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Abstract: Within the framework of Internet of Things or when constrained in limited space, lensless
imaging technology provides effective imaging solutions with low cost and reduced size prototypes.
In this paper, we proposed a method combining deep learning with lensless coded mask imaging
technology. After replacing lenses with the coded mask and using the inverse matrix optimization
method to reconstruct the original scene images, we applied FCN-8s, U-Net, and our modified version
of U-Net, which is called Dense-U-Net, for post-processing of reconstructed images. The proposed
approach showed supreme performance compared to the classical method, where a deep convolutional
network leads to critical improvements of the quality of reconstruction.

Keywords: lensless; lens-free; computational imaging; deep learning; FCN (Fully Convolutional
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1. Introduction

As the manufacture of a lens strongly depends on the complex mechanical structure and polishing,
coupled with expensive infrared and ultraviolet lenses, the cost of traditional optical lens systems
is difficult to reduce. Given the rapid development of the Internet of Things and the increasing
importance of image and video data, imaging equipment is required to meet the demands in various
applications, such as wearable imaging devices, space-constrained scenes, ultra-thin smartphones,
and biological imaging, where thin, lightweight, low energy consumption and affordable cost would
be considered as the key qualities of imaging equipment. However, current mobile imaging modules
are still far from meeting these demands due to the restrictions of the lens.

One of the current solutions to deal with the mentioned problems is the adaptation of lensless
imaging technology. At present, lensless imaging technology attempts to replace the physical lens with
optical devices such as a spatial light modulator, diffraction optical element, coded mask to achieve the
function of light transmission and scene focusing. Compared with other devices, the coded mask is an
ideal solution to simplify manufacturing process, low cost, and easier integration with image sensors.
Therefore, replacing lenses with a coded mask in imaging equipment can achieve a thinner and more
compact structure.

There are many pieces of research on lensless computational imaging technology, and many of them
have achieved great results. Replacing lenses with a coded mask has been mentioned in many articles [1–5].
Deweert M.J. et al. presented a new class of coded apertures, called separable Doubly-Toeplitz masks,
which are efficiently decodable even for very large images [1]. Asif S. et al. did a similar job and made a
prototype of an ultra-thin lensless camera with detachable masks [2,3]. Zheng Y. et al. presented simulation
results on image and depth reconstruction for a variety of 3D test scenes. They adopted the method of
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encoding aperture imaging and alternating a gradient descent algorithm that jointly estimates a continuous
depth map and light distribution of the unknown scene from its lensless measurements [4]. Cielak M.J. et al.
reviewed the application of the coded aperture imaging system in X-ray and gamma-ray imaging for
radiation detection and highlighted potential improvements for coded-aperture based neutron source
localization [5].Some other researchers directly used deep learning technology to reconstruct the image
captured by a lensless or scattering imaging system [6–10]. Laura Waller et al. proposed an efficient
lensless reconstruction method by interweaving traditional models with deep learning methods [6]. Ayan
Sinha et al. and Yuan X et al. proved deep neural networks can be trained to solve inverse problems in
computational imaging [7,9]. Yang Y. et al. provided a new solution for lensless imaging through scattering
media using transfer learning in DNNs (Deep Neural Networks) [8]. Guohai Situ et al. proposed a hybrid
neural network for computational imaging through such thick scattering media [10]. Some researchers
have also applied compressed sensing to lensless imaging technology [11,12]. Gill P. et al. introduced the
working principle of a lensless smart sensor, and looked forward to its application prospect in the Internet
of Things scene [13]. Xiaopeng S. et al. developed a method to realize color imaging through scattering
media [14]. Ganghun K. et al. used only a sensor for imaging [15].

This technique aims to develop a prototype of ultra-thin computational imaging camera, which
replaces lenses with a coded mask, and puts the coded mask before the sensor directly. The coded
mask modulates and encodes light information from the scene, then uses algorithm decoding and
reconstructing images. This kind of imaging structure can significantly reduce the thickness and
volume of the imaging system and can be applied to the Internet of Things and space-constrained
scenes according to the requirement of thin, lightweight, low energy consumption, and low cost.

