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Abstract: Message Queuing Telemetry Transport (MQTT) is one of the dominating protocols for
edge- and cloud-based Internet of Things (IoT) solutions. When a security vulnerability of an IoT
device is known, it has to be fixed as soon as possible. This requires a firmware update procedure.
In this paper, we propose a secure update protocol for MQTT-connected devices which ensures the
freshness of the firmware, authenticates the new firmware and considers constrained devices. We
show that the update protocol is easy to integrate in an MQTT-based IoT network using a semantic
approach. The feasibility of our approach is demonstrated by a detailed performance analysis of our
prototype implementation on a IoT device with 32 kB RAM. Thereby, we identify design issues in
MQTT 5 which can help to improve the support of constrained devices.

Keywords: Internet of Things; security; firmware update; MQTT; edge computing

1. Introduction

Internet of Things (IoT) devices (further referred to as devices) are cyber-physical
objects which are equipped with sensors and actuators and are connected to the Internet.
They can be constrained in terms of computational power, memory, network bandwidth
and energy. Billions [1] of such devices are used meanwhile in home automation and
industrial domains such as agriculture and manufacturing. In case a security exploit is
identified, the firmware should be fixed as soon as possible. Otherwise, the risk exists that
these IoT devices are hijacked and misused, e.g., as a botnet. Hence, a firmware update
solution for such devices is essential to deal with vulnerabilities [2].

Further, it must be ensured that patches and updates are only obtained from trustwor-
thy sources. In the update process, there are two main security properties to prove:

1. Authenticated firmware: The device has to be able to verify that the received firmware
is sent by a trustworthy source.

2. Freshness of the firmware: The freshness property claims that the device has to be able to
verify that the new firmware has a higher version number than the installed firmware.

The freshness property is even more important in the IoT: To save energy, only fresh
updates should be transferred to the IoT device. Hence, the freshness of the firmware
should be proven before the firmware transmission is started. The freshness property also
prevents replay attacks.

We propose and evaluate an update protocol for IoT devices managed by MYNO [3]
which is based on the open protocols Message Queuing Telemetry Transport (MQTT) [4]
and the Network Configuration Protocol (NETCONF) [5]. MQTT is a common protocol
in the IoT domain [6]. The NETCONF protocol is an Internet Engineering Task Force
(IETF). specification for the configuration management of network devices. In the MYNO
architecture, the IoT devices are separated from the Internet via a gateway running on the
edge node. Since the edge node is a more powerful device compared to the IoT devices, it
is suited to overtake more complex and energy-consuming tasks, for example to distribute
firmware updates.
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The main scientific contributions of this paper are:

• We propose an MQTT-based architecture for IoT management and show how the
update process is integrated.

• The proposed MYNO Update Protocol (MUP) is suited for constrained devices which
is demonstrated with our prototype on an IoT device with only 32 kB RAM and the
firmware transmission over 6LoWPAN.

• We assess the security properties of MUP in Section 4 and show that MUP fulfills
the security properties authenticated and fresh firmware and is also safe against replay
attacks.

• The implementation challenges are discussed in Section 5. Especially, the need of
slicing is motivated.

• We give a detailed analysis of the communication overhead regarding MQTT and
6LoWPAN (see Section 6).

• We discuss the implementation issues in Section 7 and identify optimization potential
in MQTT implementations and the MQTT standard to further improve the support of
constrained devices.

Before we present and evaluate the MYNO Update Protocol (MUP) in Section 3, the
next section discusses the security properties of related update protocols from the literature
and their suitability for constrained devices.

2. Related Work

Samuel et al. [7] present The Update Framework (TUF) which builds the basis of the
update system Thandy [8]. Thandy was originally developed for secure updates for the
Tor project [9]. The design of TUF focuses on the security principle survivability, defined as
the ability of the system to function correctly while under attack or partial compromise.
For better resilience against key compromise, they propose the separation of duties and
multi-signature trust. Multi-signature trust may be achieved by signatures of multiple roles
or by threshold signatures, where at least t signers are required out of a set of n potential
signers. Further, TUF uses a two-step approach where signed metadata describing the new
update is downloaded and checked first before the update file is downloaded and installed.
This two-step approach is also very suited for the update of constrained devices and used
in the presented MUP protocol (see Section 3).

Uptane [10], a software update system for automobiles, adapts TUF in order to address
the specific automotive requirements. For example, it adds a director role at the repository
site to blacklist faulty software and for customizing software when the vehicle owners
may have paid for extra features. Further, they combine TUF with an edge computing
architecture by adding the concept of primary and secondary components. The primary is
connected to the software repository, downloads the new update and distributes it to the
secondary components.

Then there are several research groups investigating update protocols for IoT de-
vices. Some of them propose MQTT-based solutions ([11–13]) and others propose cus-
tomized/proprietary solutions [14,15]. Further, we discuss work in progress at the IETF [16–
18].

The Open Mobile Alliance has specified a TLS-based update process within the
Lightweight Machine-to-Machine (LwM2M) protocol [19]. LwM2M is based on the Con-
strained Application Protocol (CoAP) [20] and uses a pull approach where the device/client
periodically polls a server for new updates. Then the client connects to the URI provided
by the LwM2M server and downloads the firmware. In this architecture the devices need
Internet access, while in the proposed MYNO architecture the constrained devices are
separated from the Internet by the edge node.

Thantharate et al. [11] compare CoAP and MQTT for delivering software and security
updates. They argue that in the IoT the constrained devices are meant to last for a number
of years with limited power, and therefore most of the time the devices will be inactive
(sleeping). For transmitting a new firmware, a robust transport of the data is necessary.
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Therefore, Thantharate et al. evaluate the performance of MQTT and CoAP for reliable data
transport. They compare MQTT with Quality of Service (QoS) level 1 (deliver the message
at least once, with confirmation required) and QoS level 2 (exactly-once) against CoAP in
CON mode (Confirmable messages). They use a simulator in their performance study. The
results show that MQTT performs faster and has fewer spikes in transmission durations
due to retransmissions. This is not surprising, since MQTT uses TCP, while CoAP uses
UDP. Hence, they recommend MQTT for IoT updates. While Thantharate et al. draw their
conclusion from simulation results, this work presents results with a real implementation
of an update framework.

