
sensors

Article

A Distributed Oracle Using Intel SGX for
Blockchain-Based IoT Applications

Sangyeon Woo, Jeho Song and Sungyong Park *

Department of Computer Science and Engineering, Sogang University, 35 Baekbeom-ro,
Mapo-gu, Seoul 04107, Korea; tkddus121@sogang.ac.kr (S.W.); oidwin@sogang.ac.kr (J.S.)
* Correspondence: parksy@sogang.ac.kr; Tel.: +82-02-705-8929

Received: 10 April 2020; Accepted: 6 May 2020; Published: 10 May 2020
����������
�������

Abstract: A blockchain oracle problem is a problem that defines a mechanism for how to safely bring
external data to the blockchain. Although there have been various research efforts to solve this
problem, existing solutions are limited in that they do not support either data availability or data
integrity. Furthermore, no solution has been proposed to minimize the response time when an oracle
server is malicious or overloaded. This paper proposes a distributed oracle using Intel Software Guard
Extensions (SGX). The proposed approach uses multiple oracle servers to support data availability.
It also supports data integrity using Intel SGX and Transport Layer Security (TLS) communication.
The reputation system, which favors oracle servers with short response times, minimizes the average
response time even if some of the oracle servers are malicious. The benchmarking results show that the
response time of the proposed approach with 3 oracle servers is only 14% slower than a centralized
oracle called Town-crier and scales well even if the number of oracle servers is increased up to 9.
The reputation system is also evaluated, and its feasibility is analyzed using various experiments.

Keywords: blockchain; blockchain oracle; ethereum; Internet of Things; smart contracts

1. Introduction

Blockchain is a peer-to-peer distributed ledger system where network participants own a ledger
and validate transactions through a consensus algorithm [1]. Although the blockchain was originally
developed as part of Bitcoin [1], it has recently been emerged as an innovative technology that
can support a variety of fields such as healthcare [2], Internet of Things (IoT) [3] or medical data
management [4]. With the introduction of smart contract in the blockchain, the application fields
of the blockchain have become more diverse. A smart contract is a collection of code and data that
is stored on a block, and its execution ensures consistency and integrity through consensus among
participants. Using smart contract, many blockchain-based IoT decentralized applications (Dapps)
such as Shipchain [5], Supplychain [6], Autoblock [7] have also been developed. Those Dapps usually
require external IoT data to be brought into the blockchain.

One of the most important challenges in the blockchain-based IoT Dapps is how to bring external
data into the blockchain, while guaranteeing the same level of security as the blockchain. This is called
the blockchain oracle problem [8]. Blockchain is a Turing-complete machine which has deterministic
output for internal data and input, but external data in the real world such as weather temperature
or stock price is non-deterministic. When external data is brought into the deterministic blockchain,
non-deterministic results can be created.

Furthermore, to develop secure and robust blockchain-based IoT Dapps, the blockchain oracle or
oracle, a middle-ware that allows external data to be imported into the blockchain, should support data
availability and data integrity. Data availability means that the requested external data must always
be accessible. In other words, an oracle must ensure that it can provide data against internal errors

Sensors 2020, 20, 2725; doi:10.3390/s20092725 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0309-1820
http://www.mdpi.com/1424-8220/20/9/2725?type=check_update&version=1
http://dx.doi.org/10.3390/s20092725
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 2725 2 of 16

or external malicious attacks. The blockchain oracle must also ensure data integrity. When an oracle
provides external data to the blockchain, the integrity of the data should be guaranteed so that Dapp
can execute flawlessly. In addition, in order to provide time-variant IoT data, an oracle must minimize
response time, which is an interval between the time when a blockchain requests data and the time it
receives data. Therefore, an oracle needs a method to minimize response time in order to prevent it
from heavily fluctuating due to the limitation of node performance or a malicious node. Malicious
oracle is a node that tampers data in the oracle or abuses data for its own benefit when importing
external data to the blockchain.

Various oracle protocols have been proposed to address these challenges such as Oraclize [9],
Town-crier [10], ASTRAEA [11]. Shintaku [12] , and Chainlink [13]. However, existing oracle protocols
are limited to develop secure and robust blockchain-based IoT Dapps in the sense that they are either
centralized [14,15] or insecure when fetching external data [16–18]. Moreover, providing time-variant
data that varies in value over time such as IoT data is almost impossible [19,20].

This paper proposes a distributed oracle, DiOr-SGX, which can safely import time-variant external
data into the blockchain using Intel Software Guard Extensions (SGX) [21]. DiOr-SGX solves the
problem of single point failure due to the centralization of a single oracle server by configuring
multiple distributed oracle servers. Each oracle server in DiOr-SGX verifies data pulling procedure in
which other oracle nodes pull data from external data sources through remote attestation provided by
Intel SGX. In addition, DiOr-SGX solves data abusing problem that a malicious leader oracle server
selectively sends external data to the blockchain for its own benefit through a reputation system.
This paper makes the following specific contributions.

• Support for data availability: DiOr-SGX consists of multiple distributed oracle servers, where a
leader oracle server is elected for collaboration among them. This ensures data availability even
when a single oracle server fails.

• Support for secure oracle protocol using Intel SGX and TLS: DiOr-SGX guarantees data integrity
through Intel SGX and Transport Layer Security (TLS) communication with external data sources.
Since DiOr-SGX performs TLS communication for pulling external data inside the SGX enclave of
each oracle server, data manipulation is impossible.

• Support for time-variant IoT data using reputation system: DiOr-SGX can provide time-variant
IoT data into the blockchain. For time-variant IoT data, response time is important. DiOr-SGX
elects a leader oracle server through a reputation system based on previous response times.
This allows DiOr-SGX to provide a relatively consistent response time even if a malicious leader
oracle server exists among multiple oracle servers.

• Real implementation: DiOr-SGX has been implemented over Ethereum blockchain [22] and its
performance is compared with other competitors. The benchmarking results show that DiOr-SGX
ensures response time even in an environment where a malicious oracle server exists, while the
decrease in response time of 14% compared to the existing centralized oracles is minimal.

This paper is organized as follows. Section 2 describes background and research motivation
of DiOr-SGX. Section 3 introduces various research efforts related to DiOr-SGX. Section 4 discusses
the overall architecture of DiOr-SGX and its implementation issues in detail. Section 5 evaluates
the performance of DiOr-SGX through experiments and justifies whether DiOr-SGX can address the
problems presented in Section 2. Section 6 finally concludes this paper.