However, the image quality produced by lensless devices is still far below the standard achieved by
lens imaging systems. To improve the quality of the lensless image, the image generated by the inverse
matrix optimization method [16,17] is considered as a degraded image with the limited performance of
the inverse matrix optimization method to solve the ill-conditioned problem. Deep learning technology
has many effective applications reconstructing degraded images, so we can apply deep convolutional
networks to improve the quality of our reconstructed images.

The main purpose of this article is to combine deep learning methods with lensless imaging techniques
to generate a new algorithm that improves the image quality produced by lensless imaging systems.
After careful consideration, we applied FCN-8s [18], U-Net [19], and our modified version of U-Net,
which we refer to as Dense-U-Net, to train and post-process images that are generated by the lensless
imaging system. Dense-U-Net is an extension of U-Net, and it combines the characteristics of U-Net
and DenseNet [20]. Experiments illustrate that our method can greatly improve the image quality of
lensless imaging technology.

This paper contributes by:

(1) Images reconstructed by previous work are considered as images of degradation due to the limited
performance of the inverse matrix optimization method to solve the ill-conditioned problem, and using
the end-to-end deep convolutional neural network to train and post-process degraded images. Such
a process ultimately improves the visual effect of imaging and image quality evaluation parameters.

(2) A new network was proposed, called “Dense-U-Net”, by combining U-Net with a DenseNet network.
The network consisting of a denser connection of layers in the same level allows more contextual
information of pixel position to be disseminated and produces a final image with more details than
the image trained and post-processed by original FCN-8s and U-Net. This network further improves
the visual effect of reconstructed images.

This paper is organized as follow: In Section 2, we systematically outline our imaging theory,
including the optimization methods used to calibrate the system transfer matrix and the structure of
our proposed deep convolutional network. Then, in Section 3, we show the experimental results by
comparing the output images processed by our method with the images produced in the previous
work. In Section 4, we discuss the effects of different processing methods and networks, supported by
our analysis. Finally, we will summarize the research and demonstrate our prospect of future works.
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2. Imaging Theory

The first step in our lensless image reconstruction method is to reconstruct the measured image
through the inverse matrix optimization method, and regard the reconstructed images by the scheme
that is proposed in [16] as degraded images. Then, FCN-8s, U-Net or Dense-U-Net are used for
training and post-processing the degraded images. We embedded the two steps into a single program,
connected by process communication. Figure 1 shows the path of image reconstruction, which consists
of calibrating the system transfer matrix with the inverse matrix optimization method and post-process
with a deep neural network.

2.1. Using Separable Coded Mask to Produce Recognizable Images

The coded mask modulates and encodes light information from a scene, and then we can use
an algorithm to decode and reconstruct the measured images. We use Equation (1) to describe the
scene-to-sensor mapping, the n-to-n mapping between the scene and the reconstructed image causes
solving Φ to be an ill-conditioned problem:

y =Φx + E (1)

where Φ ∈ Rm×m×n×n is the system transfer matrix, x ∈ Rn×n is the scene image, y ∈ Rm×m is the image
measured by the sensor, and E represents the sensor noise and model loss. We use the separable coded
mask that is proposed in [16] to describe the scene-to-sensor mapping,

Y =ΦLX ΦT
R+E (2)

where X is the N × N matrix representing the scene, and the total pixels of the scene image is N ×
N; Y is the M × M matrix representing the sensor measurement, and the total pixels of the sensor
measurement image is M ×M; ΦL and ΦR are left and right system transfer matrices; E is the noise
item. After iteratively obtaining the left and right system transfer matrices of the above equation, we
can obtain the scene image X from the sensor measurement image Y.

We use Hadamard matrices to generate calibration images, which is composed of “−1” and “1”,
and “−1” can be replaced with “0”, and it is a 1 to 1 ratio between the two numbers. The pattern for
each calibration image is the product of a column of the Hadamard matrix and the transpose of a vector
full of “1”. As for the pattern of the coded mask, we use the 9-order m-sequence algorithm [21] to
construct the separable coded mask.

2.2. Using Deep Convolutional Network for Post-Processing Degraded Images

Since FCN was proposed in 2015, many researchers have introduced a fully convolutional
network structure into the field of feature extraction [22] and image reconstruction and achieved many
excellent results.

