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Abstract: Nephrogenic diabetes insipidus (NDI), which can be congenital or acquired, results from
the failure of the kidney to respond to the anti-diuretic hormone (ADH). This will lead to excessive
water loss from the body in the form of urine. The kidney, therefore, has a crucial role in maintaining
water balance and it is vital to restore this function in an artificial kidney. Herein, an ultrasensitive and
highly selective aptameric graphene-based field-effect transistor (GFET) sensor for ADH detection
was developed by directly immobilizing ADH-specific aptamer on a surface-modified suspended
graphene channel. This direct immobilization of aptamer on the graphene surface is an attempt to
mimic the functionality of collecting tube V2 receptors in the ADH biosensor. This aptamer was then
used as a probe to capture ADH peptide at the sensing area which leads to changes in the concentration
of charge carriers in the graphene channel. The biosensor shows a significant increment in the relative
change of current ratio from 5.76 to 22.60 with the increase of ADH concentration ranging from
10 ag/mL to 1 pg/mL. The ADH biosensor thus exhibits a sensitivity of 50.00 µA·(g/mL)−1 with a limit
of detection as low as 3.55 ag/mL. In specificity analysis, the ADH biosensor demonstrated a higher
current value which is 338.64 µA for ADH-spiked in phosphate-buffered saline (PBS) and 557.89 µA
for ADH-spiked in human serum in comparison with other biomolecules tested. This experimental
evidence shows that the ADH biosensor is ultrasensitive and highly selective towards ADH in PBS
buffer and ADH-spiked in human serum.

Keywords: graphene FET; ADH-specific aptamer; anti-diuretic hormone; drain current;
artificial kidney

1. Introduction

Anti-diuretic hormone (ADH), also known as arginine-vasopressin or neurohypophysial hormone,
is an imperative peptide for maintaining the plasma osmolality in the human body [1]. Theoretically,
ADH is secreted by the hypothalamus and stored in the posterior pituitary gland, which will eventually
release it into the bloodstream as plasma osmolality increases. The ADH will bind with V2 receptors
that are located at the basolateral membrane of collecting tube cells which will promote the reabsorption
of water back into the circulation to maintain the water balance in the human body as illustrated in
Figure 1 [2]. However, the failure of the kidney to respond to ADH will lead to excessive water loss from
the body in the form of urine. This abnormal condition, which can be congenital or acquired, is termed
nephrogenic diabetes insipidus (NDI) [3]. The kidney, therefore, has a crucial role in maintaining water
balance and it is vital to restore this function in an artificial kidney.

Sensors 2020, 20, 2642; doi:10.3390/s20092642 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8916-4420
http://www.mdpi.com/1424-8220/20/9/2642?type=check_update&version=1
http://dx.doi.org/10.3390/s20092642
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 2642 2 of 16
Sensors 2020, 20, x 3 of 16 

 

 
Figure 1. Role of anti-diuretic hormone (ADH) in maintaining plasma osmolality of human body.  

2. Materials and Methods 

2.1. Field-Effect Transistor (FET) Fabrication and Graphene Transfer 

Field-effect transistor (FET) devices were fabricated by using the conventional photolithography 
process and metal lift-off technique as described previously [23]. Single layer graphene (SLG) on 
copper foil purchased from Graphene Supermarket was used as the conducting channel material for 
the fabricated devices. Raman spectroscopy was carried out to authenticate the number of layers of 
the purchased graphene. The directional transfer technique was employed to transfer graphene onto 
pre-fabricated electrodes to bridge both the source and drain electrodes. This technique comprises of 
six major steps which are described as follows: (1) coating of poly (methyl methacrylate) (PMMA) on 
graphene layer; (2) etching of copper in iron (Ⅲ) nitrate nanohydrate; (3) transferring PMMA-coated 
graphene onto substrate; (4) baking at 100 ℃ on a hotplate for 20 min; (5) removal of PMMA in an 
acetone bath for 30 min at 45 ℃; (6) rinsing with isopropyl alcohol (IPA) and blow-drying the device. 
Finally, Raman spectroscopy was carried out to determine the quality of graphene by analysing 
changes in the structural and electronics properties of graphene.  

