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Abstract: Driver-centered infotainment and telematics services are provided for intelligent vehicles
that improve driver convenience. Driver-centered services are performed after identification, and
a biometrics system using bio-signals is applied. The electrocardiogram (ECG) signal acquired in
the driving environment needs to be normalized because the intensity of noise is strong because the
driver’s motion artifact is included. Existing time, frequency, and phase normalization methods have
a problem of distorting P, QRS Complexes, and T waves, which are morphological features of an
ECG, or normalizing to signals containing noise. In this paper, we propose an adaptive threshold
filter-based driver identification system to solve the problem of distortion of the ECG morphological
features when normalized and the motion artifact noise of the ECG that causes the identification
performance deterioration in the driving environment. The experimental results show that the
proposed method improved the average similarity compared to the results without normalization.
The identification performance was also improved compared to the results before normalization.

Keywords: biometrics; driver identification; ECG; normalization; adaptive threshold filter; intelli-
gent vehicle

1. Introduction

Smart cars with biometrics technology are recently evolving to identify drivers and
provide services in the vehicle environment [1,2]. Smart cars are being studied and de-
veloped from control and communication technologies to driver-centered technologies
that can provide driver security and services [3,4]. In order to identify a driver from
outside the vehicle, initially, it was attempted to open the door of the vehicle and start
the vehicle with physical security systems based on ownership. Later, it was developed
into a technology with simple personal customized security systems using the driver’s
bio-information that does not risk loss [5]. Like driver security technology, personalized
services are provided by driver recognition technology using the driver’s bio-information
inside the vehicle [6]. Once a driver is identified, the doors open, and the seats, mirrors,
air conditioning, and audio are automatically adjusted to the settings optimized for the
specific individual. Moreover, various entertainments can be provided as personalized
services based on the driver’s mood and emotion, health status, stress and fatigue, and
transmitting signals to each controller according to the situations [7,8].

Various user recognition technologies have been applied to provide driver-customized
services in a smart car environment. Typical recognition technologies applied in smart cars
include face recognition, motion recognition, state recognition, voice recognition, and driver
identification. The facial recognition technology [9] determines the driver’s fatigue and
mood in real-time using the in-vehicle cameras or various sensors to recommend a music list
that suits the driver’s condition and taste. Motion recognition technology [10] recognizes
the driver’s motion using cameras and various sensors in the vehicle and provides a
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convenient user interface (UI). The state recognition technology [11] recognizes the driver’s
emotions and health conditions using the driver’s bio-information acquired from various
sensors. Voice recognition [12] analyzes the driver’s voice and helps conveniently access a
variety of entertainment. Driver identification technology [13] helps to perform driving
tasks when a driver using the acquired bio-information in a vehicle is identified.

Among the recognition technologies, driver identification technology is the first
required step to provide driver-customized services. This is a crucial step for driver
security because it is linked to a driver-centered platform. A biometrics system using bio-
information for driver identification is a technology that registers individual physical and
behavioral features and recognizes them in real-time [14]. Physical characteristics include
external information of the human body, such as fingerprint, face, and iris. Behavioral
characteristics include external signals of the human body, such as voice, gait, handwriting,
and internal signals of the body such as an electrocardiogram (ECG), electromyography
(EMG), an electroencephalogram (EEG). It has been a known issue that a user identification
system using external signals has a higher error rate with lower identification accuracy
compared with a user identification system using bio-information [15]. A bio-information
identification system based on physical characteristics acquired from the outside and
surface of the human body has been analyzed with a high accuracy, but it has been
internationally issued due to forgery and alteration cases and accidents [16,17]. Therefore,
various identification systems using the bio-signals inside body are being researched and
developed [18–20].

