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Abstract: The paper proposes a novel instance segmentation method for traffic videos devised for
deployment on real-time embedded devices. A novel neural network architecture is proposed using
a multi-resolution feature extraction backbone and improved network designs for the object detection
and instance segmentation branches. A novel post-processing method is introduced to ensure a
reduced rate of false detection by evaluating the quality of the output masks. An improved network
training procedure is proposed based on a novel label assignment algorithm. An ablation study on
speed-vs.-performance trade-off further modifies the two branches and replaces the conventional
ResNet-based performance-oriented backbone with a lightweight speed-oriented design. The pro-
posed architectural variations achieve real-time performance when deployed on embedded devices.
The experimental results demonstrate that the proposed instance segmentation method for traffic
videos outperforms the you only look at coefficients algorithm, the state-of-the-art real-time instance
segmentation method. The proposed architecture achieves qualitative results with 31.57 average pre-
cision on the COCO dataset, while its speed-oriented variations achieve speeds of up to 66.25 frames
per second on the Jetson AGX Xavier module.

Keywords: real-time instance segmentation; deep neural network; embedded devices

1. Introduction

Man-made machines sense the real world using multi-modal devices, which offer dif-
ferent measurements of the scene at specific wavelengths or reconstruct the basic geometry
of the 3D environment. The intelligent camera systems must perceive and understand the
scene by employing efficient computer vision techniques to be able to provide real-time
assistance. The most important applications include self-driving vehicles and surveil-
lance systems, which employ a complex mixture of different computer vision techniques,
each designed for a specific task, such as detection, segmentation, localization, recognition,
registration, segmentation, and tracking, to name a few.

In recent years, the computer vision domain has shifted from statistical methods
towards Deep Learning (DL)-based methods [1]. Since image segmentation is a critical
component in image analysis and pattern recognition systems, tremendous research efforts
were invested in developing novel image segmenting methods by employing innovative
Machine Learning (ML) techniques. Semantic segmentation is a first approach for visual
scene understanding and focuses on classifying each pixel into a set of object classes [2].
However, instance segmentation is a more challenging task because the goal of instance
segmentation is to detect and segment each object instance found in the image [3–6].

The state-of-the-art approaches on instance segmentation are usually divided into
two-stage detectors, e.g., Mask R-CNN [4], and one-stage detectors, such as You Only Look
At CoefficienTs (YOLACT) [5], Segment Objects by LOcations (SOLO) [6], and Fully Con-
volutional Instance-aware Semantic Segmentation (FCIS) [7], to name a few. The two-stage
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instance segmentation approach consists of first generating a set of candidate Regions-of-
Interest (RoIs) and then segmenting and classifying the RoIs. The two stages are generally
applied sequentially, and therefore, these methods have difficulties in achieving real-time
performance. The one-stage instance segmentation approach focuses on directly generating
an explicit localization using a deep neural network. YOLACT [5] proposes to first extract
a set of feature maps of different resolutions using a deep convolutional neural network
and then further process the feature maps using two parallel branches: (a) the protenet,
denoted here as the segmentation head branch, which is used to generate a dictionary
of prototype masks, and (b) the prediction head, denoted here as the object detection
head branch, which predicts a set of coefficients per instance. SOLO [6] first employs
a Fully Convolutional Network (FCN) to distinguish different semantic categories and
then performs instance segmentation using two branches: one for category prediction and
another for instance mask generation.

In this paper, we propose a novel DL-based real-time instance segmentation method
for traffic videos. The proposed method aims to provide real-time performance when
deployed in embedded devices and at the same time yield a reliable and close performance
compared to the state-of-the-art. The proposed neural network architecture is called
SOLACT, which combines the YOLACT [5] and SOLO [6] approaches into a novel design
augmented by several key modifications.

The contributions of this paper are as follows: (a) a novel neural network architecture
for real-time instance segmentation of traffic video using improved network designs for the
object detection and segmentation head branches; (b) a novel post-processing method that
ensures a reduced rate of false detection; (c) an improved network training procedure based
on label assignment; (d) an elaborated ablation study where lightweight and speed-oriented
architectural variations of the basic SOLACT architecture are proposed for deployment on
two embedded devices, Nvidia Jetson TX2 [8] and Nvidia Jetson AGX Xavier [9]; (e) an
efficient instance segmentation method that outperforms YOLACT [5], the state-of-the-art
method for real-time instance segmentation.