2.2. Functionalization of Graphene Surface in Graphene-Based Field-Effect Transistor (GFET) 

Two microliters of 1 M of potassium hydroxide (KOH) with pH 9.0 acquired from Qrec (Asia) 
Sdn. Bhd. was pipetted onto the graphene layer at the channel area. A phosphate-buffered saline (PBS 
10 mM, pH 7.4; Sigma Aldrich (USA)) was used as the washing buffer. The device was characterized 
using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to inspect for 
the successful chemical activation of the graphene layer. The process then proceeded with the 
functionalization of the graphene layer that comprises of two main stages which are surface 
modification and immobilization of aptamers. 

The surface modification began with the introduction of 2% (3-aminopropyl) triethoxysilane 
(APTES) in 30% ethanol solvent to formulate an amine functionalized surface which was then left for 
2 hours at ambient condition. PBS buffer was used to rinse and wash the device three times to remove 
unbounded APTES residues from the surface. Subsequently, 2.5% glutaraldehyde (GA) was applied 
to the chemically modified graphene surface. This was left for an hour for the molecules to establish 
covalent bonding with the amine functionalized surface. The surface was then rinsed, washed and 
left till dry. After that, 1 µM of ADH specific-aptamer with the sequence of 5’ 
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From 1950 to the present, several approaches have been developed and implemented for detecting
ADH, namely bioassays, immunoassays, radioimmunoassays and enzyme-linked immunoassays
(ELISAs). The extensive time consumption, extravagant procedure cost and low specificity of
bioassays lead to the development of the immunoassay approach [4]. However, the implementation of
immunoassay and radioimmunoassay demonstrated disadvantages due to the low molecular weight
of the ADH hormone (1084.24 g/mol) and its poor immunogenic property [5]. The advent of the ELISA
technique in ADH detection solves complications arising from previous techniques as it is more stable
than a radiolabelled biomarker [6], does not use radioactive material [7] and uses less equipment to
carry out the procedure [8]. The ELISA technique also has been implemented in other renal diseases
such as quantification of plasma pentosidine [9] and detection of urinary podocalyxin in diabetic
nephropathy patients [10].

Currently, there are many ADH assay kits available on the market, mostly dominated by
ELISA-type kits such as the ADH/ vasopressin (VP)/ arginine-vasopressin (AVP) ELISA Kit from
Biomatik. The lowest threshold exhibited by these kits is 0.5 pg/mL [11]. Although this threshold
lies within the kidney’s ability to detect a normal ADH level, which is less than 1 pg·min−1

·kg−1 [12],
the limitations of the ELISA technique mean it is not suitable to be applied for the detection of ADH
in artificial kidney applications. This is because using the ELISA technique requires subtle sample
handling and preparation procedures in laboratory conditions. This is time-consuming and it is not
suitable for rapid diagnosis, particularly for ADH detection as ADH has a short half-life of 24 min [13].
Therefore, there is a high demand for an analytical tool that offers ultrasensitive detection of ADH
with a lower limit of detection (LOD) of less than 1 pg/mL, highly specific and offers a rapid diagnosis
with detection time less than the half-life of ADH peptide.

One of the most promising tools to resolve these issues is the biosensor. Among the variety
of electrical biosensing architectures reported [14,15], devices based on field-effect transistors have
attracted much attention. A typical planar field-effect transistor (FET) consists of three metallic
contacts which are the source (S), drain (D), and gate (G) electrodes, a thin insulating layer (dielectric)
and the semiconductor substrate, the latter being the active part where charge carriers flow [16].
A comprehensive literature review reveals that graphene-based biosensors demonstrate ultrahigh
sensitivity compared to one-dimensional1 carbon nanotubes (CNTs) [17]. The graphene’s high quality
two-dimensional (2D) structure screens charge fluctuations, are highly sensitive to surrounding
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charges, offer higher charge carrier mobilities and have a very low limit of detection (LOD) compared
to CNTs [18]. Therefore, incorporating a carbon nanomaterial, especially graphene, as the sensing
material in the conducting channel hastens the opportunities for ultrasensitive, low-cost, low-noise
and portable electrical biosensors for future device applications.

A graphene-based field-effect transistor (GFET) with suspended graphene (the suspended
graphene bridges the source and drain electrodes) holds more advantages than an embedded
architecture (graphene supported by silicon dioxide substrate). This is because charge carriers
in a suspended graphene FET offer high mobilities up to 106 cm2V−1s−1 in comparison with embedded
GFET [19,20]. In addition, the absence of a supporting material in suspended GFET leads to the
reduction of the signal-to-noise ratio (SNR) in the device and improves the transconductance (signal
sensitivity) of the transducing element [21]. However, in embedded GFET, charges are trapped at the
interface and the oxide layer acts as the external scattering centre [22]. This leads to a reduction in the
transport properties of graphene. Hence, a suspended GFET with high carrier mobility is a suitable
GFET architecture to be implemented for graphene-based biosensing applications.