2. Background and Motivation

In this section, we briefly describe the background of Ethereum and smart contract, oracle problem,
and Intel SGX. The motivation of DiOr-SGX is also discussed.

Sensors 2020, 20, 2725 3 of 16

2.1. Ethereum and Smart Contract

Ethereum [22] is a permissionless blockchain platform for creating and executing Dapps through
smart contract. A smart contract is an application code and data executed on all participating
blockchain nodes, which ensures integrity and reliability of its execution results.

Ethereum provides users with the Turing-complete programming languages such as Solidity [23]
or Serpent [24]. Ethereum users create a smart contract using those languages. The smart contracts
created by users are compiled into the bytecode to be deployed in the blockchain network. As a
deployed smart contract is considered to be an account, the contract can be executed in the similar way
that users send a transaction to the account. The Ethereum Virtual Machine (EVM) is a 256-bit virtual
machine (VM) that can execute the deployed smart contract. All nodes can execute the deployed
smart contract by using the EVM. Therefore, based on the information in the smart contracts that
are deployed through blockchain, all nodes can execute all smart contracts and validate the results
executed by other nodes.

2.2. Blockchain Oracle Problem

The oracle problem [8] is an issue of how to bring real life external information such as stock
price or market data to the blockchain so that smart contracts can execute based on them. Since the
blockchain cannot directly access external data, a trusted third-party data provider called oracle is
needed to transfer the information on behalf of the blockchain as shown in Figure 1. However, to bring
such external data into the blockchain, the same level of security as the blockchain must be guaranteed
when pulling external data. For example, assume that SportX is a sports betting Dapp running on
Ethereum. In this case, this Dapp needs an oracle so that the results of external sports event data
are safely delivered to the blockchain. It is clear that if the oracle is malicious or provides wrong
information, the execution of the smart contracts based on the external information is trustless.

Blockchain External Data

Oracle(Data provider)

Direct acess is restrictedDirect acess is restricted

Data

authentication

Stock priceStock price

Market dataMarket data

Cryptocurrency priceCryptocurrency price

IoT sensor dataIoT sensor data

. . .

Smart ContractSmart Contract

pragma solidity >0.4.23 <0.6.0;

contract Oracle {...}

contract coldChainService {

int16 limit_temp = -10;

uint _penalty = 1200;

fucntion checkTemperature(

bytes32 service_id) payable {

int16 current_temp =

oracleAddr.getData(service_id);

if (cuurent_temp > limit_temp){

// send penalty to client

}

pragma solidity >0.4.23 <0.6.0;

contract Oracle {...}

contract coldChainService {

int16 limit_temp = -10;

uint _penalty = 1200;

fucntion checkTemperature(

bytes32 service_id) payable {

int16 current_temp =

oracleAddr.getData(service_id);

if (cuurent_temp > limit_temp){

// send penalty to client

}

. . .

Figure 1. Blockchain Oracle problem.

2.3. Intel SGX

Intel SGX [21] is an extended x86 instruction set developed by Intel. Intel SGX allows a user
program to be executed in an enclave, a memory area that other user programs and operating systems
cannot access. When a user attempts to access the enclave memory area through a normal function call
or command, the CPU cancels it and allows access only when the function is called from the enclave’s
internal code. In other words, by restricting access to the enclave’s internal memory from outside the
enclave, Intel SGX ensures the integrity and confidentiality of program execution within the enclave.

However, only the area allocated to the enclave is secure and therefore the execution such as
a system call that needs to switch to kernel mode cannot be performed inside the enclave. For this
reason, Intel SGX-based programs are divided into trusted zone and untrusted zone. While functions that

Sensors 2020, 20, 2725 4 of 16

require integrity are usually implemented in the trusted zone, functions that do not require system
calls or perform flawlessly are implemented in the untrusted zone.

Another feature of Intel SGX is the support of remote attestation. Remote attestation proves to the
remote entity that a running program is safely executed, and it is actually intended by providing a
hash of the code and data within the program. For example, the structure of quote and report, used for
the remote attestation in Intel SGX, is shown in Figure 2. An enclave that needs the remote attestation
first passes the quote structure (i.e., sgx_quote_t) including the report structure (i.e., sgx_report_body_t)
to the remote enclave by encrypting the contents with a private key accessible only by the original
enclave. Then, the remote enclave decrypts the received contents with a group public key, verifies the
validity of the quote, and sends the result back to the original enclave. When the remote enclave checks
the validity, the 256-bit hash value mr_enclave in sgx_report_body_t is used. This hash value summarizes
the code and initial data for the original enclave.

typedef struct _quote_t

{

uint16_t version;

uint16_t sign_type

sgx_epid_group_id_t epid_group_id;

sgx_isv_svn_t qe_svn;

uint8_t reserved[6];

sgx_basename_t basename;

sgx_report_body_t report_body;

uint32_t signature_len;

uint8_t signature[];

} sgx_quote_t;

typedef struct _report_body_t

{

sgx_cpu_svn_t cpu_svn;

sgx_misc_select_t misc_select;

uint8_t reserved1[28];

sgx_attributes_t attributes;

sgx_measurement_t mr_enclave;

uint8_t reserved2[32];

sgx_measurement_t mr_signer;

uint8_t reserved3[96];

sgx_prod_id_t isv_prod_id;

sgx_isv_svn_t isv_svn;

uint8_t reserved4[60];

sgx_report_data_t report_data;

} sgx_report_body_t;

Figure 2. Data Structure for Remote Attestation in Intel SGX.

2.4. Motivation

To develop secure and robust blockchain-based IoT Dapps, the blockchain oracle should support
data availability and data integrity. The communication channel between an oracle server and external
sources also need to be secured.

For ensuring data availability, the blockchain oracle should be designed so that it does not
suffer from a single point of failure problem. One of the most efficient ways to achieve this is to
build multiple oracle servers and make them continuously running even when an oracle server fails.
Moreover, the blockchain oracle needs to support data integrity. It must be verified that the external
data is safely received and is not tampered before transferring to the blockchain. Both TLS and Intel
SGX are possible solutions to prevent external data from being tampered. While TLS provides privacy
and data integrity between an oracle and external data sources, Intel SGX is a hardware security
solution that allows code and data within an enclave to be safely executed.

An oracle server with TLS and Intel SGX can create another problem in the blockchain-based IoT
Dapps where an oracle server fetches time-variant IoT data from external sources. As the time-variant
IoT data is collected periodically through multiple IoT sensors, the value of data changes so rapidly
and the volume of data is sometimes huge.

