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Abstract: The fiducial-marks-based alignment process is one of the most critical steps in printed
circuit board (PCB) manufacturing. In the alignment process, a machine vision technique is used to
detect the fiducial marks and then adjust the position of the vision system in such a way that it is
aligned with the PCB. The present study proposed an embedded PCB alignment system, in which
a rotation, scale and translation (RST) template-matching algorithm was employed to locate the
marks on the PCB surface. The coordinates and angles of the detected marks were then compared
with the reference values which were set by users, and the difference between them was used to
adjust the position of the vision system accordingly. To improve the positioning accuracy, the angle
and location matching process was performed in refinement processes. To overcome the matching
time, in the present study we accelerated the rotation matching by eliminating the weak features
in the scanning process and converting the normalized cross correlation (NCC) formula to a sum
of products. Moreover, the scanning time was reduced by implementing the entire RST process in
parallel on threads of a graphics processing unit (GPU) by applying hash functions to find refined
positions in the refinement matching process. The experimental results showed that the resulting
matching time was around 32× faster than that achieved on a conventional central processing unit
(CPU) for a test image size of 1280 × 960 pixels. Furthermore, the precision of the alignment process
achieved a considerable result with a tolerance of 36.4 µm.

Keywords: alignment system; PCB manufacturing; template matching; embedded system; GPU;
parallel programming

1. Introduction

In the assembly line manufacturing of electronic devices, the PCB alignment process plays a
critical role in pinpointing the positions of the components, checking for missing integrated circuits
ICs or devices, carrying out defect inspections and performing soldering. The alignment procedure
demands efficient and high-accuracy processing and is most commonly performed by using some form
of machine vision system to detect and locate the positions of the fiducial marks and components on
the printed circuit board (PCB) [1–4]. Ideally, the PCB alignment system should have both a small size
and a low cost in order to enhance the flexibility and reduce the total manufacturing cost, respectively.

On the other hand, embedded vision systems, consisting of a camera directly integrated with
a processing board, have a small size, good portability and a low power consumption. As a result,
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they are nowadays widely applied in many practical applications, including object recognition, tracking,
medical image processing, automatic car driving and defect inspection systems [5–11]. However,
they suffer the disadvantages of a long processing time due to their limited central processing unit
(CPU) capability and a relatively small memory space. Consequently, the problem of accelerating
the processing time of embedded vision systems has attracted significant attention in recent years.
The authors in [12–16] attempted to improve the performance of the embedded systems through
the use of enhanced algorithms and models. In contrast, applying the development of hardware is
also taken into consideration. The studies in [17–22] used hardware-based techniques to improve
the performance of the embedded systems by running the image-processing algorithms in parallel
on graphics processing units (GPUs) or field-programmable gate arrays (FPGAs). The present study
constructed a PCB alignment algorithm based on a rotation, scale and translation (RST) template
matching technique. The algorithm first detected the fiducial marks on the PCB and then compared
the detected values of the mark coordinates and angles with the corresponding reference values.
The difference between the two sets of results was then used to align the vision system with the PCB.
To satisfy the requirements for a small size, low-cost and good portability, the entire RST algorithm was
implemented on a GPU-embedded system (NVIDIA Jetson Tx2 development kit, NVIDIA Corporation,
Santa Clara, CA, United States).

Template matching is one of the most commonly used machine vision techniques. It uses a
template to scan across an image and uses a similarity measurement method to detect the required
targets. The template matching has been widely applied in many research areas, including object
detection, tracking and pattern recognition. The main advantage of template matching is to enable
the outputs of the matching process (i.e., the coordinates, angle or scale of the detection target) to
be obtained with an extremely high degree of precision. Moreover, the template matching process
requires only a small number of data samples for training purposes and can be performed using
only a single template. Nevertheless, the template matching is an expensive technique. The first
reason for that is the similarity measurement methods. Normalized cross correlation (NCC) is one of
the most commonly used methods. In comparison to other similarity formulae such as the sum of
square differences (SSD) or the sum of absolute differences (SAD), the NCC formula is more robust
toward variations in the brightness and contrast conditions. However, the NCC formula incurs a high
computational cost since, to achieve high-precision scale and rotation matching, it is necessary to use
more NCC formulae for comparing. As a result, the matching time is inevitably increased. Secondly,
in performing the matching process, scanning time is another considerable problem. The larger the
image is, the slower the scanning time is. Finally, the computation time of the matching algorithm is
rather long due to the limited processing capability of the embedded CPU on which it generally runs.

To address these limitations, in this article we proposed a PCB alignment system in which the RST
template matching process was performed with compute unified device architecture (CUDA) on an
embedded GPU board. There were three major contributions as follows: (1) the number of similarity
measurements was reduced by quickly rejecting weak features in the scanning process. From that,
we can cut down the matching time; (2) moreover, in this step, the NCC formula was replaced by a sum
of products to further reduce the number of operations in the rotation matching process; (3) furthermore,
we applied hash functions to find refined positions in the refinement matching process when reducing
the scanning time by applying the implement of matching processes on the parallel threads of an
embedded GPU.

The remainder of this paper is organized as follows. In Section 2, we present researches which
were related to our work. The framework of the proposed PCB alignment system is presented in
Section 3. Section 4 describes the proposed RST template matching. The next Section is used for the
description of how we accelerated the RST algorithm. Then, Section 6 presents and discusses the
experimental results. Finally, we provide some brief concluding remarks and indicates the intended
direction of future research in Section 7.
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2. Related Work

Reducing the matching time in template matching is one of the key considerations in machine
vision. Kim et al. [23,24] performed RST template matching using circular and radial features to
deal with the scale and angle of the targets. In addition, to improve the matching time, fast Fourier
transformation was applied to reduce the computational cost of the NCC formula. Hsu and Shen [25]
presented a method for checking the integrated circuit (IC) marking on an embedded platform
automatically by first detecting the angle of the chip and then using the SAD similarity measure to
match the template image and target image. To reduce the scanning time in the inspection process, the
detection algorithm was implemented on a multi-core embedded processor. Moreover, the operations
of the algorithm were performed in parallel using Single Instruction Multiple Data (SIMD) instructions
for Arm processors known as NEON. Annaby et al. [26] proposed an improved template matching
technique for detecting missing components in PCB manufacturing. In the proposed method, the
computation time of the NCC matching process was reduced by converting 2D blocks of images into
1D blocks and then applying discrete cosine transformation (DCT) to the NCC formula. Moreover,
to deal with the matching time of template matching, Shih et al. [27] developed a robust and rapid
template matching method designated as Spiral Aggregation Map (SPLAM) in which scale-insensitive
spirals were used to extract the features required to perform rotation matching. The authors dealt
with matching time by applying the coarse-to-fine approach into position and orientation matching.
Firstly, a coarse matching process was used for position matching based on a single angle. Then,
from the results, they carried out the angle matching with more angles. Lai et al. [28] presented a
method for improving the acceleration and accuracy of the template matching process by using annulus
projection transformation (APT) vectors as image descriptors. The matching process was accelerated by
compressing a 2D image into a 1D vector. Chen et al. [29] proposed a pyramid hierarchical strategy to
search the matching position. The authors used the Hough transform to find the initial angle. After that,
refinement matching was used to improve the accuracy of the position and the orientation matching
process. Wu and Toet [30] converted blocks within the template and target images into weak binary
features. To speed up the matching time, the authors used integral images to calculate weak binary
blocks. In addition, they fast rejected poor matching patterns by using cascaded computation. Cai et
al. [31] presented an improved template matching approach for real-time visual servoing systems, in
which a normalized SAD method was used to detect the target by subtracting the gray values of the
template image from those of the reference image and then dividing the result by the maximum gray
value to obtain a normalized score, where a maximum score indicated an improved matching outcome.
To improve the scanning time, firstly, a coarse matching process was scanned with a large step to obtain
the initial matching positions. Then, the matching process was carried out in square regions which
took the initial matching position as the center and the large step of the coarse matching process as the
side length. Liu et al. [32] presented a method for reducing the time of rotation- and scale-invariant
template matching by rapidly ruling out the regions of no possible matches. The computational
cost was further reduced by applying the summed area table and it was also computed on a parallel
computing architecture. To deal with the rotation and scale invariant matching, the authors used
octagonal-star-shaped templates and scaled them with different sizes. Then, those scaled templates
were compared with reference image to find the matching targets.