The rest of the paper is organized as follows. Section 2 provides an overview of
the existing state-of-the-art techniques for instance segmentation. Section 3 describes the
proposed method. Section 4 presents the experimental validation. Section 5 draws the
final conclusions.

2. Related Work

The two-stage instance segmentation approach has gained much popularity as the
methods are usually built based on powerful object detection methods such as Faster
R-CNN [10] and R-FCN [11]. Mask R-CNN [4] is one of the first object instance segmen-
tation algorithm. It extends the Faster R-CNN [10] architecture for object detection by
adding a new network branch for predicting the object masks in parallel with the existing
classification and bounding box regression branches. The first stage, called the Region
Proposal Network (RPN), is in charge of extracting several features maps of different
resolutions. It contains a backbone network typically represented by a Residual Network
(ResNet) architecture [12] equipped with a Feature Pyramid Network (FPN) [13]. The sec-
ond stage consists of a further refinement of the previously detected RoIs, using feature
extraction for each candidate box based on RoI pooling, followed by classification and
bounding-box regression. Moreover, a parallel branch was added to compute a binary
mask for each RoI. The algorithm was further improved in [14], where the Mask Scoring
R-CNN method introduces a network block for learning the quality of the predicted in-
stance masks. The block takes the instance feature and the corresponding predicted mask
together to regress the mask Intersection over Union (IoU). Similarly, MaskLab [15] was
built based on Faster R-CNN [10] and computes three outputs: box detection, semantic
segmentation, and direction prediction. Other solutions such as, Constrained Parametric
Min-Cut problems (CPMC) [16] and DeepMask [17], further improve the mask prediction.
FCIS [7] proposes to detect and segment the object instances jointly and simultaneously
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based on position-sensitive maps with inside/outside scores. Recently, Mask-Refined
R-CNN [18] was proposed by first introducing a feature pyramid for segmentation by
establishing a refinement framework on a mask head and by adjusting the stride of the ROI
align accordingly, then determining the optimal design scheme by adjusting the size of the
input image, the number of feature fusions operations, and the means of feature fusion.

The goal of the one-stage approach is to propose real-time instance segmentation
methods by directly generating an explicit localization. YOLACT [5] is one of the fastest
state-of-the-art instance segmentation methods based on RetinaNet [19], a one-stage object
detector algorithm. RetinaNet employs a ResNet-based backbone architecture, which com-
bines the ResNet [12] and FPN [13] designs to predict a bounding box and a score confidence
for each pixel. YOLACT added two more branches to the RetinaNet architecture in order to
obtain the segmentation mask for each detection. It computes in parallel a vector of k values,
using the object detection branch, and k common segmentation masks, called prototypes,
using the segmentation branch. In the post-processing stage, the detections are thresholded
and the high confidence detections are selected as true predictions. The corresponding
masks are obtained by multiplying the k mask prototypes with the k-dimensional mask
coefficients vector of the corresponding detection. However, YOLACT’s main disadvantage
is that it relies on anchor-based detections, and the segmentation cannot be performed
without the bounding boxes branch.

SOLO [6] proposes to predict the segmentation mask and the corresponding score
confidence for each location on the image (without bounding boxes) at the same time.
Similarly to YOLACT, a ResNet-based backbone architecture that combines the ResNet [12]
and FPN [13] designs is employed to compute feature maps of different resolutions for the
final part of the network. Each feature map is then downsampled to a lower resolution,
where each location (or pixel) is responsible for detecting the object that has the center in
it. A two-parallel branches approach is employed to detect the semantic category (with
an associated score confidence) and to produce the segmentation. However, the increased
complexity heavily affects the method’s speed performance.

Recent works demonstrated that instance segmentation remains a challenging com-
puter vision problem. The work from [20] was motivated by plant image analysis in the
context of plant phenotyping and proposed an exemplar-based recursive instance segmen-
tation framework. In [21], the authors proposed a two-stage transfer learning framework
for weakly supervised instance segmentation, where the algorithms explicitly discriminate
between invalidly and validly generated masks and, in training, only make use of the valid
masks to avoid the interference of invalid ones. In [22], the authors studied the problem
of aggregating the image-level information of all training images into a large knowledge
graph and exploiting semantic relationships from this graph.