To explain this further, we take an example from Coldchain [25], which is a temperature-controlled
supply chain that typically includes equipment technologies such as packaging, temperature-controlled
containers, transportation vehicle and warehouse facilities.

In a blockchain-based IoT Dapp for Coldchain, a blockchain oracle needs to collect the
temperatures of containers using IoT sensors and send the information back to the blockchain. If the
temperatures of containers are higher than a certain upper limit, a penalty is issued to the company
managing the containers.

Sensors 2020, 20, 2725 5 of 16

Figure 3 shows the temperature data of a Coldchain container for 25 s. Assume that the upper
limit is set to −2 ◦C. Thus, the area where the temperatures of the containers are higher than this
limit is called the penalty zone, and in the opposite case, the no penalty zone. Assume also that the
blockchain oracle receives a data request from the blockchain after 10 s and the temperature at the time
when the request has arrived is in the penalty zone (around +5 ◦C). However, if a certain amount time
(i.e., 5 s response time) is required to provide data due to server overload, the temperature data given
to the blockchain is around−5 ◦C, which is in the no penalty zone. This results in a situation where the
company that is supposed to get a penalty is not penalized as shown in Figure 3. Therefore, to provide
correct external data, the response time must be minimized, which also indicates the performance
of an oracle server. This problem also happens when a malicious oracle node causes a data abusing
problem by deliberately delaying the response. A special mechanism should be devised to solve this
problem, too.

DiOr-SGX has been designed so that it supports data availability by using multiple oracle servers
and data integrity by using TLS and Intel SGX. DiOr-SGX also solves the response time problem
and the data abusing problem by using a reputation system that excludes a malicious or overloaded
oracle server as much as possible.

13800

14450

15100

15750

16400

17050

17700

0 5 10 15 20 25

Time(sec)

Response

(No penalty)

Request

(Get penalty)

upper limit

Response time

Penalty

zone

No Penalty

zone

Figure 3. Time-Variant IoT Data in Coldchain.

3. Related Work

There have been many research activities to solve the blockchain oracle problem. Existing
approaches are largely classified into either centralized or distributed.

A centralized oracle is an oracle running on a single server such as Oraclize [9] and Town-crier [10].
Oraclize is a trusted third party that has been designed to provide external data to the blockchain.
Oraclize is one of the first oracle protocols for Ethereum. When importing external data through
Uniform Resource Locator (URL) or Application Programming Interface (API), Oraclize uses
TLS-notary [26] to fetch data safely. However, the blockchain layer in the Oraclize cannot confirm
the integrity of the received data since the oracle code runs in the untrusted zone. Town-Crier is also
a centralized oracle that uses a trusted hardware called Intel SGX for data integrity. Although both
approaches provide a certain level of data integrity, they fail to support data availability. Moreover, they
are also prone to cause data abusing problem because their protocols are implemented over a single
oracle node.

A distributed oracle is an oracle where multiple oracle servers form a peer-to-peer network to
provide external data to the blockchain such as ASTRAEA [11], Shintaku [12], and Chainlink [13].
ASTRAEA is the first distributed oracle protocol to solve blockchain oracle problem. For each oracle
data request, ASTRAEA provides external data through true–false votes on questions raised by the
blockchain. ASTRAEA is based on the assumption that voters will only vote sincerely without a
special reward or penalty. In addition, ASTRAEA cannot guarantee data integrity because no security

Sensors 2020, 20, 2725 6 of 16

facilities such as Intel SGX or TLS are used to import external data. Shintaku is another distributed
oracle using the same true–false-based voting system as ASTRAEA. Shintaku encourages voters to
participate and vote correctly by providing reward or penalty for oracle questions. However, as with
ASTREA, data integrity is not guaranteed because it runs without any security facilities. Chainlink is a
distributed oracle that configures the oracle layer as a blockchain. Unlike other approaches, the external
data imported by each oracle server is agreed through the Byzantine Fault Tolerance (BFT) consensus
algorithm [27]. A reward is given to the node that provides the agreed data in the form of a coin.
Chainlink also does not support data integrity due to the absence of security properties.

As a distributed oracle runs with multiple oracle nodes, the data availability problem due to
single point of failure can be resolved. However, the true–false-based voting system makes the
oracle difficult to reach a consensus on the values for time-variant IoT data. In addition, existing
distributed oracles are configured with a relatively small network size (i.e., number of participating
oracle nodes), and small rewards or penalties. Potentially, this may result in many malicious oracle
nodes and therefore can cause data integrity problem because malicious oracle nodes are vulnerable to
a 51% attack. Finally, it is not possible for existing oracle protocols to guarantee a relatively consistent
response time. The response time affects the overall performance of the oracle and the oracle protocol
should consider how to minimize it.

Table 1 summarizes the comparison between existing oracle protocols and DiOr-SGX which is
proposed in this paper.

Table 1. Summary of Comparison for Oracle Protocols.

Oracle Data Data Support Time Guarantee
Protocols Availability Integrity Variant Data Response Time

Oraclize [9] × 4 © ×
Town-crier [10] × © 4 ×
ASTRAEA [11] © × × ×
Shintaku [12] © × × ×
Chainlink [13] © × × ×

DiOr-SGX (proposed) © © © ©

4. Design and Implementation

This section presents the overall architecture of DiOr-SGX, and discusses its design
and implementation issues in detail.

4.1. Overall Architecture

Figure 4 shows the overall architecture of DiOr-SGX. DiOr-SGX consists of multiple distributed
oracle nodes, where each oracle node contains software components both in a trusted area and in an
untrusted area. The trusted area includes software components that need to be executed safely such as
key management and remote attestation. DiOr-SGX uses Intel SGX to implement those functions in
a trusted area called enclave. For example, the data from external data sources is obtained through
TLS communication and a consensus is reached among distributed oracle nodes through remote
attestation inside an enclave. However, the untrusted area includes software functions that cannot be
performed inside an enclave such as software interfaces to Ethereum blockchain, other oracle nodes
and external data sources. The communication between the two areas is done by Intel SGX’s trusted
library functions (ECALL and OCALL).

Sensors 2020, 20, 2725 7 of 16

Enclave(Trusted area)

Network function

Asymmetric key Data authentication
Report generation/

verification

Blockchain (Ethereum)

Delivery Contract (DC)

User Contract (UC)

Oracle Request Data Delivery

External Data Sources

Time-Variant Data(IoT Data)

Thermal Sensor

DiOr-SGX

GPS Sensor

Micro Dust Sensor

Oracle

Request
. . .