The use of GPUs to accelerate the template matching process has attracted significant attention in
the recent literature. Rakvic et al. [33] presented a template matching-based iris recognition algorithm,
in which segmented iris images were converted into binary images and a matching process was then
performed by comparing the binary images with template images stored in a database using the
Hamming distance measure. To reduce the matching time, the segmentation process and matching
process were both embedded on a GPU in order to parallelize their computation. The authors in [34,35]
proposed template matching processes based on sliding windows for performing rapid earthquake
detection on a GPU. Yan et al. [36] presented an effective parallel strategy to speed up the matching
process on the thread blocks of a GPU which runs on a NVIDIA Jetson TX2. It was shown that the
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resulting matching time was almost six times faster than the selected comparison methods. Li and
Pan [37] accelerated the speed of the image matching process in binocular visual registration processes
using CUDA code and a scale-invariant feature transform (SIFT) algorithm. As a result, the matching
time on the GPU was more than 7.2 times faster than on CPU.

3. Proposed Embedded PCB Alignment System

The proposed embedded PCB alignment system was a combination of two components: hardware
and software. The former consisted of a PCB alignment platform and a NVIDIA Jetson Tx2 development
kit, while the latter included a proposed RST template matching algorithm and a GPU parallel
computation with C/C++ using CUDA.

3.1. System Hardware Consists of Two Subsystems

In general, system hardware is composed of two subsystems: namely an embedded-based
controller and a vision alignment platform. The former was built on a NVIDIA Jetson TX2 development
kit (see Figure 1e) incorporating a quad-core 2.0 Ghz 64-bit ARMv8 A57, a dual-core 2.0 Ghz ARMv8
Denver, a 256 CUDA core (1.3 Mhz NVIDIA Pascal) and 8 Gb memory. As shown in Figure 1a–c,
the vision alignment platform mainly consisted of three two-phase stepper motors (M1, M2 and
M3) and two Basler acA3800-10gm area scan cameras (C1, C2) mounted on a movable platform (PL).
The cameras were industrial monochrome cameras with a frame rate of 10 frames per second (fps) at
10 MP resolution and are nowadays widely used in many machine vision, medical, microscopy and
factory automation systems.

During the alignment process, the three stepper motors were used to control the motion of the
platform with the mounted cameras. In particular, M3 moved the platform along the y axis direction,
while M1 and M2 adjusted its rotational position. The movement of the platform in the x axis direction
was achieved by assigning the same motion values to motors M1 and M2, respectively. For each motor,
the motion distances were computed as follows:

dX1 = R*cos(θ + θx1) − R*cos(θx1) (mm), (1)

dX2 = −R*cos(θ + θx2) − R*cos(θx2) (mm), (2)

dY = −R*cos(θ + θy) − R*cos(θy) (mm), (3)

where R is defined and shown in Figure 1d and has a value of R = 42.43 mm in the present
implementation; θx1, θx2 and θy are defined and shown in Figure 1d and have values of θx1 = 315◦,
θx2 = 135◦ and θy = 225◦ in the present case; θ is the desired rotation angle of the platform; and dX1,
dX2 and dY are the displacement motions of motors M1, M2 and M3, respectively.

3.2. The Pixel-to-Metric Units Conversion Based on Four Reference Points of Cross-hair Marks

One of the main challenges in the alignment control problem considered in the present study was
that of converting the coordinates of the PCB marks to metric units (millimeters (mm) in the present
case). The stepper motors in the hardware system shown in Figure 1 provide a travel distance of
1 mm for every 1600 pulses. In order to determine the number of pixels corresponding to a travel
distance of 1 mm, a calibration process was performed in which the platform was moved along the
x and y axis directions, respectively, through a distance of 1600 pulses to four reference points (see
Figure 2). The coordinates of the four points were detected using the RST template matching algorithm
(we will present that algorithm in Section 4) and the pixel distances between the points were then
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measured. Finally, the number of pixels per 1 mm distance along the x and y axis directions (∆X and
∆Y, respectively) were calculated as follows:

∆X =

∑4
i=1 ∆xi

4
(pixels/mm), (4)

∆Y =

∑4
i=1 ∆yi

4
(pixels/mm), (5)
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3.3. Procedure of Alignment between Marks on PCB Surface and Set Points in Field of View of Cameras

It should be assumed that we started to do an alignment process with a template matching
algorithm which we will present in Section 4. The alignment procedure comprised five main steps,
as shown in Figure 3 and described in the following:

Step 1. Two input images were captured by the cameras mounted on the movable platform.
Each camera detected one mark on the PCB surface with a resolution of 1280 × 960 pixels (see Figure 3a).
Mark 1 was inside a fields of view (FOV) of the left camera (C1) and Mark 2 was inside a FOV of the
right camera (C2). Those marks are shown as red cross-hair marks in Figure 3a. The main purpose of
the vision system was to align the marks on the PCB with two set points in the fields of view (FOVs) of
the two cameras (shown as blue cross-hair marks in Figure 3a).

Step 2. The orientation of the PCB marks was detected using a RST template matching. A RST
template matching process was performed to detect the position coordinates and angles of the PCB
cross-hair marks (see Figure 3b) For each cross-hair mark, the RST algorithm output the coordinate and
orientation angle with a resolution of 0.1◦. It should be noted that the high resolution of the angular
detection process increased the accuracy of the coordinate matching process and hence improved the
overall precision of the alignment system.

Step 3. Orientation synchronization was performed between the set points and the PCB cross-hair
marks by adjusting the rotational position of the platform. Based on the angle derived in the previous
step, Equations (1)–(3) were used to determine the motions of the three stepper motors required to
rotate the platform so that the FOVs of the two cameras were aligned in parallel with the PCB (see
Figure 3c).

Step 4. The coordinates of the cross-hair marks were detected using the RST algorithm.
The distance between the set points and the PCB marks in the x and y axis directions was determined
by comparing the detected coordinates of the marks with the reference coordinates of the camera set
points (see Figure 3d).

Step 5. The marks and set points were aligned by shifting the platform as required. Using
Equations (1)–(3), the displacements required by the three stepper motors to align the marks and set
points were converted into an equivalent number of pulses and the motors were then actuated to move
the platform in the horizontal and vertical directions as required (see Figure 3e).

4. Refinement Algorithm of the Rotation, Scale and Translation (RST) Template Matching

In performing Step 2 (orientation detection) of the alignment process described in Section 3.3,
the present study proposed a RST refinement algorithm. The RST refinement algorithm involved three
steps, namely one step for training the template and two steps for performing the testing process.
In the training process, before being assigned to the RST algorithm, the template and test image were
resampled using a pyramid technique to obtain a down-sampled template (T’) and down-sampled test
image (I’), respectively. This step helped reduce the scanning time in the testing process. The levels of
the pyramid (NP) were set as 0, 1 and 2 depending on the size of the template, i.e., ≤ 40 × 40, (40 × 40)
~ (200 × 200), and ≥ (200 × 200) pixels, respectively. In the training process, Ns scale templates were
produced and the radial features of each template were extracted for rotation-invariant matching.
For each scale template, the radial features were obtained by first creating Nr radial lines (described as
yellow lines on the template image, I’, in Figure 4a), where the angle between the adjacent lines was
referred to as the angular resolution (α) and has a value of α = 360/Nr. The average grayscale pixel
value along each radial line was then computed to derive the corresponding radial feature, denoted as
Rq. When collecting the pixel values for each radial line, the coordinates of the pixels were stored in
a look-up table (LUT_R) so that when extracting the radial features of the test image, the respective
coordinates could be reused in order to locate the pixels more rapidly.

As shown in Figure 4, the procedure of the RST refinement testing first determined the rotation
angle of the PCB by rotation matching (Step 1) and then refined the matching results (Step 2). The initial
rotation matching process was performed using radial features such as those described in [10,23].
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In addition, the accuracy of the matching results was then improved via a further refinement process.
This step itself consisted of two smaller steps, namely location refinement and angle refinement.Sensors 2020, 20, x FOR PEER REVIEW 7 of 26 
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Figure 3. Global framework of the procedure of alignment between the marks on the PCB surface and
the set points in the field of views (FOVs) of cameras; (a) initial positions of marks are detected after
assigning new PCB. FOV1 and FOV2: fields of view of cameras 1 and 2, respectively; A: settle area of
PCBs. (b) Orientation angle of PCB is detected using the rotation, scale and translation (RST) algorithm;
θ: rotation angle of mark. (c) Orientation synchronization is performed between the movable platform
and the PCB. (d) Coordinates of marks are detected and the distances between the marks and the set
points are computed; (x1, y1) and (x2, y2): coordinates of marks; ∆x and ∆y: distances between marks
and set points; (e) Platform is translated in x and y directions to achieve alignment between the marks
and the set points.
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Step 1. Angle measurement using rotation matching. In Step 1, the template T’ was scanned
over the test image I’ from the top-left corner to the bottom-right corner (see Figure 4a). At each
position, Ns scale search windows were created. For each scale search window, the coordinates stored
in LUT_R were used to generate Nr radial lines, as described above for the training step. The radial
features (Ra) were calculated by computing the average grayscale pixel value along each radial line.
Angle candidates were then determined by rotating the Nr elements of Ra and for each rotation of
the line, measuring the similarity between Rq and the rotated Ra using the NCC formula shown in
Equation (6). For Nr radial lines, Ra was rotated Nr times. The Ra having the highest NCC score
among all the rotations of Ra was then selected. At each template scanning position, Ns maximum
NCC scores were obtained. The maximum score among all of these scores was chosen and compared
with a pre-set radial threshold value (t1). If the chosen maximum score was greater than this threshold
value, the corresponding angle was chosen as an angle candidate and the coordinates corresponding to
this candidate were taken forward to the refinement process performed in Step 2 of the testing process.