In this work, a FET-based biosensor was developed to detect ADH in experimental setting.
A suspended graphene-based FET was fabricated for the ultrasensitive, selective and rapid detection
of ADH. Moreover, ADH-specific aptamers were immobilized on the graphene channel as an attempt
to mimic the functionality of the collecting tube V2 receptors in the ADH biosensor.

2. Materials and Methods

2.1. Field-Effect Transistor (FET) Fabrication and Graphene Transfer

Field-effect transistor (FET) devices were fabricated by using the conventional photolithography
process and metal lift-off technique as described previously [23]. Single layer graphene (SLG) on
copper foil purchased from Graphene Supermarket was used as the conducting channel material for
the fabricated devices. Raman spectroscopy was carried out to authenticate the number of layers of
the purchased graphene. The directional transfer technique was employed to transfer graphene onto
pre-fabricated electrodes to bridge both the source and drain electrodes. This technique comprises of
six major steps which are described as follows: (1) coating of poly (methyl methacrylate) (PMMA) on
graphene layer; (2) etching of copper in iron (III) nitrate nanohydrate; (3) transferring PMMA-coated
graphene onto substrate; (4) baking at 100 ◦C on a hotplate for 20 min; (5) removal of PMMA in an
acetone bath for 30 min at 45 ◦C; (6) rinsing with isopropyl alcohol (IPA) and blow-drying the device.
Finally, Raman spectroscopy was carried out to determine the quality of graphene by analysing changes
in the structural and electronics properties of graphene.

2.2. Functionalization of Graphene Surface in Graphene-Based Field-Effect Transistor (GFET)

Two microliters of 1 M of potassium hydroxide (KOH) with pH 9.0 acquired from Qrec (Asia)
Sdn. Bhd. was pipetted onto the graphene layer at the channel area. A phosphate-buffered saline
(PBS 10 mM, pH 7.4; Sigma Aldrich (St. Louis, MI, USA)) was used as the washing buffer. The device
was characterized using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy
to inspect for the successful chemical activation of the graphene layer. The process then proceeded
with the functionalization of the graphene layer that comprises of two main stages which are surface
modification and immobilization of aptamers.

The surface modification began with the introduction of 2% (3-aminopropyl) triethoxysilane
(APTES) in 30% ethanol solvent to formulate an amine functionalized surface which was then left
for 2 h at ambient condition. PBS buffer was used to rinse and wash the device three times to
remove unbounded APTES residues from the surface. Subsequently, 2.5% glutaraldehyde (GA)
was applied to the chemically modified graphene surface. This was left for an hour for the
molecules to establish covalent bonding with the amine functionalized surface. The surface was
then rinsed, washed and left till dry. After that, 1 µM of ADH specific-aptamer with the sequence
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of 5’ TCACGTGCATGATAGACGGCGAAGCCGTCGAGTTGCTGTGTGCCGATGCACGTGA-3’ [24]
(purchased from Apical Scientific Sdn. Bhd.) was introduced at the channel area. 5’ end of this DNA
aptamer is specially modified with an amine group to ensure the successful binding of aptamer on
the graphene layer. The sample was left untouched for 15 min to allow the bonding of aptamers to
the linkers, followed by the thorough washing of the surface with phosphate-buffered saline (PBS)
three times. Then, 1 M of ethanolamine was deployed to block free space for 10 min and rinsed three
times with the same buffer. The device was characterized using ATR-FTIR spectroscopy to inspect and
validate the presence of functional groups after the functionalization with APTES, GA, and aptamer.

2.3. Anti-Diuretic Hormone (ADH) Detection

To depict the interaction between ADH peptide and aptamers, the GFET device was functionalized
as mentioned in the previous section. ADH concentration ranging from 10 ag/mL to 1 pg/mL was
titrated at the channel area of the functionalized GFET device. For each concentration, an incubation
period of 10 min was allocated to allow the complete binding of aptamer and ADH protein. The surface
was then washed with PBS buffer three times before proceeding with the next concentration of ADH.
All the measurements were carried out by using Keithley 2400 Sourcemeter SMU Instruments.

2.4. Specificity Analysis

The surface-modified device was tested for the non-specific binding of blood-related biomolecules.
Bovine serum albumin (BSA), urease, glucose oxidase and human serum without ADH hormone
was independently applied at the channel area and electrical measurements were recorded using the
Keithley 2400 Sourcemeter SMU Instruments. Similarly, human serum with ADH was tested to check
for the specific functioning of the biosensor in human body conditions.