Among the bio-signals generated by electrical signals inside the body, a typical ECG
has individual characteristics depending on the heart’s electrophysiological factors, the
location, size, and physical condition of the heart. However, since it occurs as an electrical
signal, the individual’s ECG signal is measured differently depending on the measurement
environment as a behavioral characteristic [21]. In particular, the ECG signal acquired in
the driving environment contains high motion artifact noise according to the complex state
of the driver. Driver identification and recognition performance using an ECG including
motion artifact noise is analyzed with a high error rate and low accuracy. In order to solve
this problem, existing normalization methods consider only the static state and have a
problem of distorting P, QRS Complexes, and T waves, which are morphological features
including unique bio-information in ECG one cycle. In this paper, we propose an adaptive
threshold filter-based driver identification system to solve the problem of distortion of
the ECG morphological features when normalized and the motion artifact noise of the
ECG that causes the identification performance deterioration in the driving environment.
The existing normalization methods performed to match morphological features in the
time, frequency, and phase domains, respectively, and converts the ECG cycles in a static
state. The proposed normalization method improved the average similarity to 1.8%, 0.13%,
and 2.1% by the Euclidean distance, Mahalanobis distance, and cosine similarity than
before normalization. The identification performance using the proposed normalization
method improved by 2.48% on average compared to the results without normalization,
0.82% higher than the time method, 0.21% higher than the frequency method, and 1.85%
higher than the phase method. The rest of the paper is organized as follows. Section 2
provides the background of our work and Section 3 presents our proposed a normalization
method and driver identification system. Section 4 discusses the experimental methods,
experiment results, and future research direction. Finally, we conclude in Section 5.

2. Biometrics Technique Using ECG Signal for Intelligent Vehicle

In automated industrialization, intelligent vehicle technology has been chosen as a
suitable business model. Marczewshka et al. [22] defined and analyzed suitable business
models according to each source, and noted that the potential and business model. The
automotive industry should suggest intelligent technologies that can be replaced in the
future. Further, Bar et al. [23] defined the ideology of Hamburg’s smart city. There is a focus
on increasing investments related to solving environmental problems from citizenship.
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Despite the criticism of urban digitalization, related fields are heavily invested for smart city.
Research is being conducted on ICT-related vehicle sharing systems & Intelligent vehicles
for smart city. Eldijk et al. [24] quantified the effects of barriers to transport infrastructure.
Travel time, selection, catchment, and service efficiency were quantified to measure direct
traffic barrier effects. In particular, it must be developed as an intelligent vehicle in order
to efficiently provide the vehicle service to the driver. Intelligent technologies installed in
vehicles require artificial intelligence and biometrics systems for smart car environments.
In particular, driver-centered infotainment and telematics services can be provided through
biometrics in the vehicle. The biometrics system using bio-signals in vehicles is being
installed. Biometrics research is underway in Internet of Things (IoT) environments and
vehicle environments by utilizing an acquisition advantage of ECG signals as it can be
easily measured with both hands. In IoT environments, a user identification technology
using an ECG through a biometrics system has been developed to access a user-specific
UI. In vehicle environments, a technology that a driver is identified using an ECG has
developed to receive a driver-centered infotainment system.

2.1. Driver Status Recognition Technologies Using ECG Signal in Vehicle

In the biometrics system using an ECG, various recognition systems are applied in
the vehicle environment to provide a driver-centered customized service as well as a
user identification system in a real environment. Driver identification and recognition
technologies using ECG in vehicle environment are described in Figure 1.

Figure 1. Driver identification and recognition technologies using ECG in vehicle environment.

A recognition system using an ECG in a vehicle environment determines the driver’s
condition and provides information through stress recognition, fatigue recognition, cogni-
tive distraction recognition, health recognition, and emotion recognition. Nita et al. [25]
proposed a system that can monitor the stress step by classification through morphological
feature analysis and ECG acquisition from the chest at the seat belt position from the subject
in a driving environment. Munla et al. [26] proposed a system that detects the driver’s
stress level by measuring the ECG from the chest at the seat belt position in a driving
environment and analyzing the heart rate variability (HRV). Wang et al. [27] proposed a
driver’s fatigue recognition system by analyzing the R-R intervals of the ECG measured
from the chest at the seat belt position in the driving environment. Shiwu et al. [28]
proposed a driver fatigue recognition system by measuring ECG and EEG in a driving
environment and analyzing various morphological feature data. Miyaji et al. [29,30] pro-
posed a driver cognitive distraction recognition system that analyzes the RR interval of
the ECG measured from the chest at the seat belt position, pupil diameter, gaze angle, and
head rotation angle in the driving environment and notifies a warning to prevent vehicle
accidents. Kumar et al. [31] proposed a system that monitors the driver’s health status by
measuring multiple ECG from the driver’s seat and seat belt. Wang et al. [32] proposed
an emotion recognition model using an ECG that measured driver’s calm and anxious



Sensors 2021, 21, 202 4 of 17

emotions from the chest at the seat belt position for safe driving in a driving environment.
Research on the driver’s identification and recognition system in the driving environment
is underway, and the identification system must be conducted first in order to provide
driver-customized services.