Langiu et al. [15] have recently proposed a new update protocol called UpKit dedicated
for IoT devices. UpKit installs authenticated firmware and guarantees the freshness of
the update. The benefit of that framework is that freshness is guaranteed without the
use of an Network Time Protocol (NTP) server and authenticated clocks. The evaluation
shows that UpKit has a small memory footprint. Further optimizations are the support for
A/B updates and the support of differential updates. A/B updates require two bootable
slots which keep two images, and the bootloader jumps to the newest slot. Differential
updates reduce the amount of data which have to be transferred over the network which
saves energy and the actual update time. The UpKit implementation supports CoAP or
Bluetooth Low Energy [21] for communication. Our proposed MUP adapts this approach
for an MQTT-based IoT environment.

Frisch et al. [13] also consider an over-the-air (OTA) update process via MQTT, but
present no performance numbers. They experiment with the ESP8266 micro-controller
board which has 96 kB main memory and integrated WiFi. Instead, we investigate the
OTA update procedure for much more constrained devices and networks. Further, their
approach does not guarantee the freshness of the firmware (version numbers are sent in
clear text and not signed). Another weakness is that the firmware verification is done after
download, but that is too late when dealing with constrained devices. If the verification
fails, the device has spent much energy for the transmission of the malicious firmware. This
makes Denial of Service (DoS) attacks possible. MUP avoids this weakness by a two-phase
approach similar to UpKit [15] and TUF [7].

An approach for the secure distribution of firmware using MQTT is proposed by Lo
and Hsu [12]. However, the MQTT protocol is only used between the firmware patch
server, the firmware broker server and the gateway. The gateway is connected to the
Internet and communicates with the IoT devices via wireless connections such as Wi-Fi or
Bluetooth. The protocol between gateway and device is not further specified. In opposite,
the proposed MUP protocol relies on MQTT for the communication with the devices.
Further, while MUP only needs to pre-install the public vendor key, in the approach of Lo
and Hsu one secret value and one secret key have to be pre-installed on the devices.

Laukkarinen et al. [14] present the design and implementation of a firmware update
protocol for resource constrained Wireless Sensor Nodes (WSN). They propose the use of
a Message Authentication Code (MAC) for integrity checking. This needs shared secret
keys between update server and device. Again, this approach is not scalable for vendors.
Instead, MYNO uses signatures, and therefore only public keys have to be distributed.

There is work in progress at the IETF [16,17]. The draft for software updates for IoT
(SUIT) [16] assumes asymmetric cryptography and a public key infrastructure. A data
structure called manifest [17] specifies 24 elements with detailed information about the
firmware. The manifest has an optional Expiration Time, but this needs a secure source of
time which is not available on most IoT devices. Instead, our proposed MYNO Update
Protocol uses a Nonce to avoid replay attacks. Zandberg et al. [18] implemented and
evaluated a prototype to compare the surveyed firmware update methods, among them
the SUIT-OTA update. They use CoAP blockwise transfer to pull the firmware image onto
the device.

The following section presents the MYNO Update Protocol which demonstrates how
the concept of UpKit can be transferred to an MQTT-based IoT environment.
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3. Update Over-The-Air (OTA) with MYNO

In [3], Sahlmann et al. introduced ontology-driven device descriptions. The corre-
sponding architecture, in the following called MYNO, consists of an MQTT [4] broker, the
YANG [22] model for data modeling, and the NETCONF [5] protocol for device manage-
ment as shown in Figure 1.

Figure 1. System architecture of the MYNO framework.

The MQTT protocol follows the publish/subscribe paradigm and is used for the
communication between IoT devices and the edge of the network where the NETCONF
client runs. The web-based NETCONF client acts as a user interface. The benefit of using
NETCONF is that this protocol is an open standard and any NETCONF client can configure
devices into a network. On the other side however, it has been shown that the NETCONF
server cannot be installed on a constrained IoT device due to its limited resources [23,24].
Therefore, MYNO introduces the NETCONF–MQTT bridge which translates between the
two protocols, namely between Remote Procedure Calls (RPCs) of NETCONF and MQTT
messages.

The NETCONF protocol provides only operations for network configuration. How-
ever, further operations can be added by RPCs. Such device capabilities are described in the
semantic device description [3]. The MYNO device descriptions are based on the oneM2M
Base Ontology [25], represented in the Web Ontology Language (OWL) [26]. OWL does not
only provide a standard for structuring vocabulary, but also has some main advantages:

• information is represented in a formal, machine-readable way;
• the W3C SPARQL [27] query language (i.e., SQL-similar notation) can be used for

search on certain individuals using classes and relationships (e.g., used for parsing
device descriptions in the NETCONF–MQTT bridge).

• a reasoner can check consistency and infer new information (e.g. aggregation of
services in a Virtual Device [28]);

• two concepts in different ontologies with similar meaning can be mapped (i.e., using
the property owl:sameAs), for example if another ontology than the oneM2M base
ontology is used in the device description.

Therefore, data described by an ontology help to understand the domain of interest,
can be processed in a structured way, and new facts can be inferred. Hence, the device
capabilities can be described by an ontology defined for a certain domain.

During the bootstrap process, the device description is published by an IoT device to
the MQTT broker. The NETCONF–MQTT bridge parses this ontology and generates the
YANG data model with corresponding RPC operations. The device description has to be
extended for the update capabilities. After the bootstrap process, the update functionality
is activated in the NETCONF client.

This paper shows how a secure update process can be integrated into the MYNO
architecture.
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3.1. Prerequisites

Private and public keys must be distributed before the update process starts. The
vendor possesses a Private/Public key pair (KVendor

pub , KVendor
priv ), and pre-installs the vendor

public key KVendor
pub on the device. The Update Server possesses also a Private/Public

key pair (KUpdate
pub , KUpdate

priv ) and propagates its public key KUpdate
pub to the device during the

bootstrap process (see key distribution in Section 4).

3.2. MYNO Update Protocol (MUP)

We adapt the UpKit approach (see Section 2) where the Update Server at the edge
verifies the freshness of the firmware before it is transmitted to the device.

We designed the update process as an push approach. The network administrator
initiates the download of a new firmware image from the vendor server (see Figure
1). The vendor provides the firmware, and a so-called vendor manifest (see Table 1)
which describes the firmware image characteristics such as size and version number. The
manifest includes also a vendor signature called inner signature.