The normalized cross correlation (NCC) equation has the form:

ηNCC =

∣∣∣∣∣∣∣∣∣
∑Nr

i=1

(
Rqi − µRq

)
(Rai − µRa)√∑Nr

i=1

(
Rqi − µRq

)2
√∑Nr

i=1(Rai − µRa)
2

∣∣∣∣∣∣∣∣∣ ≤ 1.0 (6)

where ηNCC is NCC score; Nr is number of radial lines;
(
Rqi, µRq

)
and (Rai, µRa) are the intensity

average values and means of the radial lines on a template T’ and a scale search window, respectively.
Step 2. Robust accuracy using refinement matching processes. As described above, Step 1 of

the testing process provided a set of candidate angles and corresponding pixel coordinates. In Step 2,
the accuracy of the rotation matching process was enhanced by refining both the positions and angles
of the selected candidates. As in the previous steps, the refinement process was performed using the
down-sampled template T’ and test image I’. In general, down-sampling reduces a high-resolution
image to a lower-resolution image and is hence beneficial in reducing the computational cost of
the matching process. However, in doing so, it also reduces the attainable precision of the position
matching outcome. Moreover, a higher value of the angular resolution α reduced the angle matching
time in Step 1, but limited the accuracy of the angle matching result. To address these issues, the
refinement step in the test process consisted of two sub-steps, namely a position matching refinement
step and an angle matching refinement step, as described in the following.

Step 2.1 Robust location measurement using location refinement matching. After up-sampling
each coordinate candidate obtained in Step 1, the 2NP neighboring pixels were expanded (as shown
in Figure 4c). Every expansion pixel was then taken as the center of a new search window for the
location refinement matching step. Note that the search window had the same orientation as that
of the corresponding angle candidate in Step 1 and has a size commensurate with the Ns scale. The
NCC similarity function was then used to measure the correlations between the template (T) and the
search windows located at each of the expansion pixels. For each expansion position, a total of Ns ∗ 2NP

NCC scores were obtained. The maximum score was chosen and compared with a second refinement
threshold value (t2). If the NCC score was greater than t2, the corresponding coordinates, scale and
angle were taken as possible candidates for the refinement position matching process.

Step 2.2 Robust angle measurement using rotation angle refinement matching. To improve the
accuracy of the PCB alignment process, the present study performed angle matching with a resolution
of 0.1◦ in the refinement rotation matching process. In other words, for each angle candidate obtained
in Step 2.1, a further matching process was performed around this angle candidate with a tolerance of
±

(
α
2

)
using an angular resolution of 0.1◦, as shown in Figure 4d. In particular, search windows were

created with center positions and sizes based on the position and scale candidates obtained in Step 2.1
and the refined angles described above.
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The NCC scores between the template (T) and each search window were computed and the
orientation of the window which returned the largest NCC score was selected as the refined rotation
matching solution. It should be assumed that for simplicity the angular resolution used in Step 1
was set as α = 10◦. Thus, in Step 2.2, it was necessary to compare the similarity scores of the search
windows with 100 different angles. A bilinear interpolation approach was employed to get the pixel
values in the different rotation angles. The final outputs of the matching process were targets with the
following parameters: angle (θ), scale (s) and coordinates (x, y).
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α 

Figure 4. Global framework of the RST refinement template matching algorithm. (a) Angle matching
process based on the radial line features, with outputs of the angle candidate (θCand1), the scale
candidate (sCand1) and the coordinate candidate (xCand1, yCand1); (b) refinement matching process
comprising two sub-steps for the position matching and the angle matching, respectively; (c) refinement
process of location matching with extension pixels after converting from a low-resolution image to
a high-resolution image (figure shows illustrative case of pyramid up-sampling with level 2). The
refinement process provides outputs of three parameters, namely angle (θCand2), scale (sCand2) and
coordinates (xCand2, yCand2); (d) refinement process of rotation matching fine-tunes the angle matching
around the angle candidate (θCand2) with a tolerance of ±α/2 using angular resolution of 0.1◦.

5. Acceleration of the RST Template Matching Refinement Algorithm

To improve the matching time, in Step 1 of the RST refinement algorithm, the weak features of the
search windows scanned across the test image were quickly rejected and a reduction of the operations
in the matching process was then performed. Moreover, the entire matching process was performed
on the GPU embedded in the NVIDIA TX2 Jetson development kit; thereby accelerating the processing
time compared to that achieved using a CPU implementation.
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5.1. Acceleration of Rotation Matching Using Quickly Rejecting Weak Features and Converting NCC Formula
to Sum of Products

5.1.1. Quickly Rejecting Weak Features

As described above, in Step 1 of the rotation matching process, the average grayscale value of all
the pixels along each radial line was calculated as the radial feature. It was found that, on the test
images, there existed regions where the intensity values of the pixels were significantly different from
the intensity values of the pixels on the template. As a result, the radial features on those regions were
too different with the radial features on the template. We named those features the weak features.
To accelerate the matching algorithm, when we scanned the radial features of the template on the test
image, we converted the radial features on search windows and on the template into binary features.
Then, we measured the distance between the two binary features. If that distance was greater than a
certain threshold (tb), the corresponding search window was simply ignored. Otherwise, the NCC
similarity scores between the radial features of the template and those of the search window were
computed in the normal way, as described in Section 4. In this manner, we could reduce the number
of similarity measurements in the scanning process. Through it, the scanning time was reduced.
Converting from radial features to binary features was executed as follows:

bT(i) =
{

1, Rqi ≥ µRq

0, Rqi < µRq
, (7)

bSW(i) =
{

1, Rai ≥ µRa

0, Rai < µRa
(8)

i = 1, 2, . . . Nr,

Db =

∣∣∣∣∣∣∣
Nr∑
i=1

bT(i) −
Nr∑
i=1

bSW(i)

∣∣∣∣∣∣∣ (9)

where bT(i) and bSW(i) are the binary features of a low-resolution template image and search window,
respectively; and Db is the difference between the sum of bT and bSW .

5.1.2. Converting NCC formula to Sum of Products

After applying the quickly rejecting weak features method, the acceleration speed of the rotation
matching method was further improved using our method described in [38]. The NCC formula in
Equation (6) could be expanded as follows [39]:

ηNCC =

∣∣∣∣∣∣∣∣∣∣
∑Nr

i=1(Rqi ∗Rai) − µRq
∑Nr

i=1 Rai − µRa
∑Nr

i=1 Rqi +
∑Nr

i=1

(
µRq ∗ µRa

)
√∑Nr

i=1

(
Rqi − µRq

)2
√∑Nr

i=1 Rai2 − 2µRa
∑Nr

i=1 Rai +
∑Nr

i=1 µRa2

∣∣∣∣∣∣∣∣∣∣ (10)

where: ∑Nr

i=1
Rai = Nr ∗ µRa, (11)∑Nr

i=1
Rqi = Nr ∗ µRq, (12)

Therefore, Equation (10) can be rewritten as:

ηNCC =

∣∣∣∣∣∣∣∣∣∣
∑Nr

i=1(Rqi ∗Rai) −Nr ∗ µRq ∗ µRa√∑Nr
i=1

(
Rqi − µRq

)2
√∑Nr

i=1 Rai2 −Nr ∗ µRa ∗ µRa

∣∣∣∣∣∣∣∣∣∣ (13)
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As shown in Figure 4a, in searching for the angle candidates at any location on the test image,
it was necessary to compare the similarity between the radial lines on the template and the rotations
of the radial lines in the search window. In other words, the Nr values in Rai were rotated and their
NCC similarities were computed with the corresponding values in Rqi. Obviously, when rotating Rai,
in Equation (13), µRa is not changed. In other words, only the order of the elements in Rai was changed.