2.2. User Identification Using ECG Signal for Real Enviroment

In the study of user identification using ECG in a real environment, a portable measur-
ing device is used at a location where an ECG can be measured conveniently from users.
ECG signals can be measured by standard lead as I, II, and III signals, limb lead as aVR,
aVL, aVF signals and chest lead as V1, V2, V3, V4, V5, and V6 signals, respectively, as
shown in Figure 2.

Figure 2. Medical acquisition settings: electrode placement and leads on the standard 12-lead
configuration.

Since the ECG lead-I signal can be easily measured, the ECG lead-I signal is mainly
used for user identification [33,34]. Table 1 shows each system and performance analyzed
for user identification using an ECG in real environment.

Table 1. User identification system analysis and performance using ECG in real environment.

Device Status, Signal Feature Analysis Performance Ref.

Mobile sensor
(CardioChip)

Static,
ECG lead-I

Morphological
features Accuracy 95.4% [35]

Wearable sensor
(Arm Cortex)

Slow walking,
ECG lead-I CC FAR 5.2% [36]

Wearable sensor
(Nymi band)

Static,
ECG lead-I STFT EER 2.2% [37]

Mobile sensor
(AliveCore)

Static,
ECG lead-I

Morphological
features Accuracy 84.93% [38]

Sensor (MP-150) Post-exercise,
ECG lead-I 1st and 2nd derivation Accuracy 96.55% [39]
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Choi et al. [35] acquired the ECG Lead-I signal from 175 subjects in a static state from
a mobile sensor and built a database (DB) consisting of ECG signals. The user identification
performance was analyzed as 95.4% through the preprocessing process using a frequency
filter, morphological feature extraction from one ECG cycle, and support vector machine
(SVM). Eun et al. [36] acquired an ECG lead-I signal of 28 subjects in a static state and during
slow walk through the developed measuring device that a watch-type wearable sensor, and
built a DB. The user identification rate was 5.2% false acceptance rate (FAR), an indicator
of authentication performance through the pre-processing process of normalization using
frequency filter and Cross Correlation (CC) based on to check the similarity of two signals,
morphological feature extraction in one ECG cycle, and Euclidean distance. S. Y. Chun [37]
acquired the ECG Lead-I signal from 15 subjects in a static state from Nymi band, a watch-
type wearable sensor, and constructed a DB. The preprocessing process using a frequency
filter, the process of converting one ECG cycle into Short Time Fourier Transform (STFT)
based on simultaneous analysis of time frequency components for features extraction, and
the user identification rate was 2.2% Equal Error Rate (EER), an indicator of authentication
rate by the Euclidean distance. Arteaga-Falconi et al. [38] acquired the ECG Lead-I signal
from 73 subjects in a static state from a mobile sensor, and constructed a DB. The user
identification accuracy was 84.93% through the preprocessing process using frequency
filter and normalization, morphological feature extraction from one ECG period, and
Euclidian distance. Sung et al. [39] acquired the ECG lead-I signal of 55 subjects from the
measurement sensor MP-150 and constructed a DB. The user identification accuracy was
96.55% through the preprocessing step using a frequency filter, extraction of morphological
features from one cycle of the first & second differential ECG signal, and reduction of the
feature data dimension using Linear Discriminant Analysis (LDA). In consideration of the
actual environment, a user identification system using an ECG has been analyzed with
high performance and is being applied in the IoT field. Perio-Lopez et al. [40] defined
non-legitimate users as an attacker to prevent attackers from accessing the user’s UI and
proposed a continuous user identification system using ECG. Barros et al. [41] proposed an
identification system that an ECG acquisition and 14 drivers identified to access objects
through sensing in a driving environment. The user identification system considering the
real environment has been studied to remove the noise of the ECG by considering only
static and single states. This should remove ECG artifact noise acquired by the driver’s
movement according to the complex state in the driving environment. The artifact noise
of the ECG acquired by the driver’s movement in the driving environment degrades the
performance of the driver identification system accuracy.

