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Abstract: This research proposes a nondestructive single-sensor acoustic emission (AE) scheme for
the detection and localization of cracks in steel rail under loads. In the operation, AE signals were
captured by the AE sensor and converted into digital signal data by AE data acquisition module. The
digital data were denoised to remove ambient and wheel/rail contact noises, and the denoised data
were processed and classified to localize cracks in the steel rail using a deep learning algorithmic
model. The AE signals of pencil lead break at the head, web, and foot of steel rail were used to train
and test the algorithmic model. In training and testing the algorithm, the AE signals were divided
into two groupings (150 and 300 AE signals) and the classification accuracy compared. The deep
learning-based AE scheme was also implemented onsite to detect cracks in the steel rail. The total
accuracy (average F1 score) under the first and second groupings were 86.6% and 96.6%, and that of
the onsite experiment was 77.33%. The novelty of this research lies in the use of a single AE sensor
and AE signal-based deep learning algorithm to efficiently detect and localize cracks in the steel
rail, unlike existing AE crack-localization technology that relies on two or more sensors and human
interpretation.

Keywords: acoustic emission sensor; acoustic emission testing; deep learning; nondestructive testing
(NDT)

1. Introduction

Rail transport plays an important role in transferring a large number of passengers
and freight between destinations. The significance of the railway thus necessitates regular
structural heath monitoring (SHM) to identify welding discontinuity defects in the rail
track and maintain the health of steel rail. Scheduled SHM prevents the incidence of rail
accidents and improves passenger comfort.

Nondestructive acoustic emission (AE) testing is a passive technique to detect elastic
energy spontaneously released by material with developing cracks [1–4]. The AE technique
is also deployed to characterize the crack behavior under a load. AE is a transient elastic
wave in the frequency range of 95 kHz–300 kHz. The advantages of a passive AE technique
over conventional active nondestructive testing (NDT) methods include online monitoring,
high sensitivity, early and rapid defect detection [5–8].

The AE signal from cracks in the steel rail is caused by fatigue in wheel/rail contact.
If improperly attended to, the rail crack induced by dynamic wheel/rail contact and inter-
action could result in disastrous failures [9–13]. The defects in steel rail are predominantly
fatigue cracks [14–16].

The conventional AE technology (without machine learning) has been applied to
inspection and monitoring of building or structural integrity, pressure vessel, pipeline,
aircraft components, storage tanks, tanks on tank ship and in material research [17–20]. In
structural integrity, AE testing was used to inspect and monitor emerging fatigue cracks
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in in-service steel bridges [21–23]. In a pressure vessel, the AE technology was used for
online monitoring of fatigue cracks in liquified petroleum gas (LPG) and natural gas for
vehicle (NGV) pressure vessels under a load [24,25]. AE was also used to detect and locate
corrosion and leakage in underground oil, LPG, and NGV pipelines [26,27].

In aircraft components, the AE technology was used to detect fatigue cracks under a
load [28–30]. In a storage tank, AE testing was used to monitor the storage tank health and
to detect and locate corrosion and leakage in the bottom plate of storage tank [31,32]. In
material research, the AE technology was used to characterize material properties, failures,
and crack mechanics [33,34]. In a railway, the technology was utilized to detect and localize
fatigue cracks in the steel rail and rail components under a load [35–37]. However, the
conventional AE technology for detection and localization of fatigue cracks relies on two
or more sensors and on human interpretation, which is prone to error.

To address the human error inherent in the conventional AE technology, image-based
deep learning was integrated into the AE technology to localize crack sources in plate-like
structures [38]. In a spherical water storage tank, the AE scheme with support vector
machine (SVM) was used to classify corrosion and leakage but the scheme failed to localize
the source [39]. In a journal bearing, the AE scheme with SVM was used to detect friction
and wear [40]. In substation transformer, the AE technology with SVM was used to
detect electrical treeing [41]. In [42], an acoustic sensor array with SVM algorithms was
proposed to detect shock and vibration in fan matrices. In composite materials, the AE
technology with a nonhomogeneous hidden semi-Markov (semi-probability) model was
used to predict the remaining useful life and fatigue [43].