3. Proposed Method

In this paper, we propose a new instance segmentation method, SOLACT, that pro-
vides an improved performance compared with the current state-of-the-art algorithm for
image segmentation. SOLACT is then modified for deployment on embedded devices
by further increasing the network speed while maintaining a close performance to the
basic architecture.

SOLACT follows the conventional approach, depicted in Figure 1, by first employing
a backbone architecture to extract feature maps at different resolutions, followed by two
head branches specialized in detecting the class category and the shape of the detected
objects, respectively, where the final results are obtained by employing a post-processing
algorithm. The proposed method is obtained by modifying each block in Figure 1.

Section 3.1 presents the backbone network design employed in the basic SOLACT
architecture. Section 3.2 presents the proposed network design for the segmentation head
network. Section 3.3 presents the proposed network design for the object detection head
network. Section 3.4 presents the proposed post-processing algorithm for evaluating the
network output. Section 3.5 describes the final training details.
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Figure 1. The instance segmentation scheme. The proposed method is obtained by modifying
each block.

3.1. Backbone Architecture

The first part of conventional deep neural network algorithms consists of employing a
backbone architecture where the weights are pre-trained to perform an image classification
task. The most popular backbone architecture is the ResNet architecture [12], where the
input patch is processed at five consecutive resolutions, sometimes simply denoted as
stages. The corresponding features maps are extracted after processing the patches using
bottleneck blocks [12]. The ResNet-18 and ResNet-34 backbone architectures were first
proposed using a bottleneck block design with two convolutional layers and, therefore
contain a total of 18 and 34 convolutional layers, respectively. The ResNet-50, ResNet-101,
and ResNet-152 backbone architectures were later proposed based on a bottleneck block
design with three convolution layers with 50, 101, and 152 convolutional layers, respectively.
This large variety in available backbone architectures gives the flexibility to choose the
optimal architecture corresponding to the target application.

Recently, ResNet-50 has gained popularity and has become the most used backbone
architecture as it provides one of the best performance-complexity trade-offs. The top part
of Figure 2 shows the ResNet-50 architectural design, where the input image of size H×W
is processed to extract feature maps of different sizes: (1) H

4 ×
H
4 × 64, denoted as Stage 1;

(2) H
4 ×

H
4 × 256, denoted as Stage 2; (3) H

8 ×
H
8 × 512, denoted as Stage 3; (4) H

16 ×
H
16 × 1024,

denoted as Stage 4; and (5) H
32 ×

H
32 × 2048, denoted as Stage 5.

Figure 2. The basic Segment Objects by LOcations (SOLO) combined with You Only Look At
CoefficienTs (YOLACT) (SOLACT) architecture employs a ResNet-50-based backbone architecture,
which combines the ResNet-50 [12] and FPN [13] architectures.

The latest studies show that better results are obtained by further processing the
ResNet-based feature maps using the Feature Pyramidal Network (FPN) architecture [13],
where the feature maps of different resolutions are processed together in order to efficiently
detect the different object sizes. The bottom part of Figure 2 depicts the FPN architecture
design [13], which further processes the last three stages from the ResNet-50 network,
Stage 3, Stage 4, and Stage 5. A convolution layer with a 1× 1 kernel and 256 channels
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is first employed to unify the number of channels of all feature maps. Note that the
object detection head branch uses the same network design to process each feature map.
Note that by reducing the number of channels, the network speed is increased. The feature
maps with two consecutive resolutions are processed together by first upsampling the
lower resolution and then further employing a convolution layer with a 3× 3 kernel and
256 channels. Hence, the Stage 3, Stage 4, and Stage 5 feature maps are processed by FPN to
obtain the P3, P4, and P5 feature maps, respectively. Note that the Stage 5 feature maps are
also processed separately to extract the next lower resolution feature maps, denoted as P6,
by employing a convolution layer with a 3× 3 kernel, 256 channels, and stride s = (2, 2),
denoted simply as /2.

Figure 2 depicts the ResNet-50-based backbone architecture used in the proposed
basic SOLACT design. In this paper, the neural network is trained using input patches
of size H ×W, where each input patch is generated by resizing the input image to the
H ×W = 640× 640 resolution. Therefore, the backbone network processes the input patch
and provides feature maps of the following four resolutions: (i) H

8 ×
H
8 = 80× 80 for P3;

(ii) H
16 ×

H
16 = 40× 40 for P4; (iii) H

32 ×
H
32 = 20× 20 for P5; and (iv) H

64 ×
H
64 = 10× 10 for P6.