2.3. Driver Identification Using ECG Signal in Vehicle

In order to apply a driver-centered customized recognition system in a driving en-
vironment, the driver identification should be considered as a priority. In a vehicle, a
driver identification system has been studied using not only the driver’s ECG, but also
engine control unit (ECU), global positioning system (GPS), and impedance information.
Rettore et al. [42] proposed a driver identification system that can contribute to driver
assistance systems and intelligent traffic systems in Vehicular Ad-hoc Networks (VANET)
based on car-to-car ad-hoc mobile communication and networking. The proposed driver
identification system was analyzed with 98% performance using visual data from ECU.
Rahim et al. [43] proposed a driver identification system with driving patterns using GPS
information. It identifies the driver with 96% accuracy using features such as zero-to-stable
elapsed time, direction change, stable speed, and overall acceleration. Since the driving
pattern information is not unique to the driver, the driving pattern data can be duplicated
and used maliciously. Roeschilin et al. [44] proposed a driver identification system using
driver’s impedance. It measures the driver’s impedance from the vehicle’s steering wheel
and identifies the driver with 92% accuracy. Impedance is the driver’s unique biometric
information, but it has a disadvantage of being analyzed with low identification perfor-
mance. Silva et al. [45] proposed a system that identifies the driver using the driver’s
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electrocardiogram in the driving environment. It measures the driver’s ECG from the
vehicle’s steering wheel and identifies the driver with an error rate of 3 to 5% in a static state
and a 30% error rate in a dynamic state. Santos et al. [46] proposed a driver identification
system using the stress recognition in automobile driver’s DB provided by Physionet. This
system identifies the driver with 95% accuracy by extracting features from the segmented
ECG based on the fiducial point.

The ECG signal is an electrical signal generated by behavioral characteristics and
the ECG acquired in the dynamic state of the driver by the driving environment must
be normalized as shown in Table 2. Pinto et al. [47] proposed a driver identification
system using a normalized ECG according to the driver’s condition. This system identifies
the driver with 94% accuracy using features extracted from the ECG normalized by CC.
Nobunaga et al. [48] proposed a normalization method that converts the ECG generated
by the accelerated heart rate into an ECG signal when it is static. The ECG signal measured
from the chest at the seat belt position is filtered in the optimal frequency band with
the optimized band pass filter (OBPF) method. Lin et al. [49] proposed a normalization
method that considers the state of the ECG, which is measured with noises included by
movement. In the dynamic state, the ECG cycles measured from the metal rod electrodes
are equally normalized in the phase domain. Although a study to normalize the ECG in a
complex state is underway, if the morphological features are distorted or the input signal is
composed of noise, a problem of normalization to a noise signal may occur. Considering
the driving environment, the conventional normalization method has been studied in the
time, frequency, and phase domains, but there is a problem of distorting the morphological
features of the ECG. In this paper, we proposed a driver identification system based on
a normalization method that filters ECG cycles by a driver-specific threshold to solve
above issue.

Table 2. Preprocessing: ECG normalization considering driving conditions.

ECG Acquisition
Location Status Normalization Performance Reference

Steering wheel Driving Cross
Correlation 94% [47]

Chest Post-exercising Optimized Band
Pass Filter 100% [48]

Metal rod electrode Exercising Phase 87% [49]

3. Driver Identification System Using Adaptive Filter-Based Normalization Method

The flowchart of the identification system to recognize the driver is shown in Figure 3.
The system proposed to be installed in a vehicle mainly consists of a sensing unit which is a
process of acquiring an ECG and an operation unit which processes the acquired ECG data.
Therefore, a driver can be identified from a sensing element that precisely acquires ECG on
the vehicle’s steering wheel, seat belt, gear rod, and hardware that can operate the acquired
ECG data. If the vehicle is capable of acquiring an ECG and operating data without being
interfered with by the vehicle’s electromagnetic signals, the proposed identification system
with normalization method is applied to identify the driver. The driver identification
system consists of a process of acquiring an ECG Lead-I signal, a preprocessing process to
remove noise, a normalization process based on the proposed adaptive filter, and a process
of identifying the driver from the classifier after feature extraction. The ECG acquired in a
static state is stored as registration data. The stored data is modeled by learning by long
short term memory (LSTM) based on learning technology that protects and controls long
time series data. The recognition data are composed of ECG acquired in a complex state as
well as a static state.
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Figure 3. Driver identification and recognition technologies using ECG in vehicle environment.