The MYNO update protocol is shown in Figure 2. For simplicity, we omit the com-
ponents NETCONF–MQTT bridge and the MQTT broker because they are agnostic to the
messages and act only as intermediaries during the update process. Messages starting
with response are sent as a MQTT response which were introduced in MQTT v5 [4]. The
update protocol works as follows:

(1) The Update Server requests a device token from the IoT device.
(2) The device token contains the device Universally Unique Identifier (UUID), the

current version of the firmware, and a nonce (see Table 2). The generated token is
sent within a response.

(3) The device token information is used to generate the extended manifest which
grants the freshness of the update: The Update Server appends the device UUID,
version and the nonce from the device token to the vendor manifest and signs this
extended manifest with his private key (see Table 1). Now the extended manifest
carries a double signature. The extended manifest is then sent to the device for
validation.

(4) The device validates the extended manifest using the public keys of the vendor and
Update Server. The following fields are checked for the freshness of the firmware:
nonce and device UUID must be the same as sent before with the device token. Further,
the new version must be higher. The old version is required for differential updates
only. If the extended manifest was successfully validated, the device responds with
the state ok.

(5) If the responseState was ok, the Update Server starts the transmission of the
firmware image.

(6) When the firmware is fully transmitted, the device performs an integrity check: It
calculates a digest of the firmware and compares it with the digest included in the
manifest. Since the digest in the vendor manifest was correctly signed by the vendor,
this proves the authenticity of the firmware. If this verification is successful, the device
responds with the state ok.

(7) The device reboots with the new firmware and notifies the Update Server about
success.

If the validation of the manifest or the firmware is not successful, the update process
will be cancelled by the device. If the reboot fails because of other reasons, the Update
Server will get a timeout and reports the error.
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Figure 2. MYNO update protocol as a sequence diagram.

Table 1. Manifest.

Vendor Manifest

Field Description

App ID unique id for application
Link offset memory address

Digest hash value of the firmware
Size size of the firmware in bytes

New Version new firmware version
Old version old firmware version

Inner signature vendor signature

Manifest Extension

Device UUID unique device ID
Nonce nonce generated by device

Outer signature Update Server signature
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Table 2. Device token.

Field Description

Device UUID unique device ID
Nonce nonce generated by device
Version current firmware version

4. Security Discussion

In this section, we show that MUP achieves the security properties defined in Section
1. Further, we discuss its robustness against resource exhaustion. However, the security
aspect is linked with configuration and management effort. Therefore, we also discuss
MUP’s key distribution process.

4.1. Guaranteed Security Properties

The proposed MYNO update protocol achieves both security properties: an authenti-
cated firmware and freshness of the firmware.

Two steps are necessary for the authentication of the new firmware. First, the device
validates the vendor manifest using the public key of the vendor. If the validation is correct,
the device has trust into the digest of the manifest (which is the hash value of the firmware
update). In a second step after the download of the firmware, the device checks whether
the received firmware corresponds to the manifest. Therefore, it calculates the firmware
digest and compares it with the digest in the manifest. If they are the same, the device has
also trust in the firmware.

The new version number is signed by the vendor in the vendor manifest and checked
by the device whether it is higher than the current version number. Further, the freshness
of the firmware is guaranteed by the double signature process where a nonce is generated
by the device and signed by the Update Server in the extended manifest. Since also the
device UUID is included in the signature, this challenge is unique for each device.

4.2. Replay Attacks

The MUP protocol does not rely on TLS. All messages are sent in clear text. Hence, an
adversary may resend these messages to initiate more firmware updates. Even installing
the same firmware again and again would be a DoS attack ending when the device battery
is empty. Lo and Hsu [12] rely only on signed version numbers to guarantee the freshness
of the firmware. MYNO follows the UpKit approach and use nonces to verify the freshness
of the firmware. This hardens the protocol against First-Pre-Image-attacks since the time
for an attacker to prepare such an attack is shortened. Further, the window for the DoS
attacks is minimized in MUP because a device subscribes to the topic for the firmware
image just before receiving it (before step 5) and unsubscribes as soon as the firmware
image is received (after step 6).

4.3. Confidentiality

There may be several reasons why a firmware vendor may prefer to send the firmware
update encrypted. First, this may be important due to licensing. Since the transmitted
firmware is opaque to MUP, the vendor may send the firmware update encrypted and
the Update Server forwards it to the device. However, this assumes appropriate keying
material on the device.

Alternatively, the connection channel can be encrypted. The channel between vendor
and update server may be secured by TLS [29]. The MUP messages may also be sent
encrypted by MQTT over TLS, but this has to be supported by the device. For example, the
Arduino Nano 33 IoT supports MQTT over TLS, while Contiki-NG does not support it [30].

Since support for efficient encryption is considered as an important feature, crypto
chips are getting more wide-spread in IoT devices. For example, the Arduino Nano 33
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IoT [31] is equipped with the crypto chip ATECC608A. The crypto chip has a data zone
where up to 16 keys or compressed certificates may be stored [32].

4.4. Edge Architecture and Man-in-the-Middle Attacks

In cloud based solutions like the Arduino IoT Cloud [33], AWS IoT [34] or IBM IoT
Cloud [35], the devices are directly connected to the Internet. In contrast, MYNO relies on
an edge computing architecture where the IoT devices are separated from the Internet via
a gateway. Hence, all Internet connections are terminated at the edge node.

If an attacker breaks into the edge node system, he has a powerful man-in-the-middle
position and may for example inhibit software updates. Hence, the edge node has to be
managed with the same care as every other machine which has Internet connection.

4.5. Key Distribution and Update

The MUP protocol requires two public keys on the devices: the pre-installed public
vendor key and the public key of the Update Server. While mechanisms for key distribution
and key update are important building blocks belonging to a security architecture, we do
not focus on this topic here. A survey of key bootstrapping protocols in the Internet of
Things based on public-key cryptography can be found in [36].

Lo and Hsu [12] propose Diffie–Hellman for key exchange, since they have to create
different keys for every device. Instead of managing secrets for every device, MUP uses
public/private key pairs. Only the public key of the vendor has to be pre-installed, and
the public key of the Update Server is propagated during the bootstrap phase. This makes
MUP scalable.

Currently, MYNO uses the bootstrap process also for the distribution of the key of the
Update Server. The bootstrap process consists of two steps (see Figure 3): (1) when a new
device enters a network, it publishes its device description; the NETCONF–MQTT bridge
parses this description and adds the device to the YANG model; (2) if successful, the bridge
publishes this state and the public key of the Update Server to the response topic of the
device. Obviously, this approach is vulnerable against eavesdropping. In case an attacker
is able to reply faster than the update agent to the first message, the device will take over
the wrong key and get compromised, too.