3. Results and Discussion

3.1. Surface and Morphological Characterization of GFET

The image of the fabricated device obtained from the optical microscope is illustrated in Figure 2a.
This image depicts the 2D image of a bare GFET with 10 µm of channel length. However, the reading
in Figure 2a shows 9.66 µm which is close to 10 µm. This shortage of 0.34 µm is due to error arising
from the manual positioning of the ruler. Regardless of this, the image confirmed the fabrication of a
complete unit of GFET with the desired channel length to be implemented in this work.

The chemical composition of elements that made up the fabricated GFET was inspected and
verified by performing the energy-dispersive X-ray analysis (EDX) on the GFET area comprising the
source, drain and transducing channel. Figure 2b shows the percentage of elements present in the
fabricated device with respective standard deviation presented clearly in the inset. The EDX spectrum
exposes the presence of four distinct elements in the GFET which are silicon (Si), oxygen (O), chromium
(Cr) and gold (Au). Silicon which is the substrate of GFET exhibits the highest proportion with 59.2%,
followed by the electrode materials gold (22.6%) and chromium (1.3%), and finally oxygen (16.8 %)
which represents the oxide layer. However, it is vital to take note that the presence of carbon that
makes up the channel area was not detected by EDX spectroscopy. This is because the 15 kV E.H.T
EDX spectroscopy was unable to quantify the presence of the very thin single layer of graphene,
approximately 0.335 nm [25]. Instead, the presence of graphene at the channel area was verified with
Raman spectroscopy which will be discussed in the subsequent section. The EDX spectrum in Figure 2b
only verified that the GFET device is composed of Si, O, Cr and Au elements.
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Figure 2. (a) Optical microscope image of graphene-based field-effect transistor (GFET) with 10 µm
channel length; (b) energy-dispersive X-ray analysis (EDX) spectrum for GFET device; (c) atomic force
microscopy (AFM) image for bare GFET and (d) AFM image of GFET after ADH detection.

The 3D image from the characterization of surface morphology by the atomic force microscope
(AFM) is illustrated in Figure 2c. Based on the image obtained, the GFET device has a clear surface
morphology. The uniform colour contrast at the channel area proved that the surface of graphene is
bare and clean. The thickness between the bare channel area and the electrode is 60 nm as indicated
by the scale. This also proved that the channel area is clean and bare. This verification of surface
morphological characterization is essential to ensure that the surface is free from contamination
before proceeding with the biosensing application. The characterization of the GFET surface after
being utilized for ADH detection (Figure 2d) shows a drastic difference in the surface morphology in
comparison with Figure 2c. The presence of a rough surface with an increase of thickness at the channel
area validates the occurrence of ADH binding with ADH-specific aptamers. This change of surface
morphology before and after ADH proves a successful detection of ADH at the channel area of GFET.

3.2. Raman Characterization for before and after Graphene Transfer

Raman spectroscopy was performed to analyze the structural and electronic properties of the
graphene before and after transferring onto the device (Figure 3). A 532 nm spot size of laser with
3.8 mW laser power was used to analyze the sample. Measurements were taken at three distinct points
on the sample and graph of the average from all readings is shown in Figure 3e. The main features of
Raman spectra which are G, D and 2D bands are located at 1350, 1580 and 2700 cm−1 respectively [26].
The ratio of the intensity of 2D to G (I2D/IG) used as a tool to indicate the number of layers in the
graphene sample being tested. The data extracted from Raman spectroscopy for before and after the
graphene transfer process are tabulated in Tables 1 and 2, respectively.
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Table 1. Raman spectroscopy data for graphene on copper.

Peak G (cm−1) Peak 2D (cm−1) I2D
IG

Point 1 1580.00 2670.00 1.92
Point 2 1580.00 2670.00 2.53
Point 3 1590.69 2674.49 2.22

Average 1582.98 2666.78 2.21

Table 2. Raman spectroscopy data for graphene on FET.