3.1. Driver Identification System

The driver identification system proceeds by applying the proposed adaptive filter-
based normalization method and is divided into registration and recognition processes.
The registration and recognition process are the same in the rest of the steps except for
normalization until the feature extraction step, and the registration data is trained and
modeled. The recognition data is calculated with the modeled registration data and classi-
fied. The registration data uses an ECG signal acquired in a static state. The recognition
data uses an ECG signal acquired in a complex state according to driving environments.
ECG signals were acquired with lead-I based on international standard 12 lead and built a
DB. Noise included in the acquired ECG signal is removed through a frequency filtering
process, an R-wave peak detection process, and a moving average filter process excluding
the QRS Complexes section that contains unique personal information. The high-frequency
component noise and the low-frequency component noise are removed by the Butterworth
bandpass filter. The R-wave peak is detected from the threshold value by the Pan &
Tomkins algorithm [50]. The R-wave peak detected by the algorithm is used as a fiducial
point for setting the QRS Complexes section to apply the moving average filter. Even
if noise is removed with frequency filtering and moving average filter, baseline wander
noise caused by driver’s breath is not removed. To remove the baseline wander noise, a
continuous first-order regression analysis method that minimizes morphological features
in one cycle is applied and calibrated to zero [51]. The ECG signal adjusted to the zero
points is segmented every cycle to constitute registration and recognition data. The ECG
segmentation method is divided into a fiducial point and a non-fiducial point method. The
fiducial point segmentation method using the morphological features of the ECG has been
analyzed with higher identification performance than the non-fiducial point method [52].
In this paper, in order to divide a cycle from an ECG obtained by applying the fiducial point
segmentation method, 0.3 sec to the P wave section to the left of the R wave peak detected
by the Pan & Tomkins algorithm and 0.4 sec to the T wave section are set. The proposed
adaptive filter-based normalization method filters through first-order from an ideal ECG
and second-order filtered from an individual’s ideal ECG using selected one cycle. Feature
extraction using a normalized ECG selects one cycle data of the ECG as morphological
feature data. Classification for final driver identification is carried out by LSTM.

3.2. Normalization Based on Adaptive Filter

The ECG signal measured in a complex state may appear as a noise-like signal the
artifact is mostly contained by movement as shown in Figure 4. In order to remove
noise and match the morphological features of the ECG signal, the existing normalization
method is an adaptive normalization method for ECG measured in a static state. Since
registration data are not defined and there are too many cases until the recognition data are
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normalized and generated, it can be normalized to an ECG signal containing noise, which
is problematic.

Figure 4. ECG acquired according to driver state: (a) static state: sit (b) dynamic state: driving (c) dynamic: slide touch (d)
dynamic state: movement.

In this paper, in order to normalize the morphological features of the ECG signal
measured in the complex state to a distinct ECG cycle, we propose a method in which
the ideal ECG cycle of each subject is selected, and the recognition data is filtered to the
ideal ECG and then normalized. The proposed normalization method is composed of the
process of generating an ideal ECG cycle, the process of selecting the adaptive sample ECG
cycle of each subject, and the process of filtering the recognition data by the sample ECG
cycle, as shown in Figure 5.

Figure 5. ECG normalization diagram.

An ideal ECG cycle is a signal that consists of the P, QRS Complexes, and T waves of
the ECG, and the signal is not crushed or distorted by noise. An ideal ECG one cycle is
generated using the information of the peaks of P, Q, R, S, and T waves using the public
database MIT-BIH Normal Sinus Rhythm (NSR) shown in Table 3, and the connection of
the peaks is generated by interpolation based on a two-dimensional equation. PV, QV, RV,
SV and TV is voltage of P, Q, R, S, T peak and PL, QL, RL, SL, and TL is the location of P, Q,
R, S, and T peak in Table 3.

Table 3. Average information on P, Q, R, S, T peaks of MIT-BIH NSR DB.