IoT DeviceNETCONF-MQTT bridge

1. publish received 1. publish device description

2. publish public key
of update server 2. publish received

MQTT Broker

Device Description:
oneM2M Ontology

YANG
Model

Update, pub Update, pub

Figure 3. Bootstrap process.

In the Arduino IoT Cloud solution [33] the Arduino certificate is stored as trust anchor
on the device. During bootstrap the Arduino client sends a Certificate Signing Request to
the Arduino Cloud to generate a client certificate. In a similar way, the bootstrap phase
of MYNO can be improved by using self-signed certificates where the vendor certificate
is used as a trust anchor. The Update Server has to be equipped with a certificate signed
by the vendor. This certificate can be verified by the device using the pre-installed vendor
certificate.

An update of the vendor key may be supported by the Update Server running on
the edge. For the verification of the new vendor key, the Update Server may employ
DNSSec/DANE [37,38].
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4.6. Robust against Resource Exhaustion

Considering the constraints of IoT devices in terms of network bandwidth, memory,
storage and energy, the update process must ensure that no unnecessary data transmissions
and reboot occurs. The proposed MUP protocol ensures this by two steps: In the first phase,
only the extended manifest is transferred to the device and checked. The extended manifest
is much smaller than the new firmware. If the validation of the manifest guarantees
freshness, the firmware will be downloaded in the second phase. This separation avoids
unnecessary transfers and reboots.

Since an attacker could periodically send manifests promising a new update without
a valid signature, the signature verification process may drain the battery. Since MUP
is built upon the UpKit approach and uses an extended manifest, the device checks first
the manifest extension carrying the Nonce. A correct signature of the manifest extension
authenticates the Update Server as the origin.

4.7. Usability

The additional effort on the vendor side is minimal: The devices have to be pre-
installed with the following components: the device description, the public vendor key, the
application and bootloader. Further, the bootstrap protocol has to support the exchange of
the public key of the Update Server.

The presented vendor manifest and the manifest extension carry no information about
the used crypto algorithms. This approach is not feasible in a productive environment with
devices from different vendors. Hence, the vendor manifest has to be extended with this
information. At the IETF, there are efforts underway for standardizing a suited manifest
that describes the firmware image and processing steps [17]. This approach may also be
combined with MUP.

MUP has been easily integrated into the existing MYNO architecture. Only a few
adjustments were necessary on the bridge (e.g., adding a binary data type for signatures
for new parameters). The update server is an extension of the NETCONF client for the
web-interface.

The automated distribution of update images to IoT devices is relevant to prevent
security gaps. MUP can be easily integrated into the DevOps processes and Continuous
Delivery (CD) pipeline using scripts.

5. Implementation

In normal operation mode, an IoT device is sending data to the edge. In case of a
firmware update, several kilobytes of data have to be transferred to the device. This is not
a common task in the IoT and brings challenges for the communication layer.

This section describes the details of the MUP implementation in the MQTT-based
MYNO architecture. Starting with the testbed and the MYNO device description, we
describe the efficient transmission of an update image to constrained devices over a
6LoWPAN network.

5.1. Testbed

We implemented the proposed MYNO update approach in a testbed for the microcon-
troller board CC2538dk [39] from Texas Instruments with Contiki-NG v4.5 [40] to show the
feasibility of our approach. The CC2538dk is a constrained device with an ARM Cortex-M3
processor, 32 kB RAM, 512 kB flash memory and an IEEE 802.15.4 compliant system-on-
chip. Software support for 6LoWPAN is provided by Contiki-NG. One CC2538dk board
is used as 6LoWPAN router and the other boards are used as IoT devices with sensors
and actuators. Our testbed is shown in Figure 4. The edge node, the Raspberry Pi 3B with
Raspberry Pi OS, is running an MQTT Broker (Mosquitto v1.6.10), the NETCONF-MQTT
bridge and the Update Server as well as the tunslip6 tool for tunneling the IP-Traffic over
the serial port for the 6LoWPAN router.
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Figure 4. Testbed with a Raspberry Pi 3B and a CC2538dk Development Kit consisting of two CC2538EM microcontrollers
plugged into the SmartRF06 Evaluation Boards and used as a 6LowPAN Border Router and an IoT device (wireless and
battery-powered) on the left.

We used the open-source free library crypto-algorithms [41] for computation of SHA-256
hash values. For signatures, the Elliptic Curve Digital Signature Algorithm (ECDSA) on
the curve secp256r1 is used. On the CC2538dk board, we used the library micro-ecc [42] for
the validation of inner and outer signature. This is a small and fast ECDH and ECDSA
implementation for 8-bit, 32-bit, and 64-bit processors.

5.2. Device Description

We extended the MYNO semantic device descriptions based on the oneM2M Ontol-
ogy [25]. There are three RPC calls required which must be translated to MQTT publish
messages: getDeviceToken, sendExtendedManifest, and sendFirmwareImage.

The extension of the device description for the first call, the getDeviceToken is
shown as a snippet in JSON-LD format in Listing A.1 in the Appendix A. This exam-
ple shows that a Device named myDevice has a Service servGetDeviceToken with an
Operation opGetDeviceToken with MQTT properties mqttMethod and mqttTopic. Addi-
tionally, myDevice has a Controlling Functionality funcGetDeviceToken with a Command
cmdGetDeviceToken. This functionality description is intended for human readability, and
also the NETCONF client uses it for RPC calls generated by YANG.

The MQTT topics for the update process were defined in the device description (see
Table 3). The devices expect this topic pattern and their device UUID at the end of the
topics. In this way every device can be uniquely addressed via MQTT topic. The topics
are used by the NETCONF-MQTT bridge for translation between RPC calls and MQTT
publish and subscribe messages.

Table 3. MQTT topics for publish/subscribe.