The feature maps generated by the SOLACT backbone are used to predict the classifi-
cation and segmentation of each foreground object. In the literature, several approaches
were proposed to compute the instance segmentation, e.g., by employing a two-stage
method where the objects are first detected and then the corresponding segmentation is
computed. In this paper, we propose to use a two parallel branches approach, where:
(1) the segmentation head branch is in charge of generating the general segmentation maps;
and (2) the object detection head branch is in charge of localizing the objects in the input
image and computing a confidence score for each class in each feature map cell. Note that
the object detection head also provides a vector for every cell used by the post-processing
algorithm to generate the corresponding object mask on the cells where an object is present.

The proposed approach generally achieves reduced runtimes compared with the
two-stage approach networks, where the inference time remains constant as it does not
depend on the number of objects detected in the input image. This property makes the
proposed method a good solution for video processing applications where the execution
time plays a key role.

3.2. Segmentation Head

The segmentation head branch follows the strategy proposed in the ProtoNet branch
by YOLACT [5]. The proposed network is designed to process the highest resolution
feature maps extracted by the backbone network, i.e., the P3 feature maps, and to compute
a set of k prototype masks of size H

4 ×
W
4 .

Figure 3 depicts the proposed architecture used by SOLACT for the Segmentation
head branch. In the first part of the network, the P3 feature maps are processed by a
Coordinate Convolution (CoordConv) [23], which computes the normalized coordinate
positions in the P3 feature map cell. Two feature maps are computed: one contains the
horizontal coordinates and the other the vertical coordinates, then concatenated with the
P3 feature maps. The second part of the network contains a sequence of four convolutional
(Conv) layers with 3× 3 kernels and 256 channels, each followed by a Batch Normalization
(BN) layer [24] and a Rectified Linear Unit (ReLU) activation layer. The last part of the
network contains an upsample layer, which increases the patch resolution from H

8 ×
W
8

to H
4 ×

W
4 and a sequence of two convolution layers with 3× 3 kernels, followed by a

ReLU activation layer. Note that the first Conv layer after upsampling is equipped with
256 channels, while the second Conv layer after upsampling is equipped with k channels
so that k prototype masks of size H

4 ×
W
4 are computed as the output.
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Figure 3. Proposed segmentation head branch.

The proposed SOLACT architecture was designed based on the following observations:

(a) To achieve a faster execution time, only the P3 feature maps are used as input for the
proposed Segmentation head branch. The feature maps with the highest resolution
were selected because they can produce high resolution prototype masks while mak-
ing use of only one upsample layer. Note that PFN computes the P3 feature maps
based on Stage 3, Stage 4, and Stage 5, which results in good quality masks even for
small objects.

(b) The utilization of the CoordConv layer represents a novel idea, and it is not part of the
original YOLACT [5] design. The proposed design helps to generate prototype masks
not only based on the feature maps generated by FPN, but also on pixel locations.
Note that each prototype is specialized in a specific segmenting task [5], e.g., for seg-
menting foreground objects in the left part of the image, and the CoordConv layer is
used to reinforce this behavior.

(c) The output of the prototype masks is unbounded, so that the network can output
strong activations for the prototypes with high confidence.

(d) The proposed design limits the number of high resolution segmented masks generated
by SOLACT by setting k = 32. Note that the number of prototypes is independent of
the number of objects captured by the image, and it is smaller than the one used in
the SOLO architecture [6]. The proposed design helps to reduce the memory footprint
of the proposed architecture and the overloading of computational resources.

3.3. Object Detection Head

The goal of the object detection head branch is to predict: (i) the location of the objects,
(ii) the class of each object, and (iii) a vector of k components that represents the mask
coefficients used by the post-processing algorithm to generate the final mask, as described
in Section 3.4.

Figure 4 depicts the proposed architecture used by SOLACT for the object detection
head branch. The network is used for each feature map Pi, ∀i = 3, 4, 5, 6, generated by
FPN, i.e., P3, P4, P5, and P6, respectively. However, the trained network weights are shared
among all four resolutions. Note that this is a well-known practice [5,6], used in the object
detection and image segmentation literature as it allows learning in a homogeneous way
for every feature map.