Subjects
Average Voltage (Location)

P Peak Q Peak R Peak S Peak T Peak

18 ∑n
i=1 PVi

n ( ∑n
i=1 PLi

n ) ∑n
i=1 QVi

n ( ∑n
i=1 QLi

n ) ∑n
i=1 RVi

n ( ∑n
i=1 RLi

n ) ∑n
i=1 SVi

n ( ∑n
i=1 SLi

n ) ∑n
i=1 TVi

n ( ∑n
i=1 TLi

n )
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The information on the peaks of P, Q, R, S, and T waves are voltages and data positions
for the average of 100 cycles per subject of MIT-BIH NSR. The ideal ECG one cycle generated
using the information on the average of the vertices is shown in Figure 6. 1st and 2nd order
equations were used to interpolate the data excluding the peaks of each wave. Weight ω
and bias β are calculated by Equation (1).

ω =
y2 − y1

x2 − x1

β1= y1 −
y2 − y1

x2 − x1
·(x1 − n) (1)

β2= y1 −
y2 − y1

x2 − x1
·(x1 − n)2

Figure 6. Generated ideal ECG one cycle.

For each subject’s adaptive sample ECG, an ECG cycle in which the generated ideal
ECG and the measured ECG correspond to the Euclidean distance’s Maximum Similarity
Rate (MSR) are selected as the individual sample ECG. To select a sample ECG, the ECG
must be measured in a static state in which the morphological features of the ECG signal
can be clearly displayed. To analyze the similarity rate, the measured signals are divided
into a cycle based on a fiducial point and matched to the same data size with the ideal ECG
as shown in Figure 7, 1 step. X is the ECG cycle of the recognition data, Y is the ideal ECG
cycle, and Z is the sample ECG cycle. When an individual’s sample ECG is selected, the
recognition data can be normalized to the sample ECG as step 2. S is the similarity between
the individual’s ideal cycle and the recognition data, and N is the cycles filtered by the
threshold. The process of filtering the recognition data with the sample ECG is normalized
by using the Euclidean distance and adjusting the individual’s threshold in the same way
as the method of selecting the sample ECG.

Figure 7. Adaptive filter process for normalization.
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The threshold value is composed of the number of integers between the maximum
value l and the minimum value k of S. The higher the threshold value, the lower the number
of ECG cycles filtered by the permit similarity rate (PSR), and the lower the threshold value,
the number of filtered ECG cycles increases. Figure 8 shows that Th decreases from Figure
8b–c in the raw ECG signal. As the filtered ECG cycle increases, the ECG cycle consisting
of individual morphological features is more similar.

Figure 8. ECG cycle filtered as PSR decrease: (a) raw ECG (b) S < k + Th (c) S < k + Th↓.

Figure 9 shows ECG signals normalized according to the PSR values of each subject. If
the morphological features are not identified as the same according to the similarity rate of
the sample ECG of the individual from the ideal ECG, then they are filtered and excluded
from the total signal. Therefore, by the proposed normalization algorithm, individual
morphological features are normalized to similar ECG cycles and filtered.

Figure 9. ECG signal normalized by adaptive filter for each subject.
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4. Experiment Results

Experiments to analyze the proposed adaptive filter-based normalization method
and the performance of the driver identification system were conducted in Matlab R2020b
on a PC with an Intel Core i7 processor, NVIDA GeForce RTX 2060. The ECG signals for
analyzing the performance were obtained from 100 subjects (64 males and 36 females)
affiliated with Chosun University, and the age of the subjects ranged from 23 to 34 years
old. The protocol for acquiring ECG signals is defined as shown in Table 4.

Table 4. ECG acquisition protocol considering the driving environment.

Times
ECG Acquisition Environment

Sit Slide Touch Post-Exercise

1 60 sec 10 times 180 sec

2–3 days break

2 60 sec 10 times 180 sec

2–3 days break

3 60 sec 10 times 180 sec

All subjects acquired a total of 3 times at intervals of 2–3 days. In consideration of the
driving environment, it was performed in a seated state, a slide touch, and a post-exercise
state for a fast heart rate. The ECG measurement equipment was BioPac’s MP-160, and
Lead-I signals were acquired from both wrists using Corvidien’s wet electrode at a 2,000Hz
sampling rate. ECG acquisition of the actual driving environment was carried out in the
afternoon and at night while driving Tonnele Ave road from 312 37 St Union City NJ to
321 Broad Ave and Ridgefield NJ, as shown in Figure 10. The evaluation of the proposed
normalization method using the measured ECG signals was compared and analyzed with
the average similarity of ECG cycles and driver identification performance before and
after normalization. The similarity analysis is performed according to each similarity
evaluation method using the proposed normalization method and the existing time, fre-
quency, and phase normalization methods. The similarity evaluation method is performed
by the Euclidean distance, Mahalanobis distance, and cosine distance Equations (2)–(4),
respectively.