Specifically, in [38], a single-sensor AE scheme based on image-based deep learning
was proposed to localize defects in plate-like structures. Their proposed scheme utilized a
single sensor, similar to this current research. Nevertheless, the deep learning algorithm
was image-based while the algorithm of this research is signal-based. In [39–42], multi-
sensor and sensor array AE schemes with SVM algorithms were used to detect defects
in material. Unlike this current research, their schemes utilized two or more sensors or
sensor-array and SVM algorithms. In [43], a multi-sensor AE scheme with hidden semi-
Markov (semi-probability) model was proposed for in-situ prognostics of fatigue life of
composites. Although the image-based deep learning could localize crack sources, the
image-based algorithm requires more computational resources than the proposed AE
signal-based classification deep-learning algorithmic scheme.

As a result, this research proposes a nondestructive single-sensor AE scheme with AE
signal-based deep learning algorithm for detection and localization of cracks in the steel
rail under a load. The AE signals of pencil lead break (PLB) at the head, web, and foot of
steel rail were used to train and test the deep learning algorithmic model. In training and
testing the algorithm, the AE signals were divided into two groupings and the classification
accuracy compared. The AE scheme was subsequently implemented onsite to detect cracks
in the steel rail and a comparison of the resulting classification performance was conducted.

2. The Proposed Single-Sensor AE Scheme

Figure 1 illustrates the diagram of the proposed nondestructive single-sensor AE
scheme for crack detection in steel rail. Under the proposed scheme, AE signals were
captured by the AE sensor and converted into digital signal data by AE data acquisition
module. The digital signal data were pre-processed to remove noises using a total variation
denoising algorithm. The denoised digital signal data were processed and classified to
localize cracks in the steel rail. In the figure, P1, P2, and P3 denote rail head, rail web, and
rail foot, respectively.
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AE sensor was of piezoelectric type to convert elastic waves in the steel rail into electrical 
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integrated electronics piezoelectric (IEPE) sensor, as opposed to the non-IEPE sensor 
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wheel/rail noise, and Figure 2b illustrates the denoised AE signal using TVD. 

Figure 1. The diagram of the nondestructive single-sensor acoustic emission (AE) scheme for crack detection in steel rail.

2.1. Acoustic Emission Sensor

Acoustic emission (AE) is the transient elastic waves in solids that occur when the
internal structure of a material undergoes deformation due to plastic deformation, crack
propagation, erosion, corrosion impact, leakage, and fatigue. This research focused on the
AE signals caused by fatigue cracks in the steel rail under a load.

The AE sensor was Vallen model VS150-RIC with an 80 kHz–500 kHz bandwidth and
−40 ◦C to +85 ◦C operating temperatures. Given the natural frequency of cracks at 150 kHz,
the AE sensor was used to capture crack signals (elastic waves) in the steel rail. The AE
sensor was of piezoelectric type to convert elastic waves in the steel rail into electrical
AE signal. To mitigate the triboelectric effect, the AE sensor of the proposed scheme was
integrated electronics piezoelectric (IEPE) sensor, as opposed to the non-IEPE sensor which
is more prone to the triboelectric effect. To further mitigate the triboelectric effect, the
bandpass filter frequency range of the proposed deep learning-based AE sensor scheme
was set at 95 kHz–300 kHz.

2.2. AE Data Acquisition Module

The AE signals captured by the AE sensor were converted into digital signal data by
an AE data acquisition module (Vallen AMSY-6) with 16-bit analog-to-digital conversion
(ADC). The sampling rate of ADC conversion was 20 MHz. A computer was used for
storage of digital signal data.

2.3. Pre-processing of AE Signal Data

Total variation denoising (TVD) algorithm was used to remove noise in the AE signal
of cracks in a steel rail. In practical use, TVD is effective in removing ambient noise and
rolling noise. Figure 2a shows the AE signal of cracks in steel rail with ambient and
wheel/rail noise, and Figure 2b illustrates the denoised AE signal using TVD.

The AE signal with ambient noise and rolling noise is mathematically expressed in
Equation (1).

y = x + w (1)

where y is noisy AE signal, x is unnoisy AE signal, and w is additive white Gaussian noise.
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Figure 2. The AE signal of cracks in steel rail: (a) AE signal, (b) denoised AE signal using total
variation denoising (TVD).