Data

Delivery

Untrusted Area

Blockchain InterfaceBlockchain Interface Data Source InterfaceData Source Interface

ECALL() OCALL()

Oracle Node

Oracle Node Oracle Node

data exchange

Oracle InterfaceOracle Interface

Oracle Interface

Oracle Interface Oracle Interface

Trusted Area (Intel SGX Enclave)

Remote Attestation

TLS connection

Key Management

Distributed Oracle Nodes

Figure 4. Overall Architecture of DiOr-SGX.

In order for Ethereum Dapp users to interact with DiOr-SGX, two smart contracts such as user
contract (UC) and delivery contract (DC) are necessary. The UC is a smart contract developed by
Ethereum Dapp users to request data from external data sources. The DC which is invoked from
the UC interacts with DiOr-SGX to request or receive external data. The TLS connection between
DiOr-SGX and external data sources is established to ensure the privacy and data integrity of the
received data. The vulnerability of a smart contract is an important issue for blockchain systems.
However, this paper assumes that all input smart contracts have no vulnerabilities during execution.

Figure 5 depicts how the oracle requests from Ethereum Dapp users are delivered to external
sources and how the external data is finally delivered back to the users.

User Contract

(UC)

OCALL()
OCALL()

Leader Oracle Node

Blockchain (Ethereum)

Oracle

Interface

Oracle

Interface

Blockchain

Interface

Blockchain

Interface

Data Source

Interface

Data Source

Interface

Intel SGX Enclave

External

Data Sources

IoT Sensor Data

(Time-Variant)

IoT Sensor Data

(Time-Variant)

DiOr-SGX

BlockBlock BlockBlock
Remote AttestationKey Management

Delivery Contract

(DC)

1

2

3

4

5

6

7

10

Enclave

ECALL()

parameters

for oracle

request

oracle request

msg with sig

Oracle

Interface

Oracle

Interface

Blockchain

Interface

Blockchain

Interface

Enclave

ECALL()

parameters

for oracle

request

oracle request

msg with sig

Oracle Node

Oracle

Interface

Oracle

Interface

Blockchain

Interface

Blockchain

Interface

Data Source

Interface

Data Source

Interface

Intel SGX Enclave

Remote AttestationKey Management

8 9

1112

13

14

15
16

17

msgs with

sig

TLS Connection

Figure 5. Delivery Process of Oracle Request and External Data.

Initially, 1© any Ethereum Dapp user who wants to obtain external data creates an UC.
2©When the UC needs to access external data, it invokes the DC. 3© Then, the DC with the request

generate a block as an event log. 4© When the blockchain interface in the leader oracle node of
DiOr-SGX detects the event log, 5© the request is delivered to the enclave. 6© After the message
signature including the request is calculated inside the enclave, 7© then the message with the signature
is broadcast to other oracle nodes using the oracle interface. 8© Other oracle nodes then verify the
received message inside their enclaves and 9© 10© use TLS communication to get data from external
data sources through data source interface.

On the other hand, 11© the data delivery process from external sources starts with each oracle
node generating a signature of received IoT data inside its enclave and 12© 13© transferring the data
with the signature to the leader oracle node. 14©When the leader oracle node completes data reception,
it validates the signature of the received data through remote attestation and 15© 16© sends the average
of the received data with signature to the DC as a transaction. 17© Finally, the DC verifies the received
transaction and delivers external data to the UC as a callback function.

Sensors 2020, 20, 2725 8 of 16

4.2. Delivery Contract

A delivery contract (DC) is an intermediary between the user contract (UC) requesting external
data and DiOr-SGX. The DC is a smart contract in Ethereum that is responsible for forwarding oracle
requests, electing a leader oracle node, checking the validity of a message, and managing the reputation
of each oracle node.

Figure 6 shows how the DC interacts with DiOr-SGX in detail. When an oracle request is initially
issued from the UC developed by an Ethereum Dapp user, the DC is invoked. Then, the DC assigns a
unique ID to the request and selects a leader oracle node based on the reputation of all oracle nodes.
After this, an Ethereum block is generated as an event log to inform DiOr-SGX that Ethereum Dapp
has an oracle request. The parameters recorded in the block include an ID of elected leader oracle
node, an ID given to the oracle request, and expiration time. The expiration time is a time limit for the
DC to receive external data from a leader oracle node, which is measured based on the block height.
For example, if the elected leader oracle node does not respond until a certain number of blocks are
generated (i.e., block height), it is considered to be offline or a malicious node that does not provide
data intentionally. Since the reputation of a leader oracle node is largely depends on its response time,
this leader oracle node is likely to be excluded from the possible candidates.

DiOr-SGX

Block

#102

Block

#102

Blockchain (Ethereum)

User Contract (UC)User Contract (UC)

Oracle Request

ID Management

event log

Leader Election

Data Transfer

Delivery Contract (DC)Delivery Contract (DC)

Block

#103

Block

#103

Block

#104

Block

#104

Transaction

Leader ID

Request ID

Expiration

Time

Data with sig

Request id

Oracle

Node #1

Oracle

Node #2

Oracle

Node #3

Leader

Response Block #105

Expiration Block #106

Block

#105

Block

#105

Reputation

Management

Data Attestation

Figure 6. Delivery Contract Operation.

However, when DiOr-SGX obtains data from external data sources, it generates a transaction
that includes external data with signature and request ID, which is delivered to the DC. After the DC
checks the validity of data and request ID, it updates the reputation of the leader oracle node using
response time and sends external data back to the UC through a call back function.

4.3. Securing Oracle Node Using Intel SGX

All DiOr-SGX features requiring safety are implemented within the Intel SGX enclave. These are
functions such as key management and remote attestation.

The key management module manages a unique asymmetric key pair created based on a random
seed. In this asymmetric key pair, the private key is used to encrypt data inside the enclave and the
public key is used to decrypt the data encrypted with the private key. The public key is included in
report_data field of report structure (i.e., sgx_report_body_t) as shown in Figure 2. In DiOr-SGX, all oracle
nodes in the same oracle network exchange each other’s public keys and register their public keys in
the DC. Therefore, the Ethereum Dapp users are aware that the transaction delivered by the oracle
node is created inside the enclave through the registered public keys. In addition, DiOr-SGX proves to
other nodes that the key pair is created inside the enclave, and there is no code leaking the private key
to the outside. After the leader oracle node receives external data from other nodes, remote attestation

Sensors 2020, 20, 2725 9 of 16

is required to confirm that other oracle nodes have safely obtained the data. DiOr-SGX uses the remote
attestation services provided by Intel SGX.