Moreover, in Equation (13), µRq and
√∑Nr

i=1

(
Rqi − µRq

)2
can both be pre-computed and Nr is a constant.

Therefore, in choosing the maximum similarity score between the radial features on the template and
those on the search window, it was only necessary to consider the sum of the products (ηSoP) of Rqi
and Rai, rather than the entire NCC formula. That is:

ηSoP =
∑Nr

i=1
(Rqi ∗Rai) (14)

In this way, the operators in Equation (6) are significantly reduced to a sum of Nr products as in
Equation (14).

After finding the search window that had a maximum similarity score, it was checked whether or
not it was an angle candidate by calculating the maximum NCC score. Subsequently, that NCC score
was compared with the threshold value, t1. The maximum NCC score can then be computed simply as

ηNCC =

∣∣∣∣∣∣∣∣∣∣
ηSoP −Nr ∗ µRq ∗ µRa√∑Nr

i=1

(
Rqi − µRq

)2
√∑Nr

i=1 Rai2 −Nr ∗ µRa ∗ µRa

∣∣∣∣∣∣∣∣∣∣ (15)

In this case, at each location of the scanning process in the rotation matching, the operations
(addition, subtraction and division by standard deviations) of the similarity measurement are
remarkably reduced. As a result, the matching time was improved.

5.2. Acceleration of RST Refinement Template Matching Algorithm by Running on Parallel Threads of GPU
with Hash Tables

To further accelerate the matching process, the entire RST algorithm was embedded in the GPU
of the NVIDIA Jetson TX2 kit. The GPU on the kit had two streaming multiprocessors (SM); each
with 128 cores and four warp schedulers. In every instruction cycle, each warp scheduler selected
one warp to execute. Each warp had a maximum size of 32 threads. In the present study, the RST
algorithm was executed through a C++ CUDA program. The program was combined of C++ source
code on the host and device. The host code referred to the code executed on the CPU and its memory.
That code was used to declare and allocate memory on both the host and the device (GPU). The host
code also transferred data from the host to the device. The device code (also known as the kernel)
was implemented on the GPU and its memory, and it runs the RST algorithm in parallel through the
threads on the GPU. The matching process was executed using the following steps.

5.2.1. Acceleration of Rotation Matching Using CUDA

First, a kernel was created to execute the angle matching process performed in Step 1 of the
algorithm, in which the radial features of the low-resolution template (T’) were scanned over the test
image. To reduce the matching time, the similarity measurement process at each location on the test
image was distributed over the different threads of the GPU using a 2D grid. Referring to Figure 5 for
illustration purposes, for a test image with a size of W = 640 (pixels) × H = 480 (pixels), each block
is assigned 4 × 4 threads. Therefore, the total number of blocks in the 2D grid was equal to N = 160
(blocks) ×M = 120 (blocks).
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Figure 5. Structure of a 2D grid used to carry out the steps of the RST algorithm. (a) Scanning line of
the radial features on the test image with a size of W × H; (b) structure of the grid with a size of N ×M
blocks; and (c) structure of the block with a size of 4 × 4 threads.

5.2.2. Location Refinement Matching Algorithm Using CUDA

The CUDA kernel for the location refinement matching step is shown in Algorithm 1.
After converting the candidates to high-resolution images, each coordinate candidate was compared
with its extension pixels ((2Np-1) pixels). In the kernel, the index of the threads was arranged along
the x dimension of the 2D grid and was taken as the number of extension pixels; while the number of
candidates was arranged along the y dimension. When implementing the refined position matching
step in parallel on the threads of the GPU, the coordinates of the extension pixels were obtained using
hash tables, with the thread index serving as the look-up keys. The hash table outputs indicated the x
and y indexes of the extension pixels (see Figure 6). Then, we added those indexes and the coordinate
candidate (after converting to high-resolution coordinate) to the refined coordinates.

Algorithm 1 Pseudo-code of location refinement matching

1: Inputs: Test image I, size of template w × h, coordinate candidate (xCand1, yCand1), angle
candidates θCand1, scale candidates sCand1, pyramid level NP, number of candidates NCand1

2: Outputs: Correlation coefficient ηNCC
3: X index: idxX← blockDim.x ∗ blockIdx.x + threadIdx.x //Number of extension pixels
4: Y index: idxY← blockDim.y ∗ blockIdx.y + threadIdx.y //Number of candidates
5: if (idxX < 2NP ) and (idxY < NCand1) then
6: Coordinate X: xRe f ined ← (idxX mod 2NP ) + (xCand1 + 2NP ) //Refinement coordinate x
7: Coordinate Y: yRe f ined ← (idxY div 2NP ) + (yCand1 + 2NP ) //Refinement coordinate y
8: Scale s: s ← sCand1 [idxY]
9: Angle θ: θ ← θCand1 [idxY]
10: for j in h do
11: for i in w do
12: Collect intensity pixel values inside a search window with a center point at

(xRe f ined, yRe f ined), an orientation: θ, and a scale: s
13: end
14: end
15: Calculate the NCC score ηNCC between the template and the search windowend
16: end
17: Return ηNCC
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Figure 6. Finding index of the extension pixels using the hash table in the location refinement matching
process running on the graphics processing unit (GPU) (figure displays a demonstration of the pyramid
up-sampling with level 2, NP = 2). (a) Description of coordinate candidate (xCand1, yCand1) and extension
pixels; (b) description of finding x and y indexes of the extension pixels.

The hash function of refined x coordinate is a modulo operator based on the index of the threads
along the x dimension, idxX, as follows:

h1(idxX) = idxX mod 2Np (16)

Similarly, the hash function of the refined y coordinate is a division as follows:

h2(idxX) = idxX div 2Np (17)

With a coordinate candidate (xCand1, yCand1) from the angle measurement step of the RST refinement
algorithm and its coordinate in a high-resolution image (xCand1 ∗ 2Np, yCand1 ∗ 2Np), the refined
coordinates (xRefined, yRefined) of the extension pixels are calculated as

xRefined = h1(idxX) + (xCand1 ∗ 2Np) (18)

yRefined = h2(idxX) + (yCand1 ∗ 2Np) (19)

The search window for Step 2.1 in the testing process of the RST refinement algorithm took the refined
coordinates (xRefined, yRefined) as a center point.

5.2.3. Rotation Angle Refinement Matching Algorithm Using CUDA

Algorithm 2 shows the CUDA kernel for the refined rotation angle matching step. The kernel
was again implemented using a 2D grid with the index of the threads running along the x dimension
taken as the index of the angles, and the index of the candidates was arranged along the y dimension.
To obtain the required angular accuracy of 0.1◦, the index of the threads along the x dimension was set
in the range of (0, (α∗10)). The refined angle, θRefined, is determined as follows:

θRefined = idxX/10.0 + θCand2 (20)

where θCand2 is the angle candidate obtained from Step 2.1 in Section 4. The refined angle was used as
the orientation of the search window in Step 2.2 of the proposed RST testing.
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Algorithm 2 Pseudo-code of rotation angle refinement matching

1: Inputs: Test image I, size of template w × h, coordinate candidate (xCand2, yCand2), angle
candidates θCand2, scale candidates sCand2, angular resolution α, number of candidates NCand2

2: Outputs: Correlation coefficient ηNCC
3: X index: idxX← blockDim.x ∗ blockIdx.x + threadIdx.x //Angular resolution
4: Y index: idxY← blockDim.y ∗ blockIdx.y + threadIdx.y //Number of candidates
5: if (idxX < α ∗ 10) and (idxY < NCand2) then
6: Angle θ: θRe f ined ← (idxX / 10.0) + θCand2 [idxY] //Refined angle
7: Coordinate X: x← xCand2 [idxY]
8: Coordinate Y: y← yCand2[idxY]
9: Scale s: s ← sCand2 [idxY]
10: for j in h do
11: for i in w do
12: Collect intensity pixel values inside a search window using a bilinear interpolation

approach with a center point at (x, y), an orientation: θRe f ined, and a scale: s
13: end
14: end
15: Calculate the NCC score ηNCC between the template and the search windowend
16: end
17: Return ηNCC

6. Experimental Results and Analysis

The experiments focused on two main aspects, namely (1) the matching time and accuracy of the
proposed RST algorithm; and (2) the practical feasibility of the PCB alignment process.

6.1. Data Collection

To support the RST algorithm testing process, two datasets were compiled, namely a fiducial
marks dataset and a PCB component dataset. The former dataset was constructed using 30 fiducial
mark templates collected from grayscale PCB images (as illustrated on the first row of Figure 7).
Each fiducial template was tested on 20 fiducial PCB test images, where these test images comprised
five blurred images, five Gaussian noise images, five rotated images and five scale images in the range
of 0.8 to 1.2 with a scale interval of 0.1. The six hundred test images were equally divided into three
different image sizes, namely 640 × 480 pixels, 800 × 600 pixels and 1280 × 960 pixels.