MQTT Topic Message

mup/token/UUID publish request for device token
mup/manifest/UUID publish manifest
mup/firmware/UUID publish firmware
mup/response/UUID publish all responses from device
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We evaluated the overhead introduced by the proposed semantic device descriptions.
The size of the device description increased from 10.88 kB to 27.49 kB, since we added three
controlling functions for MUP and the descriptions of the manifest parameters and error
definitions as well as new MQTT topics. This device description was already reduced in
size by using the compacted JSON-LD format [43]. The expanded document format has a
size of 41.27 kB. The size of the device descriptions could be further reduced by RDF/HDT
compression for semantic datasets as shown in [44]. However, the device description is
transmitted only once, during the bootstrap process. Constrained devices send the device
description in pieces to the bridge using QoS 1. The size of these pieces depends on the
MQTT buffer implementation on a device. The last piece of the device description has
a tag END so that the bridge can process the device description. Opposite to the device
description which is published by the device, the firmware image is sent from the Update
Server to the device.

5.3. Transmitting the Firmware Image

In our test setup, the firmware image had a size of 87.8 kB. Hence, the transfer of the
image to the constrained device was a challenging task. Table 4 shows the communication
stack of our testbed. Due to the limited resources, the communication stack and the
implemented protocols try to be lightweight. Contiki-NG relies on uIP [45], the IPv6
compliant TCP/IP stack, designed to be used with tiny 8 and 16 bit microcontrollers [46].

Table 4. Protocol stack.

MQTT

TCP

IPv6

6LoWPAN

IEEE 802.15.4

5.4. Transfer via NETCONF–MQTT Bridge versus MQTT Publish

If the update image is transmitted via the NETCONF-MQTT bridge, XML RPCs will
be used which results in ASCII-encoded hex strings. For example, a hexadecimal “A” (=
10102) is transmitted as its ASCII code 65 (= 10000012). This is highly inefficient since it
doubles the image size.

Alternatively, the update image could be sent directly to the MQTT broker instead
of passing it through the NETCONF-MQTT bridge. In that case, it would not have to be
encoded in ASCII format and would remain at its original size. Only one RPC is needed at
the beginning that instructs the device to start the verification process, as well as one RPC
reply where the device indicates the result of the verification (see Listing 1).

Listing 1: Example NETCONF RPC and reply.
1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <funcPubUpdateImage >
3 <uuidInput xmlns:nc="urn:ietf:params:xml:ns:netconf:base :1.0">
4 F97DF79 -8A12 -4F4F -8F69 -6 B8F3C2E78DD </uuidInput >
5 <inputUpdateImage xmlns:nc="urn:ietf:params:xml:ns:netconf:base :1.0" >
6 START </ inputUpdateImage >
7 </funcPubUpdateImage >
8
9

10 <?xml version ="1.0" encoding ="UTF -8"?>
11 <nc:rpc -reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base :1.0"
12 message -id="urn:uuid:2e8eef63 -fe1f -4b4d -a585 -c3e86ee23374">
13 <data >
14 <retval >FW -SUCCESS </retval >
15 </data >
16 </nc:rpc -reply >



Sensors 2021, 21, 10 12 of 21

5.5. MQTT Slicing

Since constrained devices can receive only a limited MQTT packet size, the Maximum
Packet Size property was introduced in version 5 of the MQTT protocol [4]. Thereby, a client
can inform the MQTT broker about the packet size it is willing to accept. When a packet is
too large, the broker must discard it without sending. However, only the MQTT broker is
informed about the Maximum Packet Size value and not the application willing to publish
a message intended for a such constrained device. In other words, the Update Server
and the device must agree on the same packet size implementing MUP. The CC2538dk
is a constrained device and the firmware image is too big for one message. Therefore,
we introduced slicing on the application level for the firmware image transmission. We
sliced the image like a salami into smaller packets. The slices were numbered and sent in
order. Flow control was necessary to ensure the message order, as described in the next
section.

5.6. Flow Control

An important requirement on the receiver side is that the MUP implementation on
the device expects all slices to be delivered in the correct order. This approach avoids
additional buffer space which would be necessary for slices that arrive out of order. Further,
it simplifies the calculation of the hash values, since each received slice can be immediately
piped into the hash function and processed further.

While the reliable delivery of data is typically handled by TCP, the situation is not so
easy on constrained devices. For example, the uIP TCP/IP stack in Contiki-NG only allows
each TCP connection to have a single TCP segment in flight at any given time.

To solve this problem, we implemented a simple Stop-and-Wait protocol on the applica-
tion layer shown in Figure 5 left. Each slice is published to the MQTT broker, arrives at the
device and is acknowledged by the MQTT client. These acknowledgments are published
as MQTT messages on a response topic. When all slices have been published, a NETCONF
RPC call starts the verification of the update image on the device.

The Stop-and-Wait protocol makes the transfer of the firmware image robust, but
causes an overhead which will be analyzed in Section 6.

Update Server Bridge Broker Device

(1a) MQTT Publish
Slice #1 (1b) MQTT Publish

Slice #1

(2a) MQTT Publish

ACK #1
(2b) MQTT Publish:

ACK #1

. . . repeat (1a) to (2b) for all n slices . . .

(3a) NETCONF
RPC:

“START”
(3b) MQTT

Publish:
“START”

(3c) MQTT
Publish:

“START”

(4a) MQTT

Publish:

“FW-SUCCESS”(4b) MQTT

Publish:
“FW-SUCCESS”(4c) NETCONF

Reply:
“FW-SUCCESS”

Broker Device

(1) 1st 6LoWPAN Fragment
(2) 2nd 6LoWPAN Fragment
(3) 3rd 6LoWPAN Fragment
(4) 4th 6LoWPAN Fragment
(5) 5th 6LoWPAN Fragment
(6) 6th 6LoWPAN Fragment
(7) 7th 6LoWPAN Fragment,1st TCP segment

(8) 2nd TCP segment

(9) TCP ACK 7

(10) TCP ACK 8

(11) MQTT: OK

(12) TCP ACK 11

Figure 5. Sequence of packets sent during the transmission of a complete update file (slices 1 to n) (left). Each slice is fragmented by
the 6LoWPAN Router (right). Example for slice size of 600 bytes.



Sensors 2021, 21, 10 13 of 21

5.7. Slice Size and Fragmentation

Choosing the appropriate slice size is a challenging task. Increasing the slice size
reduces the number of MQTT messages and therefore the MQTT protocol header overhead.
However, it must be kept in mind that each update image slice is further fragmented by
the 6LoWPAN router, since IEEE 802.15.4’s physical layer payload size is limited to 127 B.
Hence, the larger the slice size, the more fragments have to be created. This also negatively
impacts the performance, e.g., due to the complexity of the reassembly process and the
large reassembly buffers that are required (p. 59, [47]), [48].