d(p, q) =

√
n

∑
i=1

(qi − pi)
2 (2)

d(p, q) =
√
(p− q)C−1(p− q)T (3)

cos(θ) =
p·q
‖p‖‖q‖ =

∑n
i=1 pi × qi√

∑n
i=1 p2

i ×
√

∑n
i=1 q2

i

(4)

The Euclidean and Mahalanobis distances are similar as they get closer to zero by
calculating the distances p and q of the two ECG cycle data. The closer the cosine distance
is to 1, the more similar it is. In order to analyze not only the straight distance of the ECG
cycles but also the distance of probability, the similarity of the ECG cycle is analyzed using
the Mahalanobis distance. For the evaluation of similarity, the ECG cycle used for each
subject was from 1 to 35. The number of similarities from 0 to 1 was inversely converted
by the Euclidean distance and measured as a percentage. To analyze the similarity of
the ECG, it was compared with the existing normalization method. The existing time
normalization method is matched by a threshold value using a cross correlation algorithm.
In the frequency normalization method, ECG signals are filtered by an optimal frequency
band. In the phase normalization method, the ECG signal is mapped with a value delayed
by τ as a phase trajectory. Figure 11a is a graph that averages the similarity performance
according to the increase in the number of ECG cycles by the Euclidean distance before
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normalization. According to all conditions, the ECG cycle similarity performance was
measured as an average for each number of cycles and totally analyzed as 96.5%.

Figure 10. ECG lead-I acquisition in driving environment.

Figure 11. Euclidean distance similarity performance analysis: (a) similarity of each status before normalization (b) similarity
after normalization (proposed method, existing method).

Figure 11b compares and analyzes the average similarity performance according to the
proposed normalization method and the existing normalization methods. The proposed
method improved by an average 1.8% than before normalization. Among the existing
methods, the frequency normalization method was analyzed as similarity rate to the
proposed method, but it was an 0.25% lower on average. Other methods, including time
and phase domain normalization, were analyzed lower than the frequency normalization
method. Figure 12a is a graph that analyzed the similarity performance by the Mahalanobis
distance before normalization as an average as the number of ECG cycles increased. This is
the performance analyzed by the average similarity between a sitting state, a static state,
driving state, post-exercise state. According to all conditions, the ECG cycle similarity
performance was measured as an average for each number of cycles and analyzed as 99.2%.
Figure 12b compares and analyzes the average similarity performance according to the
proposed normalization method and the existing normalization method. The proposed
method is improved by 0.13% on average compared to before normalization. Among
the existing methods, the frequency normalization method was analyzed as similar to
the proposed method, but the average was 0.62% lower. Other time and phase domain
normalization methods were analyzed lower than that of the frequency normalization
method. Figure 13a is a graph that analyzes the similarity performance as an average as
the number of ECG cycles increases by cosine similarity before normalization. It is the
performance analyzed by the average similarity between sitting state, static state, post-
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exercise state, and driving state. According to all conditions, the ECG cycle similarity
performance was measured as an average for each number of cycles, and it was analyzed
as 94.77%. Figure 13b compares and analyzes the average cosine similarity performance
according to the proposed normalization method and the existing normalization method.
The number of similarities from −1 to 1 was measured as a percentage by cosine similarity.
The proposed method improved by 2.1% on average compared to before normalization.
Among the existing methods, the frequency normalization method was analyzed as similar
to the proposed method but was analyzed at an average of 0.17% lower. Other time and
phase domain normalization methods were analyzed lower than the frequency method.

Figure 12. Mahalanobis distance similarity performance analysis: (a) similarity of each status before normalization (b)
similarity after normalization (proposed method, existing method).

Figure 13. Cosine similarity performance analysis: (a) similarity of each status before normalization (b) similarity after
normalization (proposed method, existing method).

Driver identification performance analysis was measured by accuracy. The classifica-
tion rate is a measure of the degree to which a class of subjects identified from all registered
subject classes is predicted and matched. The classification rate measurement is calculated
as Equation (4) by calculating the values of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) predicted by 1:N matching.