Peak D Peak G Peak 2D I2D
IG

ID
IG

Point 1 1332.28 1581.05 2670.63 2.84 0.19
Point 2 1336.13 1581.05 2674.49 2.22 0.46
Point 3 1338.06 1579.12 2670.63 2.70 0.38

Average 1338.06 1581.05 2668.70 2.58 0.34
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3.2.1. Raman Characterization for Graphene on Copper

Based on the data obtained and tabulated in Table 1, it is clear that the graphene on copper foil
(Figure 3a) is made up of a combination of single and double layers. The ratios of I2D/IG which are
1.92, 2.53 and 2.22 from the measurements indicate the presence of single and double-layer atomic
structure of graphene in the sample purchased. It is also worth noting that the Raman spectrum shows
the absence of a D-peak at 1350 cm−1 (Figure 3c). This provides a clear indication that the graphene is
high quality, nearly perfect and defect-free. Moreover, graphene on copper foils is an excellent choice
as the solubility of carbon atoms in copper is lesser compared to nickel [27]. Therefore, as indicated in
Raman’s spectrum, it is viable to obtain a defect-free graphene sample on copper foil compared to
graphene on nickel substrate. The frequency of the 2D peak also shows a significant shift towards
the left which is reduced by 33.22 cm−1 (from 2700.00 cm−1 to 2666.78 cm−1). This shifting of the peak
position in 2D band shows that the unit cell constant of graphene is enlarged or broadened as it has
been grown on other substrates, such as copper, which creates unintentional doping [28,29].

3.2.2. Raman Characterization for Graphene Transferred on Field-Effect Transistor (FET)

The image of the FET after graphene transfer is shown in Figure 3b. Raman measurements
were carried out at three distinct points at the channel area. The Raman spectrum obtained from
three readings and the average value obtained from all measurements were plotted in Figure 3d,e
respectively. Graphene after the transferring process reveals a distinct D-peak in its Raman spectrum.
This indicates the presence of a defect in the sample. A folding or crack in the graphene layer during
the transfer process leads to the presence of a defect peak. However, the ratio of the intensity of
D to G, ID/IG from 0.19 till 0.46 which have been reported in Table 2 indicates that the graphene
layer has undergone a minor defect and does not create major changes to the electronic properties
of graphene. The values of I2D/IG which are 2.84, 2.22 and 2.70 also indicate that the graphene is
single layer. The narrow and more intense shape of the 2D band also supports the presence of single
layer graphene [30]. However, there is a significant rise in the intensity of G and 2D bands after the
transfer of graphene. This clearly shows that the steps involved in the transferring process introduce
unintentional doping to the graphene layer.

It is also worth mentioning that there is a sharp peak at 2450 cm−1, usually known as G* peak.
The origin of this G* peak was firstly identified and reported by [31] in 2005. This similar trend of peak
has been reported in works carried out by [32–34]. This peak originates from the double resonance
Raman scattering process which was produced by the movement of two phonons around the k-point
in the phonon dispersion process. The G* peak is known as a weak peak as the intensity of this
peak is very small and can be eliminated by controlling the environmental factors such as turning off

lights (conducting it in a dark or off-light environment) during measurements. Therefore, the Raman
spectrum before and after graphene transfer revealed that the graphene used as the current conducting
channel material is a single layer graphene with some minor defects introduced during the transfer
technique (negligible as ID/IG is very small).

3.3. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Characterization for
Functionalization of Graphene

The ATR-FTIR transmission spectra of the graphene layer for four consecutive surface
functionalization processes that begins with chemical activation (Figure 4a), surface modification
with APTES (Figure 4b), GA (Figure 4c), and immobilization with ADH-specific aptamer (Figure 4d)
are illustrated in Figure 4. Each stage introduces functional groups onto the graphene layer and the
schematic illustration for the overall process is illustrated in Figure 4e.
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Figure 4. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra for surface
functionalization of graphene in GFET. (a) KOH activation; (b) surface modification with APTES;
(c) surface modification with glutaraldehyde (GA); (d) immobilization with ADH-specific aptamer and
(e) schematic illustration of all stages in surface functionalization of graphene.
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Four new peaks emerged after the graphene layer was activated with 1 M of KOH in comparison
with bare graphene (Figure 4a). A peak at 3221.29 cm−1 indicates a hydroxyl (OH) stretch occurred on
the surface of graphene [35]. Valance vibration of hydrogens bonded to the hydroxyl (-OH) group
indicated the presence and introduction of the oxygen-containing group onto the graphene layer.
Besides that, a peak at 1647.06 cm−1 exhibits the C=C stretch. This shows the effect of KOH treatment
on the double bond of the sp2 lattice structure of graphene. Activation with KOH induces a defect in
the structural arrangement of carbon lattice in graphene. A similar effect also was reported in work
carried out by [36]. The peaks at 1367.36 cm−1 and 883.36 cm−1 represents in–plane CH bending [37]
and out-of-plane CH bending vibrations, respectively [38]. Therefore, the ATR-FTIR characterization
verified that activating graphene with KOH introduces oxygen-containing functional groups and
causes a defect in its C=C lattice structure [39].