Figure 7 shows the process of remote attestation in DiOr-SGX. As shown in Figure 7, remote
attestation in DiOr-SGX starts with the oracle node making the quote structure (i.e., sgx_quote_t) based
on the code and data used for receiving external data. Then, each oracle node encrypts the quote
structure with its private key inside its enclave and sends a message including the quote structure to
the leader oracle node through oracle interface. After the leader oracle node receives the message,
it decrypts the message using a group public key inside its enclave. Thereafter, the leader oracle node
completes the remote attestation by determining whether the mr_enclave field included in the report
structure matches with the hash value of the executed code and data.

Untrusted Area

msg with quote

Enclave(Trusted area)

Malware

Oracle node

Untrusted Area

Leader Oracle node

msg

ECALL()OCALL()

Key Management Remote

Attestation

quotePrivate key

Invisible

report

msgencrypt

Key Management Remote Attestation

quote

report

msg

decrypt

Group

public key

if mr_enclave ==

hash(code / data):
34

Remote attestation

success.

Trusted Area (Enclave) Trusted Area (Enclave)

Received msg

Figure 7. Remote Attestation in DiOr-SGX.

4.4. Reputation Management and Leader Election

As explained in Section 4.2, the DC is responsible for electing a leader oracle node and managing
its reputation, which is largely based on the response time of each oracle node. An oracle node
with a shorter response time has better reputation and is likely to be chosen as a leader oracle node.
Equations (1) through (5) explain how the reputation of a leader oracle node is calculated.

RTleader = (Block #response − Block #request)× Blockinterval (1)

AvrgRT =
1

Noracle
×

Noracle

∑
i=1

RTi (2)

Rleader =
AvrgRT
RTleader

(3)

Cleader = min(
Nresponse

Nlimit
, 1) (4)

new Repleader = old Repleader × Rleader × Cleader (5)

First of all, the response time of a leader oracle node, RTleader, is calculated by multiplying the
difference between the block numbers when an oracle request and its response are included, by the
block interval Blockinterval as shown in Equation (1). Then, the average response time, AvrgRT,
which is the sum of response times from all oracle nodes divided by the number of oracle nodes,
Noracle, is calculated as shown in Equation (2). Using RTleader and AvrgRT, the reward value of a leader
oracle node, Rleader, which indicates the goodness of a leader oracle node’s response time is obtained
as shown in Equation (3). If RTleader is shorter than AvrgRT, bigger reward is given to the leader oracle
node. Cleader shown in Equation (4) is the level of confidence of the response time from a leader oracle
node calculated by Nresponse and Nlimit. While Nresponse represents the actual number of responses a

Sensors 2020, 20, 2725 10 of 16

leader oracle node receives from other oracle nodes, Nlimit is a pre-defined number of responses set by
the administrator. As a result, the case where Nresponse is larger than Nlimit is more favorable than the
opposite case. Finally, the reputation of a leader oracle node, newRepleader, is updated based on the
leader’s previous reputation, oldRepleader, multiplied by Rleader and Cleader of the leader oracle node as
shown in Equation (5). The reputation value of each oracle node is used to elect a leader oracle node.

In order for an oracle node with larger reputation value to get a better chance of being elected as a
leader oracle node, a special random function is designed in DiOr-SGX since it is impossible to generate
random numbers in Ethereum’s smart contract. The random function creates a random number by
a modulo operation with the sum of each block’s block hash (i.e., block.number-1) and reputation of
each oracle node. Then, the number is subtracted by the reputation value of each oracle node until it
becomes less than 0. If the number becomes less than 0 in the i-th oracle node, the node is elected as a
leader oracle node.

Figure 8 is a detailed example that describes how the reputation of each oracle node is calculated
and how a leader oracle node with higher reputation value is more likely to be selected as a leader.
We assume that the DC issues an oracle request at the 101-th block and receives its response at the
103-th block from a leader oracle node. Current leader oracle node is Node #3 and the Blockinterval
is set to 15 s because the block interval in Ethereum is between 10 to 20 s. We also assume that the
values for Noracle and Nlimit are set to 4 and 2, respectively. Moreover, the reputation management table
shown in the bottom right-hand corner summarizes the response time of each oracle node and the
corresponding reputation value.

Block

#103

Block

#103

3

External Data SourcesExternal Data Sources

Tx 0x7e3...

DiOr-SGX

Blockchain(Ethereum)

: Request

: Response

Block

#102

Block

#102

Block

#101

Block

#101

2

4

Oracle Network

Tx 0x039...

Node

Node #1 43 856

Node #2 35 1178

Node #3 30 2272.03

Node #4 44 834

AvrgRT = 38

= 1.27

= 1

Leader Election

Block

#100

Block

#100

= 30

. . .

Reputation Management

User Contract (UC)

Delivery Contract (DC)

= 2= 4

Leader : Node #3

1

3

2

4

Oracle Network

: Leader Node

1

3

21

4

Figure 8. Example of Reputation Management and Leader Election.

Then, based on the assumption, the response time of Node #3, RTleader, is 30 s. Since Node #3
receives the responses from all oracle nodes, Nresponse is 4 and the average response time, AvrgRT, is
calculated as 38 s according to the reputation management table. As a result, the reward value Rleader of
Node #3 becomes 1.27 because the response time of Node #3 is shorter than the average. The confidence
value Cleader of Node #3 is 1 because the number of responses, Nresponse, received by Node #3 is larger
than the pre-defined number of responses Nlimit. If the previous reputation value of Node #3 is 1789,
the new reputation value is increased to 2272.03 and updated in the reputation management table.

Sensors 2020, 20, 2725 11 of 16

Now that the reputation value Repi of each oracle node is 856, 1178, 2272.03, 834, the random
number becomes a value between 0 and 5139. Considering that the Node #3 has larger reputation value
than other nodes, the chance of Node #3 being elected as a leader oracle node increases. Algorithm 1 is
a pseudocode that explains the reputation management and leader election process in DiOr-SGX.