Given that x is a piecewise constant signal with sparse representation in first-order
derivative, the estimated AE signal (x̂) can be solved by minimizing the cost function (i.e.,
the first term on the right-hand side; F(x)), as expressed in Equation (2).

x̂ = argmin
x

1
2
||y− x ||22 + λ ||Dx ||1 (2)

where λ is the regularization parameter and D is the first-order difference operator, as
expressed in Equation (3).

D =


−1 1

−1 1
. . . . . .

−1 1

 (3)

The estimated AE signal (x̂) (Equation (2)) could also be efficiently solved by majorization-
minimization (MM) algorithm [32,33]. Rather than direct minimization of the cost function
(F(x)), MM algorithm solves a sequence of optimization problems (Gk(x), where k = 0, 1, 2,
. . . ), based on the premise that solving for Gk(x) is less demanding than solving for F(x).
MM generates a sequence of xk, each derived by minimizing Gk−1(x); and MM algorithm
iterates until arriving at minimum F(x), as shown in Figure 3.

In the MM algorithm, the functions Gk(x) should be convex functions and must be
specified such that it closely approximates the cost function (F(x)). In addition, MM
algorithm requires that individual Gk(x) function be a majorizer of F(x) (i.e., Gk(x) ≥ F(x),
∀x) and that the Gk(x) function is tangent to F(x) function at xk (i.e., Gk(xk) = F(xk)). In this
research, the parabolic functions Gk(x) were used to approximate the minimum F(x), which
is the optimal denoised AE signal (x̂) as shown in the Algorithm 1.

Algorithm 1: The MM approach to minimize the cost function (F(x)) (i.e., the optimal denoised
AE signal (x̂) can be summarized as follows [44]:

(1) Set k = 0, and initialize x0.
(2) Choose Gk(x) such that Gk(x) ≥ F(x) for all x and Gk(xk) = F(xk)
(3) Set xk+1 as the minimizer of Gk(x), as shown in Equation (4).

xk+1 = argmin
x

Gk(x) (4)

(4) Set k = k + 1 and repeat step (2) and iterate until arriving at the minimum F(x).
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2.4. Processing and Classification

Figure 4 illustrates the typical deep learning algorithm for classification, consisting
of the input (feature) layer, hidden layers through to N hidden layer, and output (target)
layer. In this research, the activation function between hidden layers was hyperbolic
tangent function (tanh(z)) since the function is ideal for the transient nature of AE signal
and is capable of suppressing noises and interferences. The softmax activation function
(softmax(z)) was used for classification based on probability. The aim of deep learning
algorithm for classification is to localize cracks in the rail head, rail web, and rail foot of
steel rail.
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Figure 4. The typical deep learning algorithm for classification.

Prior to algorithm training and validation, input (feature) data were scaled using
standardization to normalize, as shown in Equation (5).

Standardization =
X−Mean X

SD
(5)

where x is the feature (input data), Mean x is the mean value of feature, and SD is standard
deviation.

In training the algorithmic model, the initial weight (W) and bias (B) (i.e., W1, B1,W2, B2,
W3, B3, W4, B4), were random. In feedforward, hyperbolic tangent function (tanh(z)) was the
activation function between hidden layers, as shown in Equation (6) where tanh(z) = [−1,1].
The output layer used softmax(z) as the activation function for classification based on
probability, as shown in Equation (7) and the linear combination, as shown in Equation (8).

tanh(z) =
(ez − e−z)

(ez + e−z)
(6)

so f tmax(z) =
eZi

∑k
j=1 ezj

(7)

Z =


z1
z2
...

zN

 =


x1

1w1
x1

2w1
...

x1
Nw1

x2
1w2

x2
2w2
...

x2
Nw2

. . .

. . .
...

. . .

xD
1 wD

xD
2 wD

...
xD

NwD

+
[

B1 B2 . . . BD
]

(8)

Partial derivative of the hyperbolic tangent function (tanh(z)) was used in back propa-
gation, as shown in Equation (9).