The KOH-activated graphene was then modified with APTES. From Figure 4b, it can be seen
that three new peaks appeared, a medium peak at 783.16 cm−1, a small peak at 1565.15 cm−1 and a
strong peak at 3347.09 cm−1. Peaks at 783.16 cm−1 and 1565.15 cm−1 indicate the N-H wag and N-H
bend respectively. The strong peak at 3347.09 cm−1 represents amine N-H stretch which indicated
the presence of amine in the functionalization step. The amine group binds with KOH-activated
graphene via the silanization process and forms a strong bond of Si-O-metal. Therefore, these three
peaks suggested the presence and successful binding of the free NH2 group on the KOH-modified
graphene surface.

Subsequently, 2 µL of GA was added on the transducing layer. GA is a homo-bifunctional
cross-linker with aldehyde groups on both ends with carbon chain spacer [40]. The aldehyde group
from one side binds with the NH2 group of APTES to form a secondary amide bond, while the
aldehyde group from the other side is readily available for attachment with the NH2 group from
the ADH-specific aptamer bioreceptor. Thus, based on the results in Figure 4c, a strong peak of
C=O stretch at 1738.78 cm−1 confirms the emergence of the aldehyde group (-CHO) group from
the functionalization step. The peaks in the range of 1600–1900 cm−1, which are 1640.39 cm−1 and
1738.78 cm−1, demonstrate the establishment of an amide bond in between APTES and GA. This result
of the ATR-FTIR shows strong agreement with a previous report [41]. Peaks associated with stretching
at 2850.5 cm−1 and 2941.56 cm−1 which are C-H aldehyde and C-H stretches are fairly ubiquitous,
and thus are omitted from determining the presence of a functional group.

In the last stage, ADH-specific aptamer which is the bioreceptor for the ADH biosensor was
immobilized on the surface-modified graphene. The measurement was taken only after 15 min to
ensure the complete immobilization of ADH-specific aptamer on the surface-modified graphene at the
channel area [42]. Based on the transmittance spectrum (Figure 4d), it can be seen that there are two
distinct peaks related to stretching, which are 1016.08 and 1130.98, from this stage of functionalization.
These peaks indicated the stretching of C-O and C-N bonds respectively. These bonds confirm the
successful establishment of amide bonding between GA and ADH-specific aptamer.

Thus, the successful surface modification and immobilization of ADH-specific aptamers on the
KOH-modified graphene surface were verified through ATR-FTIR characterization. The schematic
illustration of the stages involved in the surface functionalization of graphene is illustrated in Figure 4e.

3.4. Analytical Performance of GFET

The electrical characteristics of the GFET device were monitored and measured as each individual
surface functionalization step was carried out during the functionalization of the device (Figure 5a).
Figure 5b, on the other hand, shows the current-voltage (I–V) curve for the interaction between
immobilized ADH-specific aptamer and ADH spiked in PBS buffer. Following that, the sensitivity and
LOD of the GFET device are illustrated in Figure 5c,d respectively.
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3.4.1. I–V Curve for Surface Functionalization

3-point probe measurements were carried out and changes in drain current in the range of 6 to
8 V were observed (Figure 5a). At this range, graphene in the conducting channel behaves as an n-type
channel material in which the majority charge carriers are electrons. At 8 V, bare graphene without any
surface modification exhibits a drain current, ID of 1.20 mA. The addition of KOH onto the graphene
channel leads to a drastic increase of ID to 2.58 mA. This is due to the presence and binding of ionic
particles of KOH on graphene which leads to the increment of concentration of charge carriers in
the graphene channel. Thus, graphene activated with KOH increases the conductivity of graphene.
However, ID dropped from 2.58 mA to 508.85 µA after the addition of APTES on the transducing
channel. The addition of a homobifunctional linker which is GA on the APTES-modified surface
further reduces ID to 376.10 µA. Subsequently, the immobilization of ADH-specific aptamer on the
surface-modified graphene channel causes a decrement in ID to 295.66 µA.

The value of ID is only recorded in the 15th minute to ensure a complete immobilization of
ADH-specific aptamer established on the modified surface. Finally, the addition of ethanolamine on
the graphene channel leads to a reduction of ID to 94.81 µA. This value is only determined after 10 min
of interaction in which ID exhibits a stable value that represents ethanolamine successfully blocking
all free areas of the graphene layer.