Figure 5 right shows this procedure for a slice size of 600 B. The slice was transmitted
along with a slice number (2 B), the MQTT header with the topic name (in the example
57 B), and protocol headers (TCP/IP, 6LoWPAN). The slice was sent in two TCP segments
where the first TCP segment consisted of 610 B and was divided into seven fragments, and
the second segment with 54 B was small enough to fit into one IEEE 802.15.4 packet. Once
the IoT device received and reassembled all fragments of a slice, it first acknowledged
the receipt using a TCP ACK (message 9 and 10). It then published the MQTT response
message (message 11). The broker acknowledged the receipt of the response with a TCP
ACK (message 12).

The overhead due to the long MQTT topic names is a well-known problem. Hence
the Topic Alias feature was introduced in MQTT v5 [4]. A Topic Alias could be set by
including a two-byte integer alias with the full topic name in the first published message
on any topic. All following published messages could include the alias and a zero-length
topic. However, in Contiki-NG the Topic Alias feature is supported only for sending
messages, but not for receiving messages.

The trade-off between slice size and fragmentation along with other performance
issues is evaluated and discussed in the next section.

6. Performance Evaluation

Our evaluation testbed was the same as introduced in Section 5.1. We used a CC2531
USB-Dongle from Texas Instruments as a sniffer and the sniffing software whsniff (v1.3) [49]
for traffic capture analysis. The MQTT client implementation of Contiki-NG defines several
buffers which are shown in Table 5.

Table 5. Parameter settings in Contiki-NG.

Parameter Value in Bytes Description

MQTT_TCP_INPUT_BUFF_SIZE 512 size of the TCP input buffer
MQTT_TCP_OUTPUT_BUFF_SIZE 512 size of the TCP output buffer

MQTT_INPUT_BUFF_SIZE 512 buffer for MQTT Input Payload
MAX_TCP_SEGMENT_SIZE 128 (default 32) customized buffer for Output TCP segments

6.1. Firmware Transmission Times

We measured the firmware transmission time for three different configurations shown
in Table 6. Each configuration changed one parameter compared to the previous one
(marked with green color). First, we increased the slice size from 220 B to 600 B (MUP 600),
next we switched the use of the response topic alias on (MUP 600 + RTA).

Table 6. MYNO Update Protocol (MUP) configurations.

Configuration Slice Size Number of Slices Response Topic Alias

1. MUP 220 220 B 399 slices No
2. MUP 600 600 B 146 slices No
3. MUP 600 + RTA 600 B 146 slices Yes
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Each experiment was repeated three times and showed little deviation. In Table 7, the
average values are shown. For each of the three configurations, the transmission time of
the complete firmware is given (ttotal) and the transmission time per slice. Further, the total
traffic to and from the IoT device was measured.

Table 7. Measured performance metrics of the three evaluated configurations: total duration of the transmission of the
entire update file (ttotal), average duration of the transmission of a single update slice (tslice), total traffic over the wireless
link to the IoT device (trafficin) and from the IoT device (trafficout).

Configuration ttotal tslice trafficin trafficout

1. MUP 220 146.26 s 0.362 s 199.77 kB 93.91 kB
2. MUP 600 85.91 s 0.575 s 151.42 kB 44.03 kB
3. MUP 600 + RTA 81.54 s 0.545 s 150.97 kB 30.19 kB

By increasing the slice size from 220 B to 600 B, the transmission time was reduced
from 146.26 s to 81.54 s. The main reason for this behavior is that the amount of traffic
sent from the Update Server to the device was reduced from 199.77 kB to 150.97 kB. In
the experiments, the slice size was increased by 63.33% but the average slice transmission
duration was only increased by 37%. This was caused by the reduced fixed costs due to
fewer packets sent, and hence less IP, TCP and MQTT header overhead. The incoming
traffic was reduced due to the lowered header overhead, and the outgoing traffic was
reduced due to the decreased number of acknowledgements that must be sent.

Further, the usage of a Topic Alias for the response topic had also a positive effect
mostly on the amount of outgoing traffic, as expected. It was reduced by 31.43%. In the
next subsections, we analyze the impact of the slice size on the transmission time and
fragmentation overhead.

6.2. Impact of Slice Size

We measured time and traffic for the firmware update with different slice sizes. Figure
6a shows the transmission time of the firmware image for different slice sizes. We did
measurements for varying slice sizes between 220 B and 880 B. Larger slices caused the
IoT device to get stuck during slice transmissions, presumably due to a limited number of
fragments supported by Contiki-NG.

220 440 660 880
0

50

100

150

200

Slice size (bytes)

Total time (s)

(a) Comparison of total time required for the transmission.

220 440 660 880
0

100

200

Slice size (bytes)

Total traffic to de-
vice (KBytes)

(b) Comparison of total traffic to the device.
Figure 6. Comparison of different slice sizes. The updates were transmitted in binary encoding, using MQTT ACKs and a
response topic alias.

For each slice size, the results of three update runs are shown. They deviated only
very slightly from each other. The transmission time lies between 79.86 s and 180 s. Larger
slice sizes led to a lower total transmission time up to a threshold size of 603 B (marked
with an orange line). The average transmission time measured at a slice size of 603 B was
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80.45 s. The average transmission times measured at the slice sizes of 604 B and 605 B are
111.17 s and 173.22 s, respectively. An inspection of the traffic traces shows that this is due
to a delay that appeared when the MQTT message lengths are larger than 607 B. The MQTT
message length consists of the slice size plus the bytes used for the slice number (between
2 B and 4 B, depending on the number of digits in the slice number).

Figure 6b shows that the amount of total traffic sent to the device is much higher
than the 87.8 kB firmware image. For larger slice sizes the amount of total traffic decreased
steadily, but only slightly for slice sizes bigger than 440 B. For example, for a slice size of
220 B the firmware image is transmitted in 399 slices which results in 399 MQTT publish
messages. For a slice size of 880 B, this number is lowered to only 99 publish messages
which drastically reduced the overhead caused by the long MQTT topic names. On the
other hand, the overhead due to fragmentation increased which will be discussed in detail
in the next section.

6.3. Fragmentation Overhead

Since IEEE 802.15.4 allows only a physical layer payload size of 127 B, the image slice
was fragmented by the 6LoWPAN router. To illustrate the overhead due to fragmentation,
we analyzed the traffic going from the MQTT Broker to the device. The capture files were
analyzed using a custom Python program based on the packet parser PyShark (version
used: v0.4.2.11). PyShark [50] is a Python wrapper for tshark, a command line tool for
network analysis that comes bundled with Wireshark.