∂[tanh(z)]
∂z

= 1− tanh2(z) = sech2(z) (9)
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The cross-entropy loss function for multiclass was used to fine-tune the optimization
of the algorithmic model, as shown in Equation (10).

J(w) = − 1
N ∑N

n=1(Yn log(Ŷn)) (10)

where Yn is true output value and Ŷn is predicted output value.

3. Experimental Material and Setup
3.1. Experimental Steel Rail

The experimental steel rail was of UIC 54 type, which is the steel rail commonly used
in countries in the Southeast Asian region. The elemental composition of UIC 54 steel rail
was analyzed by handheld laser-induced breakdown spectroscopy (LIBS) analyzer (SciAps,
model Z-300). Table 1 tabulates the elemental composition of UIC 54 steel rail.

Table 1. Elemental composition of UIC 54 steel rail.

%C %Si %Mn %V %Ni %Cu

0.68 0.22 1.18 0.003 0.0068 0.0109

3.2. AE Data Sensor and Acquisition Module

Figure 5a shows the AE data acquisition module with 16-bit ADC and a sampling
rate of 20 MHz (Vallen AMSY-6). Figure 5b illustrates the AE sensor (S/N 10453) with
80 kHz–500 kHz bandwidth and −40 ◦C to +85 ◦C operating temperatures (Vallen model
VS150-RIC). The MAG4R magnetic holder was used to attach the AE sensor to the steel rail
(on the field side of the rail head).
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Figure 5. AE data sensor and acquisition: (a) AE data acquisition module; (b) AE sensor, MAG4R
magnetic holder, and Hsu–Nielsen source.

The Hsu–Nielsen source was used as the artificial source of AE signal of crack, con-
sisting of 2H pencil lead (0.5 mm), guide tube, and mechanical pencil. The pencil lead was
broken against the head, web, and foot of steel rail at 30◦, in accordance with the American
Society for Testing and Materials (ASTM E976) standard.

3.3. AE Sensor Amplitude Testing

The AE sensor amplitude was analyzed prior to capturing the AE signals of cracks in
the steel rail to determine the sensor sensitivity and sensor coupling. The AE sensor ampli-
tude testing was carried out at the rail head by breaking 2H pencil lead (0.5 mm) against
the steel rail. The testing was performed five consecutive times and results averaged.

Figure 6 illustrates the peak amplitude (dB) of the AE sensor relative to time (s), and
the results are tabulated in Table 2. In Figure 6, the maximum peak amplitude of the
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experimental AE sensor was greater than 80 dB (>80 dB), indicating that the AE sensor
could be deployed to capture the AE signals of cracks in the steel rail.
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Table 2. Peak amplitude and average amplitude of the AE sensor.

Sensor S/N 1st PLB 2nd PLB 3rd PLB 4th PLB 5th PLB Average

10,453 93.90 92.40 95.20 95.00 93.90 94.08

3.4. Datasets for Training and Testing the Deep Learning Algorithmic Model

The digital signal data of PLB at the head, web, and foot of steel rail were datasets for
training and testing the proposed deep learning algorithmic model. PLB were carried out
150 times each at the head, web, and foot of steel rail; and the AE signals were captured,
totaling 450 AE signals (Figure 7).
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learning algorithmic model.  

Under the first grouping (150 feature datasets), 50 datasets each belonged to PLB at 
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(80%) and testing dataset (20%). Under the second grouping (300 feature datasets), 100 
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The un-denoised AE signals were subsequently divided into two groupings (150
and 300 AE signals) to investigate the effect of number of input data on the classification
accuracy of the deep learning algorithmic model. Under the first grouping (150 AE signals),
the input data were divided into a training dataset (80% of the input data) and a testing
dataset (20%). Under the second grouping (300 AE signals), 80% of the input data were
training dataset and the rest (20%) were testing dataset.



Sensors 2021, 21, 272 9 of 19

Figure 8a–c shows the un-denoised AE signals (prior to pre-processing) of PLB at the
head, web, and foot of steel rail. The AE signals of PLB were captured by the AE sensor and
converted by the AE acquisition module into un-denoised AE digital signal data prior to
pre-processing by total variation denoising (TVD) algorithm to remove the ambient noise.
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Figure 9 illustrates the conversion procedure of denoised AE signals (after pre-
processing) of PLB into feature datasets (input data) for training and testing the deep
learning algorithmic model. The training and testing datasets were transferred to a spread-
sheet. The feature datasets were divided into two groupings (150 and 300 feature datasets)
to investigate the effect of number of input data on the classification accuracy of the deep
learning algorithmic model.