Algorithm 1: Reputation Management and Leader Election Algorithm
Require:

blockHash(previous): Hash of previous block
block#(response): Block number of response time
block#(request): Block number of request time
Repi: Reputation of each oracle node

procedure Reputation_Management():
1: sum← 0, i ← 1
2: RTleader = (block#(response)− block#(request)) × blockInterval
3: while i ≤ Noracle do
4: sum += RTi
5: i ← i + 1

end
6: AvrgRT = sum / Noracle
7: Rleader = AvrgRT / RTleader
8: Cleader = min(Nresponse/Nlimit, 1)
9: Repleader = Repleader × Rleader × Cleader

10:
procedure Leader_Election():

11: sum← 0, i ← 1
12: while i ≤ Noracle do
13: sum += Repi
14: i ← i + 1

end
15: mod = blockHash(previous)% sum
16: while mod ≥ 0 do
17: mod = mod− Repi
18: if mod < 0 then
19: i-th oracle node is elected as a leader node

end
20: i ← i + 1

end

5. Performance Evaluation

5.1. Experiment Setup

DiOr-SGX is implemented over a cloud-based trusted execution environment (TEE) provided
by Microsoft as part of Azure confidential computing efforts [28]. Open enclave SDK [29] is used to
develop Intel SGX functions in DiOr-SGX. Each oracle server runs on a virtual machine (VM) with Intel
SGX support. Each VM is configured to run with 4 vCPUs and 8 GB RAM. The servers run Ubuntu
18.04.3 LTS operating systems. The workload used for the experiment is ultra-fine dust data for 24 h
which is real IoT data measured in Seoul [30].

For the evaluation, we first compare the performance of DiOr-SGX with Town-crier which is a
centralized oracle server with Intel SGX support. For this, the response time for 1000 oracle requests
is measured by varying the number of oracle severs from 3 to 9. The pre-defined number of oracle
responses, Nlimit, is set to 50% of the number of oracle servers. The purpose of this experiment is to

Sensors 2020, 20, 2725 12 of 16

compare the response time of DiOr-SGX with a centralized oracle with Intel SGX, and thus check the
overhead of DiOr-SGX incurred by having multiple oracle servers. In addition, we also report the
performance results of DiOr-SGX’s reputation system by intentionally creating malicious oracle nodes.

5.2. Evaluation of Response Time

Figure 9 shows the response times of DiOr-SGX and its comparison with Town-crier when the
number of oracle servers is increased from 3 to 9. The measured response time excludes the time taken
in Ethereum blockchain since the block generation time (i.e., 15 s) is too huge to exactly reflect the
overall response time. Therefore, we measure the time from when the ECALL for an oracle request is
issued in DiOr-SGX to when an Ethereum transaction is generated to return external data to the DC.

As shown in Figure 9, the performance of DiOr-SGX seems to be worse than that of Town-crier,
which is apparent considering that Town-crier is a centralized oracle supporting Intel SGX and thus
does not have collaborations among oracle servers. For example, the response time of Town-crier is
271 ms, whereas the response times of DiOr-SGX are 308.1 ms, 313.4 ms, 329.1 ms, 359.4 ms, when the
number of servers is 3, 5, 7, 9, respectively.

271

308.1 313.4
329.1

359.4

0

50

100

150

200

250

300

350

400

1 3 5 7 9

O
ra

c
le

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Number of Oracle Servers

Town-Crier

DiOr-SGX

Figure 9. Comparison of Response Time (Town-crier vs DiOr-SGX).

To analyze this further, we have measured the time taken by each of the sub-tasks in
a request-response process such as the times for message generation, message validation, transaction
generation and TLS connection. The response time breakdown is shown in Table 2. As shown in
Table 2, about 73% to 92% of the response time is consumed during TLS connection, and the time
spent for other activities is minimal. The times taken for message generation and validation get larger
because the number of messages generated and validated by a leader oracle node increases as the
number of oracle servers increases. However, the time taken for transaction generation remains almost
the same regardless of the number of oracle servers since only a leader oracle node is responsible for
generating a transaction.

It is worthy to note that the time to get external data using TLS connection is one of the most
dominant factors that affect the overall response time for all server configurations. If we exclude
the TLS connection time from the response time, the performance difference between Town-crier
and DiOr-SGX is negligible. The performance of DiOr-SGX does not significantly degrade as we
increase the number of oracle servers. This indicates that DiOr-SGX can guarantee data availability
and data integrity better than Town-crier with few performance disadvantages even when the number
of nodes increases. On the other hand, if a transaction to the DC occurs within a normal block interval
in Ethereum (i.e., 15 s), external data can be included in the next block immediately. Therefore, for a
single data provision, both DiOr-SGX and Town-crier can provide external data to the next block,
and thus there is no difference in performance.

Sensors 2020, 20, 2725 13 of 16

Table 2. Response Time Breakdown (N = Number of Oracle Servers, Unit: Time (ms)/Ratio (%)).

Activity
Town-Crier N = 3 N = 5 N = 7 N = 9

Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio

Msg Generation 0 0 20 6.5 32 10.2 49 14.8 65 18.0

Validation 0 0 4.1 1.3 6.4 2.0 9.1 2.7 10.4 2.8

Tx Generation 20 7.4 20 6.5 19 6.0 19 5.7 19 5.2

Subtotal 20 ms 44.1 ms 57.4 ms 77.1 ms 94.4 ms

TLS connection 251 92.6 264 85.7 256 81.7 252 76.5 265 73.8

Total 271 ms 308.1 ms 313.4 ms 329.1 ms 359.4 ms

5.3. Evaluation of Reputation System

One of the most important design philosophies in DiOr-SGX is to minimize response time as
much as possible and provide an efficient mechanism to reduce the possibility that malicious oracle
nodes are selected as a leader oracle node. To achieve this, DiOr-SGX’s reputation system is designed
such that a leaders oracle node with a faster response time is favored and it is more likely to be chosen
as a leader oracle node.

Figures 10–12 depict whether DiOr-SGX’s reputation system is working properly and how it
reacts when some of the oracle servers are malicious. Especially in Figures 10a–12a, each figure shows
the average reputation values of normal oracle nodes and malicious oracle nodes as the number of
oracle requests is increased. In Figures 10b–12b, each figure shows the accumulated leader election
counts and average response times of both types of oracle nodes.

For the experiment, we assume that Noracle, the total number of oracle servers, is 9 and almost
half of them (i.e., 4 nodes) are malicious. Also, we assume that the total number of oracle requests
is 100 and the default reputation value is set to 1000, which can be increased infinitely and cannot
be less than zero. To figure out the mechanism used in DiOr-SGX’s reputation system and how it
reduces average response time, we have conducted 3 experiments. In these experiments, the response
times of malicious nodes are increased by 120%, 150%, and 200%, respectively to reflect a situation
where malicious nodes are abusing data. If response time gets longer, malicious nodes are abusing
data more heavily.