Figures 7 and 8 give a summary of the amount of data which was sent between broker
and device for the transfer of the complete firmware image of 87.8 kB with a slice size of
220 B and 600 B, respectively. In case of slice size 220 B the border router fragmented the
message into four fragments of size 120, 96, 96, and 40 B. The 600 B slice size resulted in
seven fragments (120, 5 × 96 and 40 B).

MQTT
payload

802.15.4
headers

6LoWPAN
headers

TCP
headers

MQTT
headers

0

100

200

1.2

kB

(a) Distribution of data traffic going from broker to device.

Update
image
slices

MQTT
topic

names

Slice
numbers

0

100

200

87.84

23.65
1.49

kB

(b) Distribution of the MQTT payload going from broker to de-
vice.

Figure 7. Analysis of the network traffic captured during the transmission of an update image file with a size of 87.8 kB using a slice
size of 220 bytes.
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(a) Distribution of data traffic going from broker to device.
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(b) Distribution of MQTT payload going from broker to device.
Figure 8. Analysis of the network traffic captured during the transmission of an update image file with a size of 87.8 kB using a slice
size of 600 bytes.
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The smaller slice size resulted in a total amount of traffic from broker to device
of 199.74 kB, while the traffic was reduced to 151.39 kB for the bigger one. Figures 7a and
8a show a detailed breakdown of the traffic going from broker to device for the protocols
IEEE 802.15.4, 6LoWPAN, TCP and MQTT.

The MQTT payload is analyzed further in Figures 7b and 8b. The MQTT topic names
caused considerable additional traffic overhead. The bigger slice size reduced this overhead
from 23.65 kB to 8.73 kB. Since fewer MQTT publish messages were necessary, about 15 kB
were saved just for the MQTT topic names.

Smaller slice sizes than 220 B were not tested. It can be expected that they would only
result in worse traffic and time values due to increased header overhead and time spent
waiting for ACKs. We could only expect an improvement if the slice size was decreased
so much that the slices would not need to be fragmented further by the 6LoWPAN router,
since fragmentation caused a performance penalty (p. 59, [47]), [48]. However, this was
not possible at the time of writing, since the topic name alone already caused at least two
fragments to be created and topic aliases could not be implemented for the update slice
topic because of the lacking Contiki-NG support.

6.4. Acknowledgment Traffic

The Stop-and-Wait protocol made the implementation robust, but it was also a per-
formance bottleneck. Figure 9 shows the acknowledgement traffic from the device to
the broker for a slice size of 220 B where 399 slices had to be acknowledged. This re-
sulted in 93.91 kB total acknowledgement traffic. Since Contiki-NG supports the Topic
Alias feature for outgoing messages, we switched it on. This optimization reduced the
traffic to 56.54 kB. Additionally, we increased the value for the Contiki-NG parameter
MAX_TCP_SEGMENT_SIZE to 128 for outgoing messages on the device. The acknowledge-
ment was then sent in only one TCP segment instead of two, lowering the segmentation
and packet header overhead.

Without ACKs
(sleep)

With ACKs With ACKs
and TA

0

20

40

60

80

100

56.54

93.91

25.7

kB

IEEE 802.15.4

6LoWPAN

TCP

MQTT

Figure 9. Comparison of Acknowledge Traffic from Device to MQTT Broker for the Slice Size of 220
Bytes (Total of 399 Slices) with and without Topic Alias (TA) in Response.

Since we wanted to evaluate the overhead introduced by the Stop-and-Wait protocol,
we implemented a MUP version where a sleep was used between the slice publish messages
instead of acknowledgements. The sleep time was determined experimentally to give the
device enough time to process a slice completely and be ready for the next one. For
slice size 220, a sleep time of 0.3 s was appropriate. This allowed sending the firmware
update without any acknowledgements on MQTT level and there remained only the
acknowledgements traffic on the TCP level. This reduced the amount of traffic from the
device to the broker to 25.7 kB.

7. Discussion of MQTT Implementation Issues

There are possibilities for optimization regarding constrained devices in the MQTT
protocol which will be discussed in this section.

7.1. Slice Size

The experiments have confirmed that a bigger slice size reduces the protocol header
overhead, since fewer MQTT publish messages are sent. However, there is an upper limit
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for the slice size, because the communication stack is optimized for the constrained device
and uses static communication buffers. While in our test environment we achieved good
performance results with a slice size of 600 B, this value obviously depends on the given
hardware and software, and has to be re-evaluated for other settings.

A Maximum Packet Size parameter was introduced in MQTT v5. The device may set
this parameter, but the MQTT broker will not inform the publisher client. Hence, the MQTT
clients (publisher and subscriber) have to agree on the same packet size in advance. Instead,
our prototype implementation transfers the firmware via slices which is comparable with
the block-wise transfer [51] already specified in the CoAP protocol for transferring multiple
blocks of information in so-called multiple request-response pairs. For the better support
of constrained devices, we propose to add a similar feature to the next MQTT version.
Instead of the publisher client, the MQTT broker should be responsible for slicing to the
maximum packet size specified by the device.

7.2. MQTT Quality of Servce

While the Stop-and-Wait protocol is a robust solution, it implicates overhead as shown
in the detailed traffic analysis. Alternatively, Quality of Service (QoS) 1 or 2 in the MQTT
protocol could be used for delivery assurance ("at least once” or "exactly once”).

Additionally, in MQTT v5 a new property Receive Maximum is defined to control
the number of unacknowledged PUBLISH packets the clients receive. In combination,
this would delegate the burden of the Stop-and-Wait protocol down to the MQTT layer
and reduce the amount of traffic. Unfortunately, the current Contiki-NG v4.5 supports
QoS 1 and 2 only for outgoing messages [30]. For incoming messages this is still an open
issue in Contiki-NG which reflects that over the air firmware updates in the IoT is still not
appropriately supported. At least, we could use QoS 1 to transmit the device description
from device to broker without additional acknowledges.

7.3. MQTT Topic Alias

To use the Topic Alias, the clients (Update Server and IoT device) must specify that
they wish to use MQTT v5 when connecting to the broker. Since MQTT v5 support is
included in the newest development version of Contiki-NG, the usage of topic aliases
for the messages published by the IoT device (i.e., the slice acknowledgments) has been
implemented in the optimized version of MUP.