Accuracy =
TP + TN

TP + FN + FP + TN
(5)

The ECG acquired in the static state was used as registration data, and the ECG
acquired in the complex state was used as recognition data. As for the classification
performance of the recognition data from the registration data, the recognition performance
was analyzed as the ECG cycle increased through the classifier before normalization and
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using each normalization method. In this paper, the identification accuracy was analyzed
using the LSTM, a deep learning technique, to classify the ECG in a complex state. LSTM is
a machine learning technique that protects and controls long time series data by additional
gates and cells in the recurrent neural network (RNN) structure that repeats and persists
previous data. The hyperparameters of LSTM used in the experiment are shown in Table 5.

Table 5. Hyperparameter of LSTM.

1-Layer 2-Layer 3-Layer

In put layer (m, n)

LSTM(n) LSTM(n) LSTM(n)

- LSTM(n/2) LSTM(n/2)

- - LSTM(n/3)

Fully Connected Layer (400), Dropout = 0.5

Fully Connected Layer (200), Dropout = 0.5

Softmax (100)

The structure of deep learning consists of 3 layers of LSTM, 2 fully connected layers
(active function: ReLU), and 1 output layer (active function: softmax). In the case of the
fully connected layer, a dropout is applied that ignores 50% of nodes in order to prevent
overfitting in which the classification algorithm is adapted to registration data. For the
optimization of each network, the learning rate rmsprop was 0.001, and the registration
data were evaluated by the network adjusted with 10 epochs.

Recognition performance was compared and analyzed using the proposed normaliza-
tion method and the existing normalization method. The existing normalization method
was performed with CC of time, OBPF of frequency, and phase. Figure 14 is a graph com-
paring and analyzing the recognition performance before normalization and as the number
of ECG cycles increased by each normalization method. The identification performance
using the existing normalization method increased by 1.66% (time) on average, 2.27% on
average (frequency), and 0.63% (phase) on average compared to before normalization. The
identification accuracy using the proposed normalization method increased by 2.48% on
average compared to before normalization. The time normalization method was analyzed
as 94.7% of the best identification performance in the ECG cycle 3, the frequency normal-
ization method was 95.2% accuracy of the best identification performance in the ECG cycle
1, and the phase normalization method was analyzed as 93.6% of the best identification
performance in the ECG cycle 2. The proposed adaptive filter normalization method was
analyzed as 95.4% of the best identification performance in the ECG cycle 2 and higher
identification performance was identified than existing normalization methods.

Figure 14. Comparison of identification performance using existing and proposed normalization.
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5. Conclusions

In the driving environment, an electrical signal acquired in the ECG contains a lot of
noise due to the driver’s behavioral characteristics and cannot be used to identify the driver.
The ECG signal acquired for driver identification is measured with different morphological
features according to the measurement environment, and as artifacts are generated mostly
by the driving environment, identification performance is degraded. Existing normal-
ization methods have been carried out by distorting the morphological features without
considering the driving conditions. In this paper, we proposed a driver identification sys-
tem based on a normalization method that filters ECG cycles by driver-specific threshold to
solve the problem of distortion of the ECG morphological features when normalized and
the motion artifact noise of the ECG that causes the identification performance deterioration
in the driving environment. Noise-type ECG signals that degrade driver identification
performance are removed by the proposed adaptive threshold filter and normalized to
ECG with distinct morphological features. The proposed normalization method consists of
a process of generating an ideal ECG cycle, a process of selecting an adaptive sample ECG
cycle for each subject, and a process of filtering the recognition data by the sample ECG
cycle. The driver is identified by LSTM using a normalized ECG cycle.

The Euclidean distance, Mahalanobis distance, and cosine similarity were improved
to 1.8%, 0.13%, and 2.1% on average by the proposed normalization method using ECG
acquired from 100 subjects. In addition, the identification performance of the proposed
normalization method was improved by 2.48% on average compared to before normal-
ization, 0.82% higher than the time method, 0.21% higher than the frequency method,
and 1.85% higher than the phase method. As the morphological features of the ECG
were matched by the normalization method, the identification performance was improved
and analyzed. In the future, we plan to acquire ECG from many subjects in a long-term
driving environment for driver identification and to develop deep learning algorithms for
a multi-biometrics system.
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