Figure 10 shows the results of an experiment in which the response times of malicious oracle
nodes are 120% above the average. As shown in Figure 10a, after processing 100 oracle requests,
the average reputation of normal oracle nodes rises up to about 150% of the default, while the average
reputation of malicious oracle nodes drops down to about 36% of the default. This indicates that
DiOr-SGX’s reputation system favors the nodes with short response times (i.e., normal oracle nodes)
more than those with long response times (i.e., malicious oracle nodes). Furthermore, as shown in
Figure 10b, the accumulated election count of normal nodes as a leader oracle becomes larger compare
to that of malicious oracle nodes. For example, by the time when 100 oracle requests are processed,
normal oracle nodes are elected as a leader oracle 68 times while malicious nodes are elected as a
leader oracle 32 times. Although it is a small amount, the average response time of all oracle nodes
also decreases.

Similarly, Figures 11 and 12 show the results of experiments where the response times of malicious
oracle nodes are 150% and 200% above the average, respectively. As expected, the average reputation
keeps increasing as more oracle requests are processed. The difference between the average reputation
of normal oracle nodes and that of malicious oracle nodes becomes larger as the response times
of malicious oracle nodes get increased from 150% to 200%. For example, as shown in Figure 11a,
after 100 oracle requests, the average reputation of normal oracle nodes is about 229% of the default,
while the reputation of malicious oracle nodes is 26% of the default. However, in a case where the
response time is increased by 200%, the corresponding values are 296% and 33% of the default as

Sensors 2020, 20, 2725 14 of 16

shown in Figure 12a. This means that as malicious nodes abuse data more heavily, the reputation of
normal oracle nodes increases more rapidly, which means that normal oracle nodes are more likely
to be selected as a leader node. In the experiments for getting accumulated leader election count
and average response time as shown in Figures 11b and 12b, we can also notice the same trend. When
the average reputation of normal oracle nodes is overwhelmingly high, fewer malicious nodes are
selected. Therefore, the average response time is also decreased.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100

A
v
e

ra
g

e
 R

e
p

u
ta

ti
o

n
 V

a
lu

e

Number of Oracle Requests

Normal Oracle Nodes Malicious Oracle Nodes

 0

 20

 40

 60

 80

 100

20 40 60 80 100
 250

 300

 350

 400

 450

 500

L
e

a
d

e
r

E
le

c
ti
o

n
 C

o
u

n
t

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e

Number of Oracle Requests

Normal Oracle Nodes
Malicious Oracle Nodes

Average Response Time

(a) Average of Reputation Values (b) Leader Election Count and Response Time

Figure 10. Evaluation of Reputation with 120% Response Time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 R

e
p

u
ta

ti
o

n
 V

a
lu

e

Number of Oracle Requests

Normal Oracle Nodes Malicious Oracle Nodes

 0

 20

 40

 60

 80

 100

20 40 60 80 100
 250

 300

 350

 400

 450

 500

L
e

a
d

e
r

E
le

c
ti
o

n
 C

o
u

n
t

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e

Number of Oracle Requests

Normal Oracle Nodes
Malicious Oracle Nodes

Average Response Time

(a) Average of Reputation Values (b) Leader Election Count and Response Time

Figure 11. Evaluation of Reputation with 150% Response Time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 R

e
p

u
ta

ti
o

n
 V

a
lu

e

Number of Oracle Requests

Normal Oracle Nodes Malicious Oracle Nodes

 0

 20

 40

 60

 80

 100

20 40 60 80 100
 250

 300

 350

 400

 450

 500

L
e

a
d

e
r

E
le

c
ti
o

n
 C

o
u

n
t

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e

Number of Oracle Requests

Normal Oracle Nodes
Malicious Oracle Nodes

Average Response Time

(a) Average of Reputation Values (b) Leader Election Count and Response Time

Figure 12. Evaluation of Reputation with 200% Response Time.

6. Conclusions

In this paper, we have proposed a distributed oracle using Intel SGX called DiOr-SGX for
blockchain-based IoT applications. By building multiple oracle servers, DiOr-SGX minimizes the
problems caused by data abusing and single point failure. It also guarantees data availability.
In addition, DiOr-SGX guarantees data integrity using Intel SGX enclave and TLS connection.
DiOr-SGX’s reputation system reduces the response time of time-variant external IoT data by making
the oracle nodes with faster response time to be selected as a leader oracle node as much as possible.

Sensors 2020, 20, 2725 15 of 16

Through experiments, the performance of DiOr-SGX has been measured and compared with
Town-crier, a centralized oracle server with Intel SGX. Although the response time of DiOr-SGX with
3 oracle servers is worse than that of Town-crier by about 14%, this performance gap is not significant
considering that Town-crier is a single node solution. Furthermore, the 15-s block interval in Ethereum
hides most of the performance difference in milliseconds from the overall response time. The reputation
system of DiOr-SGX has also been evaluated. The results show that DiOr-SGX minimizes the response
time by excluding malicious nodes with long response time as much as possible.

DiOr-SGX is currently a blockchain oracle especially targeting at Ethereum. Since DiOr-SGX is
a middle-ware solution that provides external data safely to the blockchain, it can be easily applied to
other blockchain platforms without much modification. For example, the blockchain platforms with
higher Transaction Per Second (TPS) than Ethereum such as Hyperledger Fabric [31] and IOTA [32]
are good candidates for DiOr-SGX. Moreover, DiOr-SGX can be used to implement various real world
IoT applications. Although current evaluation of DiOr-SGX uses a real world ultra-fine dust IoT
data in Seoul, the evaluation with other practical IoT applications makes the impact of the proposed
idea stronger.

Author Contributions: J.S. and S.P. made substantial contributions to the original ideas. S.W. and S.P. improved
the original ideas and wrote the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2020-2017-0-01628) supervised by the
IITP (Institute for Information & communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Technical Report; Manubot, 2019.
2. Mettler, M. Blockchain technology in healthcare: The revolution starts here. In Proceedings of the 2016 IEEE

18th International Conference on E-health Networking, Applications and Services (Healthcom), Munich,
Germany, 14–17 September 2016; pp. 1–3.

3. Huh, S.; Cho, S.; Kim, S. Managing IoT devices using blockchain platform. In Proceedings of the 2017
19th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea,
19–22 February 2017; pp. 464–467.