Under the first grouping (150 feature datasets), 50 datasets each belonged to PLB
at the head, web, and foot of steel rail. The feature datasets were divided into training
dataset (80%) and testing dataset (20%). Under the second grouping (300 feature datasets),
100 datasets each belonged to PLB at the head, web, and foot of steel rail. Likewise, 80%
of the input data were training dataset and the rest (20%) were testing dataset. Given
the sampling rate of 20 MHz of the AE acquisition module, one feature dataset (i.e., one
denoised AE signal) contained 300,000 data points.

In this research, one AE signal contains 300,000 data points, and the time to capture
one data point is 0.05 µs, given fs = 20 MHz. As a result, the time required to capture one
AE signal (i.e., 300,000 data points) is 0.015 s (= 300,000 × 0.05 × 10−6).
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Figure 9. Conversion of denoised AE signals (after pre-processing) of PLB into dataset for training
and testing the deep learning algorithmic model.

In Figure 10, one row of yellow grid cells represents one AE signal (300,000 data
points), and the total number of rows (i.e., N of Dataset) represents 450 AE signals (PLB
digital signal data = 450 signals) at the rail head, web, and foot. In the columns “Target”, the
rail head, rail web, and rail foot are represented by red, green, and blue colors, respectively.
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In training the deep learning algorithm, a specific target (either rail head, web, or foot)
was assigned to each row of yellow grid cells (i.e., each AE signal) using one-hot encoding,
where 1 denotes a 100% probability and 0 a zero probability. The training was carried out
separately for the first grouping (80% of the input data = 120 signals) and second grouping
(80% of the input data = 240 signals) of AE signals.

In testing the deep learning algorithm, a given AE signal was applied to the trained
deep-learning algorithm and the algorithm classified the crack location based on probability,
where Y1, Y2, and Y3 denote the head, web, and foot of steel rail, respectively. In testing the
algorithm, there were 30 signals (20% of the input data) for the first grouping, consisting of
10 signals each for rail head, web, and foot. Meanwhile, there were 60 signals (20% of the
input data) for the second grouping, consisting of 20 signals each for rail head, web, and
foot.
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The following example is to show the testing process of the algorithm, assuming that
the deep learning-generated probability of Y1, Y2, and Y3 of the first row of yellow grid
cells (AE signal#01) are 0.1 (10%), 0.4 (40%), and 0.5 (50%), the proposed deep learning
algorithm would select Y3 (rail foot) as the location of the crack, based on the highest
probability value.

3.5. Proposed Deep Learning Algorithm for Classification

Figure 11 illustrates the proposed deep learning algorithm for classification. The AE
data points were input of the feature layer, and one AE signal contained 300,000 data points,
as represented by X1, X2, X3 . . . X300,000. In this research, there were 450 AE signals of
PLB under two groupings.
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Figure 11. The proposed deep learning algorithm for classification.

The proposed algorithmic model consisted of three hidden layers and one output
layer. The first, second, and third hidden layers had 5, 4, and 3 nodes, respectively. The
activation function between hidden layers was hyperbolic tangent function (tanh(z)), which
transforms linear to nonlinear function. The output layer consisted of Y1 (crack in the rail
head), Y2 (crack in the rail web), and Y3 (crack in the rail foot). The softmax activation
function (softmax(z)) was used for classification based on probability. The aim of the
proposed deep learning algorithm for classification is to localize cracks in the rail head, rail
web, and rail foot of steel rail.

Figure 12 illustrates the process of training and testing the proposed deep learning
algorithmic model and the model validation. The AE datasets (feature and target datasets)
were divided into a training dataset (80%) and a testing dataset (20%).