FCN changed the last several fully connected layers of the traditional CNNs (Convolutional Neural
Networks) to a convolutional layer and then used up-sampling operations to output a two-dimensional
matrix output (image), while CNNs’ output is one-dimensional information (label), FCN is a series of
end-to-end networks (image in, image out).

U-Net was also proposed in 2015. It is a derivative network of FCN. U-Net is also an end-to-end
network. The overall structure of the network is similar to the majuscule ‘U’, so it is called U-Net. It
consists of the following two parts:

The first part is the feature extraction operations. After each pooling layer operation, the layer
scale will be updated. There are a total of 5 scales including the original image’s scale.

The second part is the up-sampling operations. Each up-sampling step is fused in proportion to
the number of channels corresponding to the feature extraction part, but it should be clipped before
fusion. The fusion here is also a layer concatenation.
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sensor to calculate the left and right system transfer matrix iteratively, and then reconstruct the 
dataset images and the object images. Next, the dataset images were sent into the deep convolutional 
network for training, then the trained network was used to post-process the object image, then output 
the resulting image. 
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Figure 1. The overall process of image reconstruction and post-processing using a deep convolutional
network. As is shown in the figure above, firstly, we used the calibration images measured by the sensor to
calculate the left and right system transfer matrix iteratively, and then reconstruct the dataset images and
the object images. Next, the dataset images were sent into the deep convolutional network for training,
then the trained network was used to post-process the object image, then output the resulting image.

DenseNet was proposed in 2017. It connects each layer to each other in a feedback fashion. Whereas
traditional convolutional networks, which consist of L layers, have L connections between each layer
and the next layer, DenseNet has L(L + 1)/2 direct connections. For each layer, the feature graph of all
previous layers is used as input, and its own feature graph is used as input for all subsequent layers.
Inspired by the dense links in DenseNet enhancing information dissemination between feature layers, we
integrated the U-Net and DenseNet so that our network is both an end-to-end network and a network
retaining dense connections for better detail restoration. Therefore, our network is called Dense-U-Net.

We used 18,000 dataset images to train our neural networks, then post-process our object images.
These images are captured by a lensless device and reconstructed by previous work. The scene images are
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from the mini-ImageNet and SelfExSR dataset. The size of all input and output images is 512 × 512 pixels,
and all networks have been trained for 6 epochs. MSE (Mean Squared Error) is used as the loss function
for training:

Loss =
1

N ×N

∑
0≤i≤N

∑
0≤ j≤N

(
X̂i, j −Xi, j

)2
(3)

where N = 512 in our network, X̂ represents the output image after each epoch of training, and X represents
the scene image.

Figure 2 shows the architecture of FCN-8s, we firstly perform five down-sampling operations,
each down-sampling operation consists of two same convolution operations, which have a 3 × 3 kernel
size, and one pooling operation. The result is five pooling layers, and each pooling layer is 1/2 the size
of the previous pooling layer. Next, the 2× up-sampling feature is obtained by performing up-sampling
for the pool5 layer, and then the result is added with the pool4 layer point by point, then up-sampling
is performed and added with the pool3 layer point by point. Finally, we get the reconstructed image
by 8× up-sampling compared to the pool5 layer.Sensors 2020, 20, x FOR PEER REVIEW 6 of 13 
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Figure 2. The architecture of FCN-8s.

Figure 3 shows the architecture of U-Net. The left part of U-Net is a down-sampling process, which is
divided into four groups of convolution operations (blue arrow). In each group of down-sampling operation,
first performed is the same convolution with a 3 × 3 kernel size, followed by the BatchNormalization
operation, and ReLU activation. After each group of convolution operation, there is a max-pooling
layer operation (red arrows), the image size will be reduced to 1/2 of the previous step. The input
image of 512 × 512 × 1 size was calculated to be 32 × 32 × 1024 size through four groups of operations.
The right part shows the up-sampling process. This process included four steps of deconvolution
(green arrows). Each deconvolution step expands the image to twice the size of the image in the
previous step. Then, the feature image of the corresponding layer is copied and then concatenated to
the result of the deconvolution (black arrows).