The PCB component dataset was compiled using 20 templates and 400 test images. The templates
consisted of various common PCB components, including integrated circuits (ICs), jacks and sockets
(as illustrated on the second row of Figure 7); while the test images were captured directly from PCB
samples using a CCD camera with a resolution of 1280 × 960 pixels. As for the fiducial marks dataset,
the test images in the PCB component dataset contained an equal number of blurred, noisy, rotated
and scale images.

Moreover, we also used alphabet blocks to generate a dataset which consisted of 10 templates and
400 perspective and occluded test images with a resolution of 1280 × 720 pixels to test the robustness of
the RST refinement algorithm. The alphabet blocks were rotated in a pitch and roll direction in a range
of ±30◦. A Secure Digital (SD) cards dataset was generated to test and compare the performance of the
proposed RST algorithm with another method. To find suitable parameters for the PCB alignment
process, we used a dataset of cross-hair marks. Table 1 summarizes the datasets used to evaluate the
performance of the proposed RST algorithm.
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Figure 7. Illustrative examples of the templates and the test images used to evaluate the performance of
the RST algorithms. Images in the first row are the template images and the test images in the fiducial
marks dataset: (a.1,b.1,c.1) show template images with sizes of 137 × 137 pixels, 75 × 75 pixels and
129 × 129 pixels, respectively; while (a.2,b.2,c.2) show the test images with sizes of 640 × 480 pixels,
800 × 600 pixels and 1280 × 960 pixels, respectively. On the other hand, the images in the second row
are the template images and the test images in the PCB component dataset: (d.1,e.1) show the template
images with sizes of 257 × 257 pixels and 212 × 145 pixels, respectively; while (d.2,e.2) show the test
images with a size of 1280 × 960 pixels.

Table 1. Datasets are used to the evaluate performance of the RST algorithms.

Dataset Size of Test Images (pixels) No. of Templates No. of Test Images

Fiducial Marks

640 × 480 10 200

800 × 600 10 200

1280 × 960 10 200

PCB Component 1280 × 960 20 400

Alphabet Blocks 1280 × 720 10 400

Secure Digital (SD) Cards 640 × 480 5 50

Cross-hair Marks 1280 × 960 1 100

6.2. Results and Analysis

In evaluating the performance of the RST algorithm, the parameters were set as follows. Step 1:
angular resolution α = 10◦ (number of radial lines Nr = 36) and number of scales Ns = 5 (in range
of 0.8 to 1.2 with a resolution of 0.1). Step 2: angular resolution α = 0.1◦. The threshold value for
rejecting the weak features in Step 1 was set as tb = 1/3Nr, while the threshold values for the candidate
selection in Step 1 and Step 2 were set as 0.85 for the rotation matching process and 0.7 for the location
refinement matching process and rotation angle refinement matching process.

The experiments were conducted on two different platforms, namely a PC with an Intel Core
i7-6700 (Intel Corporation, Santa Clara, United States) and the embedded NVIDIA Jetson TX2 system
described in Section 3.1. For the PC platform, the tests were performed to compare the performance
of the original RST algorithm [23] (PC-RST) and the improved RST algorithm (PC-Improved RST),
whereas the latter algorithm adopted the methods described in Section 5.1 for rejecting the weak
features and cutting down operators of the NCC formula. In addition, the performance of the improved
RST algorithm was also compared with the matching results of a fast screening RST template matching
(FAsT-Match) approach in Liu et al. [32]. The performance evaluations on the embedded system
considered three different RST algorithm versions, namely (1) the RST refinement algorithm running



Sensors 2020, 20, 2736 16 of 26

on a CPU (em-RST); (2) the RST refinement algorithm with an acceleration of the rotation matching
(described in Section 5.1) running on a CPU (emCPU-Improved RST); and (3) the RST refinement
algorithm with acceleration of the rotation matching running on a GPU (emGPU-Improved RST).

6.2.1. Comparative Evaluation Experiments Using Fiducial Marks Dataset

This testing was implemented to compare the performances between the platforms and between
the RST algorithm versions based on the fiducial marks dataset. Table 2 summarizes the performance
results obtained in the various tests on the two different platforms. On the PC-based platform, in
general, the PC-Improved RST algorithm was around 4.5× to 6.0× faster than the original algorithm [23],
PC-RST. Furthermore, PC-Improved RST was faster than FAsT-Match when the algorithms were tested
on images with sizes of 1280 × 960 pixels, while the accuracy was about 2.8% lower than that of
FAsT-Match. The results showed that the proposed method reduced the matching time of the RST
matching process, while having no significant effect on the accuracy of the matching results.

Table 2. Comparison of the average matching time and the accuracy of the RST template matching
algorithms on different platforms. On PC platform: the original RST [23] (PC-RST) and the improved
RST algorithm (PC-Improved RST). On the embedded system: the RST refinement algorithm (em-RST),
the RST refinement with acceleration of the rotation matching (emCPU-Improved RST) and the RST
refinement with acceleration of the rotation matching running on GPU (emGPU-Improved RST). Those
algorithms also were compared with a fast screening RST template matching [32] (FAsT-Match).

Methods

Image Size

640 × 480 (pixels) 800 × 600 (pixels) 1280 × 960 (pixels)

Time(s) Accuracy Time(s) Accuracy Time(s) Accuracy

PC-based Platform

PC-RST [23] 0.618 98.0% 1.075 98.0% 1.326 97.5%

FAsT-Match [32] 0.1 99.9% - - 0.4 99.8%

PC- Improved RST 0.099 97.5% 0.186 95.5% 0.291 97.0%

Embedded System-based Platform

em-RST 1.914 97.0% 5.668 96.5% 9.517 95.0%

emCPU-Improved RST 0.568 92.0% 1.633 95.0% 3.664 98.0%

emGPU-Improved RST 0.197 96.5% 0.342 95.5% 0.301 96.0%

Regarding the embedded platforms, a comparison of the emCPU-Improved RST and em-RST
showed that the former algorithm reduced the matching time by around 70.3%, 71.2% and 61.5% for
test image sizes of 640 × 480, 800 × 600 and 1280 × 960 pixels, respectively. These results proved
that the two methods mentioned in Section 5.1 were also effective when running on the embedded
system platform. Compared to the FAsT-Match algorithm, the emGPU-Improved RST algorithm was
faster when tested on test image sizes of 1280 × 960 pixels. On the other hand, as shown in Table 2,
for all of the algorithms, the matching time generally increased with an increasing test image size.
However, for the emGPU-Improved RST, the matching time varied only very slightly as the test image
resolution increased since the matching process was performed in parallel on the GPU. Consequently,
the scanning processes were executed concurrently on threads of the GPU, and as a result, the algorithm
can cope effectively with the increase of the resolution of the test image. Comparing the matching times
between emCPU-Improved RST and emGPU-Improved RST, it was found that the GPU-based platform
reduced the matching time by 2.9× and 4.8× for test images with a size of 640 × 480 and 800 × 600
pixels, respectively. Moreover, the matching time was reduced by 12.2× for the image with a size of
1280 × 960 pixels. In other words, the performance advantage of the GPU-based platform increased
with an increasing test image size. Compared to em-RST, performing the matching process on the
GPU reduced the matching time by around 32× for a resolution of 1280 × 960 pixels. The GPU-based
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matching accuracy had a value of around 96%, irrespective of the test image resolution. Overall, the
results confirmed that the acceleration of the RST algorithm achieved by running the algorithm in
parallel on the GPU was not obtained at the expense of a reduction in the matching accuracy.

6.2.2. Comparative Evaluation Experiments Using PCB Component Dataset

The performance of the emGPU-Improved RST template matching was further tested on the PCB
component dataset. As shown in Table 3, the matching time was found to be 0.382s. In comparison
with the testing result on the fiducial marks database, the accuracy was degraded slightly to 94.5%.
Figure 8 shows the matching error ratios of the different types of test images. Specifically, the rotated
images accounted for 34% of the total matching errors in the test process. As described in Section 4,
angle matching with an angular resolution of 0.1◦ was performed on all the test images. The percentage
of noise test images was 8% of the totally error, while the algorithm could deal well with the blurred
images with 4% error. As shown in Figure 8, the scaled images accounted for 54% of the total errors
(5.5%) obtained in the testing process. Figure 9 shows more details about the scale error contribution
on the scale factors. The error mostly took place within scale factors 0.8 and 1.2. It was found
that the algorithm performance was extremely sensitive to the scale of the test images, particularly
with large-scale images. Figure 10 presents some illustrative scale-matching results obtained by the
emGPU-Improved RST algorithm for test images with scales ranging from 0.8 to 1.2 in intervals of 0.1.
Figure 11 presents some illustrative matching results for the blurred and noisy images.