The training dataset consisted of X_Train (normalized feature/input dataset) and
Y_Train (target/output dataset), while the testing dataset comprised X_Test (normalized
feature dataset) and Y_Test (target dataset). The initial weight (W) and bias (B) in the
hidden layers (W1, B1,W2, B2, W3, B3, W4, B4) were random, given the learning rate (α) of
0.1 and epoch of 1000. W and B were fine-tuned by gradient descent iterative optimization
algorithm.

In the training and testing processes, L1-norm regularization was utilized to avoid
overfitting due to excessive data points (300,000 data points per AE signal) and divergence
between the cross-entropy loss of training and testing datasets.



Sensors 2021, 21, 272 12 of 19

The classification results of the optimized algorithmic model (Y_Predict) were com-
pared against the training (Y_Train) and testing target (Y_Test) datasets to evaluate the
classification performance of the proposed deep learning algorithm.
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3.6. Evaluation of the Deep Learning Algorithm

The classification performance of the proposed deep learning algorithmic model was
evaluated by comparing the classification results using the algorithmic model against the
training and testing target datasets. The performance metrics were the receiver operating
characteristic (ROC) curve, confusion matrix, F1 score, and total accuracy (average F1
score).

3.6.1. Receiver Operating Characteristic (ROC) Curve

A receiver operating characteristic (ROC) curve shows the classification performance
of an algorithmic model whereby the area under the ROC curve is used as a performance
indicator of the model. The ROC curve plots two parameters: true positive rate (y-axis)
and false positive rate (x-axis). The true positive rate (TPR) and false positive rate (FPR)
can be calculated by Equations (11) and (12), respectively.

True positive rate (TPR) =
TP

TP + FN
(11)

where TP is the number of true positives classified by the algorithmic model and FN is the
number of false negatives classified by the algorithmic model.

False positive rate (FPR) =
FP

TN + FP
(12)
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where FP is the number of false positives classified by the algorithmic model and TN is the
number of true negatives classified by the algorithmic model.

3.6.2. Confusion Matrix, F1 Score and Total Accuracy (Average F1 Score)

The confusion matrix is a table layout that enables visualization of the classification
performance of an algorithmic model. F1 score is a value that indicates the classification
performance of the algorithmic model using Precision (Equation (13)) and Recall. The
Recall equation in the F1 Score calculation is identical to Equation (11) (true positive rate).
As a result, equation (11) can be used in the Recall calculation. F1 Score, Individual-class
Accuracy and Total accuracy (the average of F1 scores) can be calculated by Equations
(14)–(16), respectively.

Precision =
TP

TP + FP
(13)

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(14)

Individual − class Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Total Accuracy ( average F1 Score) =
(F1 score (class 0) + (F1 score (class 1) + (F1 score (class 2)

3
(16)

4. Onsite Experimental Setup
4.1. Onsite Advanced Phased Array Ultrasonic Testing (PAUT)

Prior to the implementation of the proposed AE scheme for crack detection in steel
rail, advanced PAUT with 5 MHz 64-channel linear array probe (model GEKKO; M2M,
France) was applied to welding joints of the steel rail to determine and localize cracks.
The PAUT detection was carried out on the welding joints due to their susceptibility to
subsurface crack. The proposed AE scheme was subsequently applied to the same welding
joints with defects, and the detection results of the AE scheme were validated against those
of PAUT to evaluate the classification performance of the deep learning algorithmic model.
Figure 13a,b show the advanced PAUT on a welding joint of the steel rail and the defect in
the welding joint.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 19 
 

 

  
(a) (b) 

Figure 13. Onsite experimental setup: (a) advanced phased array ultrasonic testing (PAUT) on 
welding joint of the steel rail; (b) PAUT detection with defect in the welding joint. 

4.2. Steel Rail Temperatures 
Given the operating temperature range of −40 to 85 °C of the experimental AE sensor, 

the temperatures of steel rail around mid-day were measured by using a thermal imaging 
camera (FLIR, USA.) prior to the installation of the AE sensor. The steel rail temperatures 
were 56.7–61.1 °C, as shown in Figure 14. The steel rail temperatures were within the op-
erating temperature range of the AE sensor. 

 
Figure 14. Steel rail temperature measurement. 