4. Azaria, A.; Ekblaw, A.; Vieira, T.; Lippman, A. Medrec: Using blockchain for medical data access
and permission management. In Proceedings of the 2016 2nd International Conference on Open and
Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 25–30.

5. John, M. ShipChain Whitepaper; ShipChain: Los Angeles, CA, USA, 2018.
6. Stevens, G.C. Integrating the supply chain. Int. J. Phys. Distrib. Mater. Manag. 1989, 19, 3–8. [CrossRef]
7. Irina, C; David, W; Asim, N. AutoCoin Whitepaper: Revolutionizing an Industry That Has Earned Its Reputation

for Dishonesty; AutoCoin: North London, UK, 2018.
8. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J.

Web Grid Serv. 2018, 14, 352–375. [CrossRef]
9. Bernani, T. Oraclize; London, UK, 2016. Available online: http://www.oraclize.it (accessed on 10 May 2020).
10. Zhang, F.; Cecchetti, E.; Croman, K.; Juels, A.; Shi, E. Town crier: An authenticated data feed for smart

contracts. In Proceedings of the 2016 aCM sIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016; pp. 270–282.

11. Adler, J.; Berryhill, R.; Veneris, A.; Poulos, Z.; Veira, N.; Kastania, A. Astraea: A decentralized blockchain
oracle. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1145–1152.

12. Kamiya., R. Shintaku: An End-to-End-Decentralized Generalpurpose Blockchain Oracle System. 2018.
Available online: https://gitlab.com/shintaku-group/paper/blob/master/shintaku.pdf. (accessed on
26 March 2020).

http://dx.doi.org/10.1108/EUM0000000000329
http://dx.doi.org/10.1504/IJWGS.2018.095647
http://www.oraclize.it
 https://gitlab.com/shintaku-group/paper/blob/master/ shintaku.pdf.

Sensors 2020, 20, 2725 16 of 16

13. Ellis, A.S.; Juels, S.N. Chainlink: A Decentralized Oracle Network. Retrieved March 2017, 11, 2018.
14. Bahga, A.; Madisetti, V.K. Blockchain platform for industrial internet of things. J. Softw. Eng. Appl. 2016,

9, 533–546. [CrossRef]
15. Park, J.S.; Youn, T.Y.; Kim, H.B.; Rhee, K.H.; Shin, S.U. Smart contract-based review system for an IoT data

marketplace. Sensors 2018, 18, 3577. [CrossRef] [PubMed]
16. Ether Betball. 2019. Available online: https://eth-bet.com/f (accessed on 14 March 2020).
17. Pee, S.J.; Nans, J.H.; Jans, J.W. A Simple Blockchain-based Peer-to-Peer Water Trading System Leveraging

Smart Contracts. In Proceedings of the International Conference on Internet Computing (ICOMP).
The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp), Dong Hoi City, Vietnam, 19–21 March 2018; pp. 63–68.

18. Dowling, M.D.; Thompson, A.R.; Levitan, A.; Severino, R.A. International Trade Finance Blockchain System.
U.S. Patent App. 15/639,986, September 2018.

19. Papadodimas, G.; Palaiokrasas, G.; Litke, A.; Varvarigou, T. Implementation of smart contracts for blockchain
based IoT applications. In Proceedings of the 2018 9th International Conference on the Network of the
Future (NOF), Poznan, Poland, 19–21 November 2018; pp. 60–67.

20. Zinonos, Z.; Christodoulou, P.; Andreou, A.; Chatzichristofis, S. ParkChain: An IoT Parking Service Based
on Blockchain. In Proceedings of the 2019 15th International Conference on Distributed Computing in
Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019; pp. 687–693.

21. Costan, V.; Devadas, S. Intel SGX Explained. IACR Cryptol. EPrint Arch. 2016, 2016, 1–118.
22. Buterin, V. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform.

2014. Available online: https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_
contract_and_decentralized_application_platform-vitalik-buterin.pdf (accessed on 21 March 2020).

23. Dannen, C. Introducing Ethereum and Solidity; Springer: Berlin/Heidelberg, Germany 2017; Volume 1.
24. Delmolino, K.; Arnett, M.; Kosba, A.; Miller, A.; Shi, E. A Programmer’s Guide to Ethereum and Serpent.

2015. Https://mc2-umd.github.io/ethereumlab/docs/serpent_tutorial.pdf (accessed on 6 May 2016).
25. Likar, K.; Jevšnik, M. Cold chain maintaining in food trade. Food Control 2006, 17, 108–113. [CrossRef]
26. TLSnotary—A Mechanism for Independently Audited https Sessions. 2014. Available online: https:

//tlsnotary.org/TLSNotary.pdf (accessed on 6 March 2020).
27. Castro, M.; Liskov, B. Practical Byzantine fault tolerance. In Proceedings of the OSDI, Cambridge, MA, USA,

22 February 1999; Volume 99; pp. 173–186.
28. Russinovich, M. Introducing Azure Confidential Computing; Microsoft: Redmond, DC, USA, 2017.
29. Open Enclave: Build Trusted Execution Environment Based Applications with an Open Source SDK; GitHub:

San Francisco, CA, USA, 2019.
30. Seoul Average Air Pollution Information. 2019. Available online: https://cleanair.seoul.go.kr (accessed on

26 December 2019).
31. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.;

Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018;
pp. 1–15.

32. Divya, M.; Biradar, N.B. IOTA-next generation block chain. Int. J. Eng. Comput. Sci. 2018, 7, 23823–23826.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4236/jsea.2016.910036
http://dx.doi.org/10.3390/s18103577
http://www.ncbi.nlm.nih.gov/pubmed/30360413
https://eth-bet.com/f
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
Https://mc2-umd. github. io/ethereumlab/docs/serpent_tutorial. pdf
http://dx.doi.org/10.1016/j.foodcont.2004.09.009
https:// tlsnotary.org/TLSNotary.pdf
https:// tlsnotary.org/TLSNotary.pdf
https://cleanair.seoul.go.kr
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Motivation
	Ethereum and Smart Contract
	Blockchain Oracle Problem
	Intel SGX
	Motivation

	Related Work
	Design and Implementation
	Overall Architecture
	Delivery Contract
	Securing Oracle Node Using Intel SGX
	Reputation Management and Leader Election

	Performance Evaluation
	Experiment Setup
	Evaluation of Response Time
	Evaluation of Reputation System

	Conclusions
	References