This drastic decrement of ID from bare graphene to aptamer-immobilized surface is due to the
emergence of charge differences between each molecule when the surface functionalization process
was carried out. Activation with KOH improves the conductivity of graphene but the functionalization
with APTES, GA and immobilization with aptamer increases the resistance of the graphene channel.
Therefore, the binding of each molecule on the graphene surface alters the surface chemistry of graphene
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which leads to a significant impact on the drain-to-source current of the GFET device. The results
obtained here show good agreement with a previous work reported by [43].

3.4.2. I–V Curve for Various ADH Concentrations

The drain current, ID for the interaction between immobilized ADH-specific aptamer and various
ADH concentrations, between 10 ag/mL and 1 pg/mL, plotted as a function of gate voltage, VG with
minimum drain bias, VD = 500 mV is shown in Figure 5b. The graph shows an increasing trend of
ID as the concentration of ADH increases. ADH detection was begun by titrating the lowest ADH
concentration which is 10 ag/mL and followed by 100 ag/mL. The titration of these two concentrations
on the functionalized graphene surface exhibits ID of 116.26 µA and 167.91 µA at VG = 8 V respectively.
Subsequently, the addition of 1 fg/mL, 10 fg/mL and 100 fg/mL of ADH concentration further increases
the drain to 0.24045 mA, 0.27154 mA and 0.30842 mA, respectively. Each time before proceeding with
the subsequent concentration, the transducing channel area was rinsed and washed with PBS buffer to
ensure the binding is selective to the particular concentration of the target. Finally, titration with the
highest concentration, which is 1 pg/mL gives rise to the highest drain of 0.33864 mA.

The increase of drain current in conjunction with the increase of ADH concentration clearly
authenticates that the binding of positively charged ADH hormone with ADH-specific aptamer
increases the number of positively charged biomarkers at the surface of the transducing channel.
This, in turn, exerts an attractive force to attract negatively-charged charge carriers to accumulate in the
channel area. Thus, the concentration of electrons increases in the transducing channel area (the area
between the source and drain electrodes). This, in turn, increases the conductivity of graphene which
is proved by the increase of drain current in the biosensor. This increase in ADH concentration leads to
the increase of concentration of charge carriers in the transducing channel which causes a significant
increase in ID of GFET.

3.4.3. Sensitivity

The graph of Figure 5c portrays the drain current at 8 V versus the logarithmic concentration
of ADH spiked in PBS. The readings were taken three times to obtain an average value (n = 3) for
each concentration and error bars were plotted from the standard deviation of the values obtained.
From visual inspection and stronger correlation coefficient data, the attainment of a linear relationship
between ID and the increasing logarithmic ADH concentrations ranging from 10 ag/mL to 1 pg/mL is
pretty clear. The sensitivity of the ADH biosensor was determined from the slope of the calibration
curve plotted (Figure 5c). The linear regression of this curve is I = 5.00e−5 (log10 c + 0.0009) with a
correlation coefficient of 0.9613. Therefore, based on the slope of the calibration curve, the sensitivity
of this biosensor to detect ADH spiked in PBS buffer is 5.00 × 10−5 A·(g/mL)−1.

3.4.4. Limit of Detection (LOD)

The graph of the ratio of relative change in drain current versus logarithmic concentration of
ADH spiked in PBS buffer is illustrated in Figure 5d. The linear fit assumes a regression coefficient of
R2 = 0.9613 in the concentration ranging from 10 ag/mL to 1 pg/mL. This shows that 96.13 % of the
relative change in ID is influenced by the logarithmic concentration of ADH.

The limit of detection (LOD) was considered with the lowest concentration of an analyte (from the
calibration line at low concentrations) against the background signal (S/N = 3:1), in other words, LOD
= standard deviation of the baseline + 3σ. Based on 3σ calculation, the ADH biosensor exhibits a limit
of detection as low as 3.55 ag/mL. LOD in the range of 10−18 (attomolar) illustrates the effectiveness of
this biosensor for detecting ADH peptides in lower concentrations. This is due to the architecture of
suspended graphene in GFET that exhibits high mobility and is highly sensitive to the surface charges
which demonstrate the effectiveness of ADH detection in very low concentrations. The KOH-modified
graphene also improves the sensitivity of the graphene layer by increasing its specific surface area.
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Therefore, LOD as low as 3.55 ag/mL shows an improvement in the detection limit compared to
the research work that has been previously reported [44–46]. The biosensor’s ability to detect ADH
below 1 pg/mL restores the functionality of the kidney in the GFET sensor to detect ADH. Therefore,
this work demonstrated laboratory evidence of the GFET biosensor for ultrasensitive detection of ADH
which encourages further in vivo testing within the human body.