However, it was not possible to implement the usage of topic aliases for the update
slice messages at the time of writing. First, the Update Server is a web application im-
plemented in Python based on a framework called Flask. Flask offers an extension for
integrating an MQTT client into a web application called Flask-MQTT [52]. This extension
is a thin wrapper around the Eclipse Paho MQTT Client [53] which does not support MQTT
v5 yet. It would need to be replaced by another MQTT client implementations that can be
used in Python applications and already supports MQTT v5. The gmqtt implementation
had the same problem [54], but recently fixed it in v0.6.7 [55].

Second, the MQTT broker implementation Mosquitto behaves in an unexpected way:
It does not use topic aliases in outgoing messages to the subscribers, even when a topic
alias was set by the publisher. Instead, it always performs a translation of incoming topic
aliases back to the full topic name. Therefore, a topic alias set for the update slice topic
never reaches the IoT device.

In the MQTT v5 specification, the Topic Alias Maximum property is defined as “the
highest value that the client will accept as a Topic Alias sent by the Server” ([4] p. 37),
which clearly implies that topic aliases were intended to be sent from the broker (“server”)
to subscribers (“clients”). However, the specification does not clearly state that the broker
MUST or SHOULD send topic aliases to subscribers when a Topic Alias Maximum is set.
It only states that the broker must not send topic aliases to subscribers when the Topic
Alias Maximum is not set or set to zero. Therefore, the Mosquitto broker implementation
does not directly violate the specification. Still, the unexpected behavior was reported in
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the project’s issue tracker [56] and may be fixed in a future release. This may allow update
slice topic aliases to be implemented in the future.

8. Conclusion and Future Work

Providing firmware updates for IoT devices is one of the central questions to deal
with IoT security issues. We present MUP, a scalable and secure firmware update protocol
for constrained IoT devices over MQTT. The MUP protocol does not rely on TLS.

MUP follows the two-phase approach also used in update frameworks like TUF [7]
and UpKit [15]. The benefit of this approach is that the energy-intensive transfer of the
firmware image is only initiated by the device when the freshness of the firmware is proven.
The measurements with the prototype implementation show that the transmission of a
firmware image of 87.8 kB can be done within 81.54 s, close to the results of UpKit [15]. This
proves that the MUP approach is feasible within an MQTT-based IoT scenario. Further,
the update protocol was easily integrated in our MYNO architecture which shows the
flexibility of MYNO’s semantic approach. The ontology-driven device description and the
MYNO source code including the implementation of the NETCONF-MQTT bridge, the
Update Server and the device application are available as open-source [57].

While the proposed update protocol could easily be integrated with an MQTT based
IoT scenario, the implementation showed some missing points in the MQTT v5 specification.
While CoAP supports block-wise transmission, MQTT lacks this feature. In the MUP
prototype implementation, the firmware update image must be sent in slices because of
constraints in network bandwidth and memory on the device. Therefore, it was necessary
to implement a Stop-and-Wait protocol on the application layer, since the MQTT broker in
the testbed did not support any streaming capability to the IoT devices. We analyzed the
impacts of slice size and fragmentation. Both have a considerable impact on the amount of
data which have to be transferred and the firmware transmission time.

An improvement of the MUP update protocol will be the extension of the key roll-over
of the public vendor key using DNSSec/DANE [37].
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Appendix A

Listing A.1: Device description: getDeviceToken controlling functionality in the ontology.

1 {
2 " @context " : {
3 " owl " : " ht tp ://www. w3 . org /2002/07/owl # " ,
4 "myno " : " h t tps :// www. cs . uni −potsdam . de/bs/research/myno# " ,
5 "onem2m " : " ht tp ://www. onem2m . org/ontology/Base_Ontology/base_ontology

# " } ,
6 " @graph " : [
7 . . .
8 { " @id " : "myno : myDevice " ,
9 " @type " : [ " owl : NamedIndividual " , "onem2m : Device " ] ,

10 "onem2m : h a s F u n c t i o n a l i t y " : [ { " @id " : "myno : funcGetDeviceToken " } ,
11 . . .
12 "onem2m : hasServ ice " : { " @id " : "myno : servGetDeviceToken " } ,
13 "onem2m : hasThingProperty " : [ { " @id " : "myno : deviceUuid " }
14 . . .
15 { " @id " : "myno : servGetDeviceToken " ,
16 " @type " : [ " owl : NamedIndividual " , "onem2m : S e r v i c e " ] ,
17 "onem2m : e xp os e sF un c t i on a l i ty " : { " @id " : "myno : funcGetDeviceToken " } ,
18 "onem2m : hasOperation " : { " @id " : "myno : opGetDeviceToken " } } ,
19 . . .
20 { " @id " : "myno : opGetDeviceToken " ,
21 " @type " : [ " owl : NamedIndividual " , "onem2m : Operation " ] ,
22 "onem2m : exposesCommand " : { " @id " : "myno : cmdGetDeviceToken " } ,
23 "onem2m : hasInput " : { " @id " : "myno : uuidInput " } ,
24 "onem2m : hasOperat ionState " : { " @id " : "myno : opState " } ,
25 "myno : mqttMethod " : "GET−DEVICE−TOKEN" ,
26 "myno : mqttTopic " : "mup/update/token " }
27 . . .
28 { " @id " : "myno : funcGetDeviceToken " ,
29 " @type " : [ " owl : NamedIndividual " , "onem2m : C o n t r o l l i n g F u n c t i o n a l i t y " ] ,
30 "onem2m : hasCommand " : { " @id " : "myno : cmdGetDeviceToken " } ,
31 "onem2m : hasThingProperty " : { " @id " : "myno : funcDescGetDeviceToken " } } ,
32 . . .
33 { " @id " : "myno : cmdGetDeviceToken " ,
34 " @type " : [ " owl : NamedIndividual " , "onem2m :Command" ] ,
35 "onem2m : hasInput " : { " @id " : "myno : uuidInput " } } ,
36 . . .
37 { " @id " : " base : opState " ,
38 " @type " : [ " owl : NamedIndividual " , "onem2m : Operat ionState " ] ,
39 "onem2m : h a s D a t a R e s t r i c t i o n _ p a t t e r n " : [
40 "10_OK" ,
41 "12_ERROR" ,
42 ] ,
43 . . .
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