Table 3. The performance of the emGPU-Improved RST algorithm on the PCB component dataset.

Method Average Matching Time(s) Accuracy

emGPU-Improved RST 0.382 94.0%Sensors 2020, 20, x FOR PEER REVIEW 18 of 26 
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Figure 11. Results obtained for the test images with blurred and noise conditions: (a) blurred condition
and (b) noise condition.

In order to estimate the rotation matching of the proposed method, we selected 10 templates from
the PCB component dataset, and tested on 100 images. More specifically, every template was tested
on 10 rotational images. Each test image was cropped to a size of 500 × 500 pixels with the template
located at the center, and then rotated from 0.00◦ to 2.00◦ with a resolution of 0.2◦. Table 4 shows the
rotation performance of the proposed RST algorithm. In general, the angular errors fluctuated around
0.2◦. The maximum angular error was 0.3◦, while the average angular error was 0.107◦. Moreover, we
used a standard deviation of error (StD) to measure the errors of the angular results. The StD was
calculated by using Equation (21). In the article [2], the authors also used a high-resolution angle
matching for template matching to position the marking point on the PCBs. They obtained the StD
of angle matching of 0.2◦. In this study, as shown in Table 4, the maximum StD of the angular error
was lower with a value of 0.074◦. The results showed that the refinement process of the rotation angle
matching contributed towards an effective and stable method to demonstrate the robust accuracy of
the matching process.
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Table 4. The rotational matching results is carried out on 10 rotation PCB images (500 × 500 pixels).

Test
Images

Ground
Truth

(◦)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Max.
Error
(◦)

Mean
Error
(◦)

StD

PCBR01
Predict 0.0 0.1 0.3 0.5 0.8 1.0 1.2 1.3 1.5 1.7

Error 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.10 0.06 0.052

PCBR02
Predict 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.7

Error 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.10 0.01 0.032

PCBR03
Predict 0.0 0.1 0.4 0.5 0.7 1.0 1.2 1.4 1.6 1.8

Error 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.10 0.03 0.048

PCBR04
Predict 0.2 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Error 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.20 0.11 0.032

PCBR05
Predict 0.0 0.1 0.3 0.5 0.7 1.0 1.2 1.3 1.5 1.7

Error 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.10 0.07 0.048

PCBR06
Predict 0.0 0.1 0.3 0.5 0.8 1.0 1.2 1.3 1.5 1.8

Error 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.10 0.05 0.053

PCBR07
Predict 0.0 0.0 0.2 0.5 0.8 1.1 1.2 1.3 1.5 1.7

Error 0.0 0.2 0.2 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.20 0.09 0.074

PCBR08
Predict 359.7 359.9 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

Error 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.30 0.30 0.00

PCBR09
Predict 0.2 0.5 0.6 0.9 1.0 1.3 1.4 1.7 1.9 2.1

Error 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.30 0.26 0.052

PCBR10
Predict 359.9 0.1 0.3 0.6 0.7 0.9 1.1 1.3 1.5 1.7

Error 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.10 0.09 0.032

Average 0.16 0.107 0.04

The standard deviation of error is calculated as follows:

StD =

√∑N
i=1(xi − x)2

N − 1
(21)

where StD: standard deviation of error, N: the number of test samples, xi: test error of the ith test
sample, x: mean of test errors on test samples.

6.2.3. Comparative Evaluation Experiments Using SD Cards Dataset

The performance of the RST refinement algorithm was compared with a parallelized template
matching approach on an embedded platform [25] (it should be noted that the approach presented
in [25] used the SAD method, which has a significantly cheaper computation cost but is not as robust
as the NCC, to measure the similarity). Based on the information of the dataset used in that article, we
generated a similar dataset of SD cards. Our dataset consisted of five templates with a resolution of
100 × 80 pixels and 50 test images with a size of 640 × 480 pixels. As the approach in [25], we only
considered the rotation and translation functions. The threshold values t1 and t2 were adjusted to 0.9
and 0.8, respectively. Table 5 shows the matching time of the two approaches. The results showed that
the RST refinement algorithm was a little bit faster than the algorithm in [25]. Figure 12 illustrates the
matching results with the different angle of targets.
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Table 5. The performance of the emGPU-Improved RST algorithm on the SD cards dataset.

Methods
Average Matching Time on Each Type of Dataset(s) Average Matching

Time(s)SD1 SD2 SD3 SD4 SD5

[25] - - - - - 0.031

emGPU-Improved RST 0.025 0.024 0.025 0.043 0.023 0.028
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6.2.4. Performance Evaluation Experiments Using Alphabet Blocks Dataset

We tested the emGPU-Improved RST algorithm using the alphabet blocks dataset with perspective
and occluded images. The test process obtained an average execution time of 0.126s and an accuracy
of 93.3%. Figure 13 illustrates the matching results on the dataset. Those results show that the
proposed algorithm can deal well with perspective and the occluded conditions of images. In addition,
the algorithm was also tested on easily confused images. Templates were correctly matched when they
were placed next to similar objects (as shown in Figure 13g,h).

6.2.5. Cross-Hair Mark Detection Experiments Using emGPU-Improved RST

A further series of experiments was performed to investigate the trade-off between the matching
time and the accuracy of the improved GPU-based RST algorithm. In performing the experiments, the
proposed RST algorithm was tested on 100 fiducial cross-hair mark images. Moreover, the threshold
value in Step 1 (t1) was varied in the range of 0.6 to 0.95, while that in Step 2 (t2) was adjusted in the
range of 0.6 to 0.75. In addition, to evaluate the performance of the proposed PCB alignment method
in practical manufacturing environments, the test images were added to with noise, foreign objects,
stains or smudges to the target region, or by changing the light conditions from bright to dark. As
shown in Figure 14, as the threshold values were increased, the accuracy and matching time reduced.
Based on an inspection of Figure 14, the optimal values of t1 and t2 were determined to be 0.85 and 0.7,
respectively (giving an accuracy of 97% and an average matching time of 0.437s). Figure 15a shows the
template (with a size of 303 × 303 pixels) used to detect the cross-hairs. The cross-hairs were captured
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by the two cameras in the hardware system with a resolution of 1280 × 960 pixels. The matching results
(see Figure 15b–i) showed that although the region of targets on the test images were significantly
changed, the proposed RST algorithm could overcome this effectively. It proved that the proposed RST
algorithm obtained practical effectiveness which could struggle with changes on the PCB surface.
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Figure 13. Matching results for the alphabet blocks dataset with the different perspective and occluded
conditions: (a,b) show a description of the images with pitch angles of−30 and +30 degrees, respectively;
(c) and (d) show a description of the images with roll angles of −30 and +30 degrees, respectively;
(e,f) show a description of the occluded images; (g,h) show a description of the easily confused images,
in which the former shows that the target “b” was matched correctly, while the object “inverted-q” was
an easily confused object with target “b”. The same for the target “n” and the easily confused object
“inverted-u” in (h); (i) illustrates the direction of pitch and roll axes. All the images have a resolution of
1280 × 720 pixels.
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Figure 15. Matching results for the PCB cross-hair marks under different environmental conditions.
(a) Cross-hair mark template (303 × 303 pixels). From (b) to (c), the test images have a size of
1280 × 960 pixels, in which: (b,c) are the matching results obtained under the bright and dark conditions,
respectively; (d,e) are the matching results obtained for foreign object placement inside the targets;
(f–i) are the matching results obtained for targets affected by stains and smudges.

6.2.6. PCB Alignment Experiments Using emGPU-Improved RST

The PCB alignment experiments were performed using the threshold values described above
and randomly-chosen positions of the PCB in the settle area of the system. Figure 16 shows the
initial locations of the two PCB cross-hair marks, as observed by the two cameras in the experimental
setup (it should be noted that the small red cross-marks show the set points in the FOVs of the two
cameras). Table 6 summarizes the experimental results obtained for the 10 trials. To evaluate the
alignment performance, the Euclidean distance formula was used to measure the distance between
the coordinates of the cross-hair marks after the alignment process and the coordinates of the set
points. The computed distance values (expressed in pixels) were then divided by the calibration value
(∆X = ∆Y = 300 pixels/mm) to obtain the corresponding metric values. As shown at the foot of Table 6,
the average distance errors for cross-hair mark 1 and cross-hair mark 2 were 36.4 µm and 27.6 µm,
respectively. In comparison to the packaging standard [38], the largest distance error (36.4 µm) was
equivalent to 9% of the smallest pin spacing (0.4 mm) of quad flat packaged (QFP) integrated circuits
(ICs), 2.8% of the smallest pin spacing (1.27 mm) of the small-outline IC (SOIC) package ICs, and 1.4%
of the pin spacing (2.54 mm) of dual in-line packaged (DIP) ICs. The comparison showed that the
alignment error was still within an acceptable range to serve in the PCB manufacturing processes.
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Figure 16. Fields of view of Cameras 1 and 2 showing the PCB cross marks (large white cross marks)
and the set points on the fields of view (small red cross marks).