3.5. Specificity Analysis

3.5.1. Specificity Analysis for ADH Spiked in Phosphate-Buffered Saline (PBS) Buffer

The specificity analysis on the ADH biosensor was carried out by dropping different biomolecules
independently on the ADH-specific aptamer-immobilized transducing channel (Figure 6). The graph
shows the interaction of 1 pg/mL of ADH spiked in PBS buffer with ADH-specific aptamers reported
at ID of 338.64 µA. This drain current value was kept as a benchmark to understand the interaction of
ADH-specific aptamer with other biomolecules.
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Glucose oxidase (GOx) is an enzyme conventionally found in the human body, whereas urease
is also an enzyme that could not be synthesised by mammalian cells. However, it can be produced
by myriad bacteria found in the body, particularly in the intestine [47]. The interaction of GOx and
urease on the ADH-specific aptamer exhibits a drain current of 25.55 µA and 30.73 µA respectively.
The recorded little amount of drain indicated that the interaction was non-specific and strongly proved
that ADH biosensor is highly selective in binding with its specific target. Subsequently, 1 pg/mL BSA
was dropped on the transducing channel and the changes in the drain current were recorded. It can be
observed that drain current increased to 47.34 µA which was slightly higher compared to the drain
current obtained from the interaction of GOx and urease. However, this also indicated that the drain
current has a drastic gap difference with the drain current obtained from 1 pg/mL of ADH spiked in
PBS buffer. Therefore, this clearly indicates that the ADH biosensor is highly selective and specific
to ADH.
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3.5.2. Specificity Analysis for ADH-Spiked in Human Serum

Finally, human serum without ADH was pipetted on the functionalized transducing channel
and the drain current was recorded. Based on Figure 6, it can be seen that the drain current was
documented to be only 29.53 µA. This value has a drastic gap of drain current in comparison with the
drain current obtained from ADH spiked in PBS buffer. This proved that the absence of ADH in the
human plasma and the interaction was non-specific as there was no significant change in drain current
and carrier charge density at the transducing channel area. This is also evident by the fact that ADH is
only released by the hypothalamus and streamed into the blood as there is a need to conserve water
level in the human body. Therefore, blank human serum does not bring any significant change in the
conductance of the biosensor as the interaction is not specific.

When 1 pg/mL of ADH spiked with human serum was tested on the ADH-specific aptamer
immobilized transducing channel, the drain current reading was recorded after a wait of 10 min.
The drain current was then increased up to 557.89 µA when it indicated the successful binding of
ADH-specific aptamer with ADH-spiked in human serum. This strongly suggested and proved
that ADH biosensor is highly specific and selective. ADH spiked in PBS buffer and human serum
demonstrated a large change in current and recorded a higher current compared to other tested
biomolecules. This shows that specific interaction only takes place with ADH-spiked in PBS buffer and
ADH-spiked in human serum which increases the charge carrier density at the transducing channel
and eventually leads to a drastic change in current. Therefore, the ADH biosensor is highly selective
and specific in interacting with ADH molecules which is promising for future applications in an
artificial kidney.

4. Conclusions

In conclusion, the ADH biosensor has a sensitivity of 50.00 µA·(g/mL)−1 and a very low detection
limit (LOD) of 3.55 ag/mL. LOD in attomolar range showed an improvement in detection limit compared
to previously reported results. This increase in LOD was driven by the use of suspended graphene
layer as the channel material in a GFET device. It also demonstrated the ability of the biosensor to
detect ADHs below 1 pg/mL, thereby restoring the kidney’s capacity for future applications in an
artificial kidney. The immobilization of the ADH-specific aptamer on the graphene layer also restores
the V2 receptor function in the ADH biosensor. The specificity analysis also revealed that ADH-specific
aptamers are highly specific and selective to bind with ADH spiked in PBS and human serum compared
to other biomolecules. It can thus be concluded that an ultrasensitive, highly selective ADH sensor with
low detection limit for rapid ADH detection has been successfully developed. Laboratory evidence
from this work provides promising results which encourage future works related to in vivo testing of
ADH within the human body.
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