4.3. Onsite Experiment on the Steel Rail under Load 
Figure 15a illustrates the installation of the AE sensor on the field side of the head of 

steel rail to detect crack. Figure 15b shows the onsite experiment of the AE scheme with 
the steel rail under a load. The AE signals of the steel rail under a load were fatigue cracks 
induced by wheel/rail contact. The AE signals were captured by the sensor and converted 
into digital signal data by the data acquisition module. The digital signal data were pre-
processed to denoise and processed by the deep learning algorithmic model to localize 
cracks in the steel rail. 
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welding joint of the steel rail; (b) PAUT detection with defect in the welding joint.

4.2. Steel Rail Temperatures

Given the operating temperature range of −40 to 85 ◦C of the experimental AE sensor,
the temperatures of steel rail around mid-day were measured by using a thermal imaging
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camera (FLIR, USA.) prior to the installation of the AE sensor. The steel rail temperatures
were 56.7–61.1 ◦C, as shown in Figure 14. The steel rail temperatures were within the
operating temperature range of the AE sensor.
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4.3. Onsite Experiment on the Steel Rail under Load

Figure 15a illustrates the installation of the AE sensor on the field side of the head
of steel rail to detect crack. Figure 15b shows the onsite experiment of the AE scheme
with the steel rail under a load. The AE signals of the steel rail under a load were fatigue
cracks induced by wheel/rail contact. The AE signals were captured by the sensor and
converted into digital signal data by the data acquisition module. The digital signal data
were pre-processed to denoise and processed by the deep learning algorithmic model to
localize cracks in the steel rail.
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signal data of the steel rail under a load.

5. Results and Discussion
5.1. Receiver Operating Characteristic (ROC) Curve

The effects of different number of feature datasets (input data) on the classification
accuracy of the deep learning algorithmic model were determined by dividing the datasets
into two groupings (150 and 300 AE signals). Figure 16a,b respectively illustrate the ROC
curves under the first and second groupings, where classes 0, 1, and 2 denote the head,
web, and foot of steel rail.

Under the first grouping, the accuracy performance of the deep learning algorithmic
model for class 0 (crack from the rail head), class 1 (rail web), and class 2 (rail foot) were
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100% (ROC curve area = 1.0), 95% (0.95), and 82% (0.82). Under the second grouping,
the accuracy performance for class 0, class 1, and class 2 were 97% (0.97), 99% (0.99), and
96% (0.96), respectively. The results indicated that the classification accuracy of the deep
learning algorithmic model increased with increase in the datasets.
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Figure 16. Receiver operating characteristic (ROC) curve where classes 0, 1, and 2 denote rail head, rail web, and rail foot:
(a) 150 AE signals (first grouping); (b) 300 AE signals (second grouping).

5.2. Confusion Matrix of the Deep Learning Algorithmic Model

Figure 17a,b show the confusion matrix of the deep learning algorithmic model for
classification under first (150 datasets) and second (300 datasets) groupings of AE signal
datasets. In Figure 17a (the first grouping), given 10 crack signals from the rail head (actual),
the algorithmic model accurately classified 10 signals (predicted) as from the rail head. For
the rail web, out of 10 crack signals (actual), the algorithmic model accurately classified 9
signals (predicted) as from the rail web and erroneously one signal as from the rail foot.
For the rail foot, out of 10 crack signals (actual), the model accurately classified 7 signals
(predicted) as from the rail foot and erroneously three signals as from the rail head.
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 Rail Head (150 
AE Signals) 

Rail Head (300 
AE Signals) 

Rail Web (150 
AE Signals) 

Rail Web (300 
AE Signals) 

Rail Foot (150 
AE Signals) 

Rail Foot (300 
AE Signals) 

Precision (%) 
(Equation (13)) 76.9 100 100 95.2 87.5 95 

Recall (%) 
(Equation (11)) 100 95 90 100 70 95 

F1 score (%) 
(Equation (14)) 

86.9 97.4 94.7 97.5 77.7 95 

Accuracy (%) 
(Equation (15)) 

90 98 96 98 86 96 

Figure 17. Confusion matrix of the deep learning algorithm for classification: (a) 150 AE signals (first
grouping); (b) 300 AE signals (second grouping).
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In Figure 17b (the second grouping), given 20 crack signals from rail head (actual),
the algorithmic model accurately classified 19 signals (predicted) as from the rail head
and erroneously one signal as from the rail foot. For the rail web, out of 20 crack signals
(actual), the algorithmic model accurately classified 20 signals (predicted) as from the rail
web. For the rail foot, out of 20 crack signals (actual), the model accurately classified 19
signals (predicted) as from the rail foot and erroneously one signal as from the rail web.