Figure 4 shows the architecture of Dense-U-Net, the down-sampling and up-sampling processes
are the same as those of U-Net. Its improvements to U-Net are that there are some densely connected
(curved arrow) parts in the Den-U-Net. The resulting feature layer is generated by the same convolution
with a 3 × 3 kernel size and the BatchNormalization operation is concatenated with the feature layer
generated by the same convolution with a 3 × 3 kernel size. Then, the feature layer we get is used for
the next group of the sampling operation. These densely connected operations enable data of the same
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size feature layer to be more fully mined, which enables the network to retain more information about
the pixel position for the next round of sampling.Sensors 2020, 20, x FOR PEER REVIEW 7 of 13 
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Figure 4. The architecture of Dense-U-Net. Its improvements to U-Net are that there are some densely
connected parts in Den-U-Net. The resulting feature layer generated by the same convolution with a 3
× 3 kernel size and the BatchNormalization operation is concatenated with the feature layer generated
by the same convolution with a 3 × 3 kernel size.
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3. Experimental Results

Our experiment used the following equipments:
Image sensor: We removed the lenses from the original vc-25mc-m30 camera of Viework Company

and made a mobile platform to fix it. The processed optical mask was placed 2 mm in front of the
CMOS sensor of the camera. The sensor has 5120 × 5120 pixels. The size of the CMOS sensor array is
23.04 mm × 23.04 mm, and each pixel unit size was 4.5 µm × 4.5 µm, with grayscale mode.

Mask material: We used a custom chrome-plated quartz mask, which consists of a fused quartz plate
with one side covered with a pattern using a thin chrome film. The pattern of the mask is determined by
m-sequence algorithm. The transparent area of the mask transmits light, while the chrome area blocks
light. The size of the coded mask is 15.3 mm × 15.3 mm and the size of each aperture is 30 µm × 30 µm.

We trained the deep convolutional network using a machine with a GTX 1060 graphics card and
16 GB of memory. Under these conditions, 18,000 images were fed, and each epoch of training took
40 min for FCN-8s, 1 h and 40 min for U-Net, 2 h and 50 min for Dense-U-Net. All networks have been
trained for 6 epochs. In the process of image testing, all the trained networks need about 0.1~0.2 s for
post-processing an image. During the acquisition phase of calibration images and data sets, we use a
common LCD screen as a light source, the screen brightness was kept at approximately 150 nits and the
exposure time was 6 ms. After the network model is trained, passive imaging can be achieved. Figure 5
shows a flow chart of our experimental process.
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While our camera has 5120 × 5120 pixels, we firstly cropped and evenly subsampled the sensor
images to obtain 512 × 512 images captured by the sensor, then subtracted the mean of the rows and
columns from the images. We reconstructed 512 × 512 grayscale images from the 512 × 512 grayscale
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sensor measurements. The reconstructed results of the calibration images are used to calculate the left and
right system transfer matrix described in 2.1, which we use to reconstruct the object image X̂. Since recent
years, the deep learning method has many effective applications in the field of reconstructing degraded
images caused by various reasons, we regarded X̂ as a degraded image, and put it into deep convolutional
networks for post-processing. Figure 6 shows some sensor images and the reconstruction results of
previous work, FCN-8s, U-Net, and Dense-U-Net. Table 1 shows four image evaluation parameters, PSNR
(Peak Signal to Noise Ratio), SSIM (Structural Similarity Index), NQM (Noise Quality Measure), and FSIM
(Feature Similarity Index) of output images produced by different reconstruction processes and networks.
We can see that the image quality of output images post-processed by the deep convolutional network is
much better than the image quality of images reconstructed by previous work. The images processed
by U-Net performed better than FCN-8s in the image evaluation parameters related to the structure
and the noise performance, and worse than FCN-8s in the image evaluation parameters related to the
gray value. The overall performance of the image processed with Dense-U-Net is the most outstanding.
According to the comparison results, the reconstruction of lensless sensing images by our method can
achieve better results in evaluation parameters such as PSNR, SSIM, NQM, and FSIM, and the visual
effect of our reconstruction is closer to original scene images than the previous work.

Table 1. Imaging quality evaluation parameters of output images produced by several methods. The best
results are shown in bold.

