.2019.103382
http://dx.doi.org/10.1109/JOE.2019.2903742
http://dx.doi.org/10.1155/2018/9528313
http://dx.doi.org/10.1109/JOE.2017.2768105
http://dx.doi.org/10.1007/s00500-016-2433-2
http://dx.doi.org/10.1109/LRA.2016.2553175
http://dx.doi.org/10.1002/rob.20405
http://dx.doi.org/10.1109/JOE.2008.2002105
http://dx.doi.org/10.1109/ICRA.2012.6224902
http://dx.doi.org/10.1177/0278364914533443
http://dx.doi.org/10.1002/rob.21767
http://dx.doi.org/10.1109/IROS.2016.7759330
http://dx.doi.org/10.1007/s40815-017-0398-7
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.3390/s19051016
http://dx.doi.org/10.1109/JOE.2018.2792278
http://dx.doi.org/10.3390/s18020571
http://dx.doi.org/10.1109/LRA.2017.2727514
http://dx.doi.org/10.1109/ACCESS.2014.2302442


Sensors 2020, 20, 2515 18 of 18

32. Arzamendia, M.; Gregor, D.; Reina, D.G.; Toral, S.L. An evolutionary approach to constrained path planning
of an autonomous surface vehicle for maximizing the covered area of Ypacarai Lake. Soft Comput. 2017, 1–12.
[CrossRef]

33. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on
Neural Networks (ICNN’95), Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
[CrossRef]

34. Yan, Z.; Li, J.; Wu, Y.; Zhang, G. A Real-Time Path Planning Algorithm for AUV in Unknown Underwater
Environment Based on Combining PSO and Waypoint Guidance. Sensors 2018, 19, 20. [CrossRef]

35. Zeng, Z.; Sammut, K.; Lian, L.; He, F.; Lammas, A.; Tang, Y. A comparison of optimization techniques for
AUV path planning in environments with ocean currents. Robot. Auton. Syst. 2016, 82, 61–72. [CrossRef]

36. Zeng, Z.; Lammas, A.; Sammut, K.; He, F.; Tang, Y. Shell space decomposition based path planning for AUVs
operating in a variable environment. Ocean Eng. 2014, 91, 181–195. [CrossRef]

37. Chiang, H.T.L.; Tapia, L. COLREG-RRT: An RRT-Based COLREGS-Compliant Motion Planner for Surface
Vehicle Navigation. IEEE Robot. Autom. Lett. 2018, 3, 2024–2031. [CrossRef]

38. MahmoudZadeh, S.; Yazdani, A.; Sammut, K.; Powers, D. Online path planning for AUV rendezvous
in dynamic cluttered undersea environment using evolutionary algorithms. Appl. Soft Comput. 2018, 70,
929–945. [CrossRef]

39. Yazdani, A.M.; Sammut, K.; Yakimenko, O.A.; Lammas, A.; Tang, Y.; Mahmoud Zadeh, S. IDVD-based
trajectory generator for autonomous underwater docking operations. Robot. Auton. Syst. 2017, 92, 12–29.
[CrossRef]

40. Zeng, Z.; Sammut, K.; Lammas, A.; He, F.; Tang, Y. Efficient Path Re-planning for AUVs Operating in
Spatiotemporal Currents. J. Intell. Robot. Syst. Theory Appl. 2015, 79, 135–153. [CrossRef]

41. Xiong, C.; Chen, D.; Lu, D.; Zeng, Z.; Lian, L. Path planning of multiple autonomous marine vehicles for
adaptive sampling using Voronoi-based ant colony optimization. Robot. Auton. Syst. 2019, 115, 90–103.
[CrossRef]

42. Zeng, Z.; Sammut, K.; Lian, L.; Lammas, A.; He, F.; Tang, Y. Rendezvous Path Planning for Multiple
Autonomous Marine Vehicles. IEEE J. Ocean. Eng. 2018, 43, 640–664. [CrossRef]

43. An, B.; Kim, J.; Park, F.C. An Adaptive Stepsize RRT Planning Algorithm for Open-Chain Robots. IEEE Robot.
Autom. Lett. 2018, 3, 312–319. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-017-2895-x
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.3390/s19010020
http://dx.doi.org/10.1016/j.robot.2016.03.011
http://dx.doi.org/10.1016/j.oceaneng.2014.09.001
http://dx.doi.org/10.1109/LRA.2018.2801881
http://dx.doi.org/10.1016/j.asoc.2017.10.025
http://dx.doi.org/10.1016/j.robot.2017.02.001
http://dx.doi.org/10.1007/s10846-014-0104-z
http://dx.doi.org/10.1016/j.robot.2019.02.002
http://dx.doi.org/10.1109/JOE.2017.2723058
http://dx.doi.org/10.1109/LRA.2017.2745542
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Fitness Function Evaluation
	Traveling Time Calculation

	Methods
	RAST*
	RRST*
	RAST
	PSO
	Computational Complexity

	Numerical Experiments
	Preliminary: Parameter Analysis
	Scenario 1: Adaptive Sampling in Variable Ocean Environment without Obstacles
	Scenario 2: Adaptive Sampling in Variable Ocean Environment with Obstacles
	Robustness Assessment

	Field Experiments
	Conclusions
	References