5.3. F1 Scores of the Deep Learning Algorithmic Model

Table 3 compares the F1 scores and total accuracy of the first (150 AE signals) and
second (300 AE signals) groupings. Precision and Recall were calculated from the confusion
matrix (Figure 17). Under the first grouping, the F1 scores for the head, web, and foot of
steel rail were 90%, 90%, and 85%, respectively, with a total accuracy of 88.33%. Under
the second grouping, the corresponding F1 scores were 95%, 95%, and 92.5%, with a total
accuracy of 94.5%. The F1 scores and total accuracy improved as the number of AE signals
increased from 150 to 300 signals.

Table 3. Comparison between F1 score and total accuracy of the first (150 AE signals) and second groupings (300 AE signals).

Rail Head (150
AE Signals)

Rail Head (300
AE Signals)

Rail Web (150
AE Signals)

Rail Web (300
AE Signals)

Rail Foot (150
AE Signals)

Rail Foot (300
AE Signals)

Precision (%)
(Equation (13)) 76.9 100 100 95.2 87.5 95

Recall (%)
(Equation (11)) 100 95 90 100 70 95

F1 score (%)
(Equation (14)) 86.9 97.4 94.7 97.5 77.7 95

Accuracy (%)
(Equation (15)) 90 98 96 98 86 96

Total Accuracy (%)
(Equation (16)) 86.6 (150 AE signals)

Total Accuracy (%)
(Equation (16)) 96.6 (300 AE signals)

5.4. Onsite AE Signals Using the Proposed AE Scheme

Figure 18 shows the AE signals of cracks in the welding joint of the steel rail under a
load using the nondestructive single-sensor AE scheme. Prior to the implementation of the
proposed AE sensor scheme under a load, the advanced PAUT was first used to localize
cracks in the steel rail, and the crack locations were used as reference (i.e., actual results).
The crack localization by PAUT was carried out at welding joints of the steel rail since the
welding joints are highly susceptible to crack. In the crack location, the PAUT probe was
placed on top of the steel rail above the welding joint (offline monitoring), in accordance
with ASTM E2700 standard (Figure 13).

The proposed AE sensor scheme was then implemented under a load (online moni-
toring) at the same welding joints previously analyzed by the PAUT. The proposed deep
learning algorithm localized the crack in steel rail for each AE signal (from steel rail under
a load) based on the highest deep learning-generated probability value. The crack localiza-
tion results by the proposed deep learning-based AE sensor scheme were compared against
the reference (actual results by the PAUT). In this research, the F1 scores (classification
accuracy) of the proposed AE sensor scheme for onsite localization of cracks in the rail
head, web, and foot were 78%, 80%, and 74%, compared with the PAUT results. The total
accuracy (average F1 score) of the proposed AE sensor scheme was 77.33%.
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Figure 18. AE signals of cracks in the welding joint of the steel rail under a load using the single-
sensor AE scheme.

6. Conclusions

This research proposed the deep learning-based single-sensor AE scheme for local-
ization of cracks in the head, web, and foot of steel rail under a load. The AE signals
captured by the AE sensor were converted into digital signal data and denoised using a
TVD algorithm. The denoised signal data were used to localize the cracks by using a deep
learning algorithm. The proposed AE sensor scheme was also implemented onsite to detect
cracks in the head, web, and foot of steel rail. The experimental results showed that the
classification accuracy (F1 scores) of the AE sensor scheme for onsite localization of cracks
in the rail head, web, and foot were 78%, 80%, and 74%, compared with the PAUT results.
The total accuracy (average F1 score) of the AE sensor scheme was 77.33%. To improve
the total accuracy (average F1 score), subsequent research should increase the number of
AE signal data in training the deep learning algorithm, in addition to experimenting with
alternative pre-processing algorithms with a higher denoising capability.
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