PSNR SSIM

Previous work FCN-8s U-Net Dense-U-Net Previous work FCN-8s U-Net Dense-U-Net

Symbol 6.9629 16.8320 17.7754 18.7957 0.0128 0.7872 0.8312 0.8445
Lena 10.0581 19.2174 18.9286 19.8937 0.0129 0.5547 0.5971 0.6013

Pepper 9.8043 18.3765 17.4211 19.0304 0.0142 0.5586 0.5733 0.5805
Baby 809028 18.3188 17.4833 18.4121 0.0133 0.5801 0.5985 0.5973

NQM FSIM

Previous work FCN-8s U-Net Dense-U-Net Previous work FCN-8s U-Net Dense-U-Net

Symbol 3.5432 9.0763 10.2099 11.1406 0.1971 0.6955 0.7501 0.7634
Lena 3.6515 5.8475 6.6642 7.0634 0.4822 0.7279 0.7391 0.7423

Pepper 3.5218 6.2367 7.3112 7.9167 0.4828 0.7384 0.7568 0.7548
Baby 3.7463 7.670 7.7607 8.0797 0.4943 0.7531 0.7686 0.7595

4. Discussion

At present, there is still a long gap between the quality of lensless reconstructed images and the quality
of images acquired by lens imaging systems. We can only improve the quality of lensless images through
a lot of exploration. Obviously, compared with the previous work, the visual effect of our reconstructed
images is closer to the original scene, and the results of image evaluation parameters such as PSNR,
SSIM, NQM, and FSIM have been greatly improved. The results of our experiment further increase the
possibility of replacing the lens camera with a lensless coded mask camera. However, there is still an
important problem: The details of the final image are still obscure due to the non-optimal size of the
prototype template and the ill-conditioned problem of the system transfer matrix calculation. In order
to improve image quality and image resolution, physical imaging factors need to be further analyzed.
Another important reason is the inherent insensitivity to details of FCN networks. We can see clearly that
the processing of the feature layer by 8× up-sampling directly in the FCN-8s network is not as good as that
of U-Net or Dense-U-Net, which conducts 2× up-sampling three times. The reason why the latter two
networks can restore more details is their smoother up-sampling steps and skip concatenation steps. These
operations let the network make better use of the structural information contained in the previous feature
layer. What‘s more, denser concatenating steps allow more contextual information to be disseminated
by letting data of the same sized feature layer to be more fully mined and enable the network to retain
more information about the pixel position for the next group of sampling. We believe that these properties
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contribute to improving network performance. Comparing final reconstructed results in the second rows
to others in Figure 6, we can see that the method combined with the deep convolutional network can
greatly improve the quality of lensless imaging results. Comparing final reconstructed results in the third,
fourth, and fifth rows of Figure 6, we can see that images processed by the Dense-U-Net network have
smoother edges, more details, and higher image evaluation parameters. Of course, the details of images
processed by Dense-U-Net are still not precise enough. It suggests that no matter how many iterative
calculations, the down-sampling operations will damage images’ detail, and the up-sampling step cannot
restore all pixel’s position information, but the stepwise up-sampling operation can lose as little detail as
possible to preserve more pixel’s position information.Sensors 2020, 20, x FOR PEER REVIEW 11 of 13 
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Figure 6. The figure above shows images captured by the sensor, the output results of different methods,
and the original scene images. It can be seen that in terms of visual effect, the images processed by FCN-8s
network are rough and the details are not recovered accurately, while the grayscale value of the images
processed by U-Net network is not very accurate, and the image details and grayscale value processed by
Dense-U-Net are relatively accurate.



Sensors 2020, 20, 2661 10 of 11

5. Conclusions

In this paper, we used the deep convolutional networks to post-process images captured by
the lensless device and reconstructed by the inverse matrix optimization method, and successfully
proved the great potential and value of combining the deep learning with the traditional lensless
technology. In addition, we proposed Dense-U-Net by combining the end-to-end U-Net with the denser
link thought contained in DenseNet, which further improved the visual effect and image evaluation
parameters of the output image. However, there is still a long journey ahead regarding how to improve
the quality and resolution and provide more details in lensless images, which are crucial to put this
technology into practical use and adopt it in the large-scale Internet of Things and space-constrained
scenarios. In the future, we hope to improve the spatial resolution of lensless imaging technology so
that more details of the scene can be recovered. We believe the goal is achievable with an increased
overall numerical aperture of the mask, and more effective optimization reconstruction algorithms.
With the problems of integration being solved and lensless imaging resolution being improved, we can
expect a broad application in the field of biological imaging.
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