Table 6. Experimental PCB alignment results. (Set point coordinates: in FOV1: (x1 = 598, y1 = 482) and
in FOV2: (x2 = 480, y2 = 505).).

Experiment
(Exp.)

Initial Coordinates (pixels) Post-Alignment Coordinates
(pixels) Distance Error (µm)

Cross-Mark 1 Cross-Mark 2 Cross-Mark 1 Cross-Mark 2 Cross-Mark 1 Cross-Mark 2

Exp. #1 x1 = 427
y1 = 604

x2 = 308
y2 = 700

x1 = 608
y1 = 488

x2 = 308
y2 = 700 38.8 26.8

Exp. #2 x1 = 814
y1 = 580

x2 = 694
y2 = 697

x1 = 605
y1 = 471

x2 = 694
y2 = 697 43.5 58.2

Exp. #3 x1 = 426
y1 = 288

x2 = 301
y2 = 416

x1 = 608
y1 = 471

x2 = 301
y2 = 416 49.5 28.6

Exp. #4 x1 = 783
y1 = 295

x2 = 661
y2 = 408

x1 = 608
y1 = 478

x2 = 661
y2 = 408 35.9 21.1

Exp. #5 x1 = 755
y1 = 541

x2 = 632
y2 = 420

x1 = 602
y1 = 488

x2 = 632
y2 = 420 24.0 3.3

Exp. #6 x1 = 408
y1 = 283

x2 = 286
y2 = 432

x1 = 605
y1 = 478

x2 = 286
y2 = 432 26.8 23.6

Exp. #7 x1 = 500
y1 = 341

x2 = 378
y2 = 572

x1 = 595
y1 = 476

x2 = 378
y2 = 572 22.4 30.1

Exp. #8 x1 = 781
y1 = 551

x2 = 659
y2 = 666

x1 = 606
y1 = 482

x2 = 659
y2 = 666 26.7 18.8

Exp. #9 x1 = 644
y1 = 682

x2 = 524
y2 = 754

x1 = 611
y1 = 488

x2 = 524
y2 = 754 47.7 31.6

Exp. #10 x1 = 574
y1 = 227

x2 = 449
y2 = 325

x1 = 612
y1 = 478

x2 = 449
y2 = 325 48.5 34.3

Average Distance Error (µm): 36.4 27.6

7. Conclusions

This paper presented an improved RST template matching technique for PCB alignment in the
assembly line manufacturing of electronic devices. It was shown that the template matching process
achieved an accuracy of around 96% following the application of a refinement process to the original
position and angle matching results. Furthermore, through a parallel implementation on a GPU
embedded system, the matching algorithm achieved a matching time of just around 0.3s when applied
to a test image with a size of 1280 × 960 pixels. The experimental results obtained in a series of
PCB cross-hair mark matching trials showed that the algorithm was robust towards the effects of the
illumination conditions and the presence of noise, foreign objects, stains and smudges in the target
area. Moreover, the alignment process had a maximum positioning error of just 36.4µm. It did not
have too great an effect on the accuracy of the PCB manufacturing processes. Future studies will aim to
further reduce the positioning error by replacing the three motors in the hardware system with more
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precise motors in order to reduce the error when converting from the system coordinates to the number
of motor pulses. In addition, although the algorithm provides an effective method for the alignment
process, in some circumstances of large scales, it gives wrong results. A large-scale matching process
will be taken into account to improve the accuracy of the matching process.

Author Contributions: Conceptualization: J.-J.J.L., M.-T.L., C.-T.T., and S.-M.G.; data curation, M.-T.L.;
methodology, M.-T.L.; software, M.-T.L.; writing—original draft preparation, M.-T.L.; writing—review and
editing, C.-T.T., S.-M.G. and J.-J.J.L.; validation, C.-T.T.; supervision, S.-M.G. and J.-J.J.L.; Project administration,
J.-J.J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (MOST), Taiwan, R.O.C., under
Grant No. MOST 108-2221- E-006-143, by Contrel Technology Co., Ltd. (Taiwan) and Tongtai Machine & Tool Co.,
Ltd. (Taiwan).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nguyen, H.D. Camera System for Aligning Components of a PCB. US Patent 9,265,186 B2, 16 February 2016.
2. Kuo, C.-F.J.; Tsai, C.-H.; Wang, W.-R.; Wu, H.-C. Automatic marking point positioning of printed circuit

boards based on template matching technique. J. Intell. Manuf. 2016, 30, 671–685. [CrossRef]
3. Tsai, D.-M.; Hsieh, Y.-C. Machine Vision-Based Positioning and Inspection Using Expectation–Maximization

Technique. IEEE Trans. Instrum. Meas. 2017, 66, 2858–2868. [CrossRef]
4. Zhong, F.; He, S.; Li, B. Blob analyzation-based template matching algorithm for LED chip localization. Int. J.

Adv. Manuf. Technol. 2015, 93, 55–63. [CrossRef]
5. Opromolla, R.; Fasano, G.; Accardo, D. A Vision-Based Approach to UAV Detection and Tracking in

Cooperative Applications. Sensors 2018, 18, 3391. [CrossRef]
6. Dybedal, J.; Aalerud, A.; Hovland, G. Embedded Processing and Compression of 3D Sensor Data for Large

Scale Industrial Environments. Sensors 2019, 19, 636. [CrossRef]
7. Lee, S.-H.; Yang, C.-S. A Real Time Object Recognition and Counting System for Smart Industrial Camera

Sensor. IEEE Sens. J. 2017, 17, 2516–2523. [CrossRef]
8. Sassi, P.; Tripicchio, P.; Avizzano, C.A. A Smart Monitoring System for Automatic Welding Defect Detection.

IEEE Trans. Ind. Electron. 2019, 66, 9641–9650. [CrossRef]
9. Avizzano, C.A.; Tripicchio, P.; Ruffaldi, E.; Filippeschi, A.; Jacinto-Villegas, J.M. Real-Time Embedded Vision

System for the Watchfulness Analysis of Train Drivers. IEEE Trans. Intell. Transp. Syst. 2019, 1–11. [CrossRef]
10. Le, M.-T.; Li, C.-H.G.; Guo, S.-M.; Lien, J.-J.J. Embedded-Based Object Matching and Robot Arm Control.

In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering
(CASE), Vancouver, BC, Canada, 22–26 August 2019; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2019; pp. 1296–1301.

11. Zhao, M.; Hu, C.; Wei, F.; Wang, K.; Wang, C.; Jiang, Y. Real-Time Underwater Image Recognition with FPGA
Embedded System for Convolutional Neural Network. Sensors 2019, 19, 350. [CrossRef]

12. Wofk, D.; Ma, F.; Yang, T.-J.; Karaman, S.; Sze, V. FastDepth: Fast Monocular Depth Estimation on Embedded
Systems. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 20–24 May 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA,
2019; pp. 6101–6108.

13. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway,
NJ, USA, 2018; pp. 4510–4520.

14. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network
for Mobile Devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2018; pp. 6848–6856.

15. Wang, R.J.; Li, X.; Ao, S.; Ling, C.X. Pelee: A Real-Time Object Detection System on Mobile Devices.
In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8
December 2018; pp. 1963–1972.

http://dx.doi.org/10.1007/s10845-016-1274-2
http://dx.doi.org/10.1109/TIM.2017.2717284
http://dx.doi.org/10.1007/s00170-015-7638-5
http://dx.doi.org/10.3390/s18103391
http://dx.doi.org/10.3390/s19030636
http://dx.doi.org/10.1109/JSEN.2017.2671457
http://dx.doi.org/10.1109/TIE.2019.2896165
http://dx.doi.org/10.1109/TITS.2019.2955787
http://dx.doi.org/10.3390/s19020350


Sensors 2020, 20, 2736 25 of 26

16. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. MnasNet: Platform-Aware
Neural Architecture Search for Mobile. In Proceedings of the 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; Institute of Electrical and
Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 2815–2823.

17. Jeon, D.; Kim, D.-H.; Ha, Y.-G.; Tyan, V. Image processing acceleration for intelligent unmanned aerial vehicle
on mobile GPU. Soft Comput. 2015, 20, 1713–1720. [CrossRef]

18. Zhang, J.; Li, J. Improving the Performance of OpenCL-based FPGA Accelerator for Convolutional Neural
Network. In Proceedings of the Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays-FPGA ’17, Monterey, CA, USA, 22–24 February 2017; Association for
Computing Machinery (ACM): New York, NY, USA, 2017; pp. 25–34.

19. Gong, T.; Fan, T.; Guo, J.; Cai, Z. GPU-based parallel optimization of immune convolutional neural network
and embedded system. Eng. Appl. Artif. Intell. 2017, 62, 384–395. [CrossRef]

20. Juárez, D.H.; Chacón, A.; Espinosa, A.; Vázquez, D.; Moure, J.C.; López, A.M. Embedded Real-time Stereo
Estimation via Semi-global Matching on the GPU. Procedia Comput. Sci. 2016, 80, 143–153. [CrossRef]

21. Amert, T.; Otterness, N.; Yang, M.; Anderson, J.H.; Smith, F.D. GPU Scheduling on the NVIDIA TX2: Hidden
Details Revealed. In Proceedings of the 2017 IEEE Real-Time Systems Symposium (RTSS), Paris, France,
5–8 Decemeber 2017; pp. 104–115. [CrossRef]

22. Hossain, S.; Lee, D.-J. Deep Learning-Based Real-Time Multiple-Object Detection and Tracking from Aerial
Imagery via a Flying Robot with GPU-Based Embedded Devices. Sensors 2019, 19, 3371. [CrossRef] [PubMed]

23. Kim, H.Y.; De Araújo, S.A. Grayscale Template-Matching Invariant to Rotation, Scale, Translation, Brightness
and Contrast. In Proceedings of the 2nd Pacific Rim Symposium on Video and Image Technology (PSIVT
2007), Santiago, Chile, 17–19 December 2007; pp. 100–113.

24. Kim, H.Y. Rotation-discriminating template matching based on Fourier coefficients of radial projections with
robustness to scaling and partial occlusion. Pattern Recognit. 2010, 43, 859–872. [CrossRef]

25. Hsu, F.-H.; Shen, C.-A. The Design and Implementation of an Embedded Real-Time Automated IC Marking
Inspection System. IEEE Trans. Semicond. Manuf. 2018, 32, 112–120. [CrossRef]

26. Annaby, M.H.; Fouda, Y.; Rushdi, M.A. Improved Normalized Cross-Correlation for Defect Detection in
Printed-Circuit Boards. IEEE Trans. Semicond. Manuf. 2019, 32, 199–211. [CrossRef]

27. Shih, H.-C.; Yu, K.-C. SPiraL Aggregation Map (SPLAM): A new descriptor for robust template matching
with fast algorithm. Pattern Recognit. 2015, 48, 1707–1723. [CrossRef]

28. Lai, J.; Lei, L.; Deng, K.; Yan, R.; Ruan, Y.; Jinyun, Z. Fast and robust template matching with majority
neighbour similarity and annulus projection transformation. Pattern Recognit. 2020, 98, 107029. [CrossRef]

29. Chen, F.; Ye, X.; Yin, S.; Ye, Q.; Huang, S.; Tang, Q. Automated vision positioning system for dicing
semiconductor chips using improved template matching method. Int. J. Adv. Manuf. Technol. 2018, 100,
2669–2678. [CrossRef]

30. Wu, T.; Toet, A. Speed-up template matching through integral image based weak classifiers. J. Pattern
Recognit. Res. 2014, 1, 1–12. [CrossRef]

31. Cai, J.; Huang, P.; Zhang, B.; Wang, D. A TSR Visual Servoing System Based on a Novel Dynamic Template
Matching Method †. Sensors 2015, 15, 32152–32167. [CrossRef] [PubMed]

32. Liu, B.; Shu, X.; Wu, X. Fast Screening Algorithm for Rotation Invariant Template Matching. In Proceedings
of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October
2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 3708–3712.

33. Rakvic, R.; Broussard, R.; Ngo, H. Energy Efficient Iris Recognition With Graphics Processing Units. IEEE
Access 2016, 4, 2831–2839. [CrossRef]

34. Mu, D.; Lee, E.-J.; Chen, P. Rapid earthquake detection through GPU-Based template matching. Comput.
Geosci. 2017, 109, 305–314. [CrossRef]

35. Beaucé, E.; Frank, W.B.; Romanenko, A. Fast Matched Filter (FMF): An Efficient Seismic Matched-Filter
Search for Both CPU and GPU Architectures. Seism. Res. Lett. 2017, 89, 165–172. [CrossRef]

36. Yan, B.; Xiao, L.; Hang, Z.; Xu, D.; Ruan, L.; Wang, Z.; Zhang, Y. An adaptive template matching-based
single object tracking algorithm with parallel acceleration. J. Vis. Commun. Image Represent. 2019, 64, 102603.
[CrossRef]

37. Li, J.; Pan, Y. GPU-based parallel optimization for real-time scale-invariant feature transform in binocular
visual registration. Pers. Ubiquitous Comput. 2019, 23, 465–474. [CrossRef]

http://dx.doi.org/10.1007/s00500-015-1656-y
http://dx.doi.org/10.1016/j.engappai.2016.08.019
http://dx.doi.org/10.1016/j.procs.2016.05.305
http://dx.doi.org/10.1109/rtss.2017.00017
http://dx.doi.org/10.3390/s19153371
http://www.ncbi.nlm.nih.gov/pubmed/31370336
http://dx.doi.org/10.1016/j.patcog.2009.08.005
http://dx.doi.org/10.1109/TSM.2018.2875920
http://dx.doi.org/10.1109/TSM.2019.2911062
http://dx.doi.org/10.1016/j.patcog.2014.11.004
http://dx.doi.org/10.1016/j.patcog.2019.107029
http://dx.doi.org/10.1007/s00170-018-2845-5
http://dx.doi.org/10.13176/11.516
http://dx.doi.org/10.3390/s151229884
http://www.ncbi.nlm.nih.gov/pubmed/26703609
http://dx.doi.org/10.1109/ACCESS.2016.2571747
http://dx.doi.org/10.1016/j.cageo.2017.09.009
http://dx.doi.org/10.1785/0220170181
http://dx.doi.org/10.1016/j.jvcir.2019.102603
http://dx.doi.org/10.1007/s00779-019-01222-3


Sensors 2020, 20, 2736 26 of 26

38. Intel. Intel Packaging Databook. 2010. Available online: http://intel-vintage-developer.eu5.org/DESIGN/

FLCOMP/PACKDATA/PACKBOOK.HTM (accessed on 8 May 2020).
39. James Lien, J.J. Automatic Recognition of Facial Expressions Using Hidden Markov Models and Estimation

of Expression Intensity. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, April 1998.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://intel-vintage-developer.eu5.org/DESIGN/FLCOMP/PACKDATA/PACKBOOK.HTM
http://intel-vintage-developer.eu5.org/DESIGN/FLCOMP/PACKDATA/PACKBOOK.HTM
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Proposed Embedded PCB Alignment System 
	System Hardware Consists of Two Subsystems 
	The Pixel-to-Metric Units Conversion Based on Four Reference Points of Cross-hair Marks 
	Procedure of Alignment between Marks on PCB Surface and Set Points in Field of View of Cameras 

	Refinement Algorithm of the Rotation, Scale and Translation (RST) Template Matching 
	Acceleration of the RST Template Matching Refinement Algorithm 
	Acceleration of Rotation Matching Using Quickly Rejecting Weak Features and Converting NCC Formula to Sum of Products 
	Quickly Rejecting Weak Features 
	Converting NCC formula to Sum of Products 

	Acceleration of RST Refinement Template Matching Algorithm by Running on Parallel Threads of GPU with Hash Tables 
	Acceleration of Rotation Matching Using CUDA 
	Location Refinement Matching Algorithm Using CUDA 
	Rotation Angle Refinement Matching Algorithm Using CUDA 


	Experimental Results and Analysis 
	Data Collection 
	Results and Analysis 
	Comparative Evaluation Experiments Using Fiducial Marks Dataset 
	Comparative Evaluation Experiments Using PCB Component Dataset 
	Comparative Evaluation Experiments Using SD Cards Dataset 
	Performance Evaluation Experiments Using Alphabet Blocks Dataset 
	Cross-Hair Mark Detection Experiments Using emGPU-Improved RST 
	PCB Alignment Experiments Using emGPU-Improved RST 


	Conclusions 
	References