Figure 4. Proposed object detection head branch.
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In the first part of the network, each Pi feature map is downsampled to a Si × Si
size and then processed by a CoordConv layer, in a similar way as in the Segmentation
Head branch. More exactly, in our case: (i) the P3 80× 80 resolution is downsampled to
S3 × S3 = 60× 60; (ii) the P4 40× 40 resolution is downsampled to S4 × S4 = 30× 30;
(iii) the P5 20× 20 resolution is downsampled to S5× S5 = 14× 14; while (iv) the P6 10× 10
is maintained, i.e., S6 × S6 = 10× 10. The second part of the network contains a sequence
of two Conv layers with 3× 3 kernels and 256 channels, each followed by BN and ReLU
layers. The last part of the network consists of two branches. The first branch is specialized
in computing the class confidence for C + 1 classes using a sequence of two Conv layers:
one is equipped with a 3× 3 kernel, 256 channels, and a ReLU activation function; and the
other one is equipped with a 1× 1 kernel, C + 1 channels, and a softmax activation function,
which computes the confidence as a probability. Similarly, the second branch is specialized
in computing the mask coefficients for the k prototypes using a sequence of two Conv
layers: one equipped with a 3× 3 kernel, 256 channels, and a ReLU activation function;
and the other one equipped with a 1× 1 kernel, k channels, and a tanH activation function.

The proposed architecture was designed based on the following design characteristics,
which help to improve the network accuracy, as well as increase the speed:

(a) Feature map downsample: Each feature map is downsampled to an Si × Si grid cell
to reduce the execution time with the drawback of limiting the number of possible
instances detected, i.e., if there are several very close objects, it will not be possible to
distinguish them.

(b) Coordinate convolution: SOLACT follows the approach from SOLO [6] and introduces
a pre-processing step based on the CoordConv layer. Thanks to this simple operation,
the spatial information is added with a negligible speed impact.

(d) Anchor-free approach: Traditional object detection networks follow the anchor-based
approach, where instead of generating a prediction for each cell in the feature maps,
several predictions are created, each of them assigned an object size and shape. Such an
approach could help to detect different object sizes and shapes; however, recent studies
tend to avoid the design complexity of anchor-based detection [25–29]. The anchor-
free strategy leverages the training performance, because each location on the feature
map is responsible for the detection of objects centered on it, independently of their
size or shape. This reduces the complexity, and as a result, the network learns the
object features in each location better.

(e) Bounding box-free segmentation: Unlike most the image segmentation networks,
SOLACT does not depend on the bounding box prediction to construct the final seg-
mentation masks. This may cause some false mask pieces to get out of the hypothetical
bounding box; however, it gives the network much more flexibility for layer pruning
and network acceleration.

3.4. Post-Processing Algorithm

After training an SOLACT model, a post-processing algorithm is employed to per-
form the network evaluation. The algorithm is in charge of interpreting the network
outputs, deciding where an object was detected, and determining its corresponding seg-
mentation mask. Note that the post-processing algorithm makes it possible to control the
reliability of the proposed method and manages the number of false positives so that the
method can be employed in a real-time application. However, if the network filters out too
many a priori possible instances, then the obvious objects in the images are not detected.
Therefore, a balance between the number of detected possible instances and complexity
must be reached.

The proposed algorithm contains three parts: (1) initial filtering of the locations with a
very low confidence score; (2) mask generation (for the selected locations) and computa-
tion of the maskness metric; and (3) final filtering based on non-maximum suppression.
Note that the selected final masks of size H

4 ×
W
4 are first upsampled to the input image

size, H ×W, and then binarized using a threshold of 0.5.
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3.4.1. Initial Filtering

The algorithm uses as input the class confidence computed by the object detection
head branch; see Figure 4. The initial filtering selects only the feature map cells with
the highest probability for an object to be located. Therefore, we first retain only those
instances with a class confidence value on the non-background class larger than τ = 0.3.
From the remaining locations, we further retain only those instances with a class confidence
value larger than τ, which gives us the detected object class. This ensures that only a few
locations with the highest confidence are selected so that the subsequent computation is
accelerated and notably less memory resources are used for real-time applications.

3.4.2. Masks’ Generation and Maskness Computation

Next, we compute a first estimation of the object mask, called soft mask, for each
possible location currently detected. The algorithm uses as input: the mask coefficients
computed by the object detection head branch (see Figure 4) and the prototype mask
computed by the segmentation head branch (see Figure 3). The object’s soft masks are
generated by a simple linear combination between the mask coefficients and the prototype
mask followed by a sigmoid operation to compute the probability of each pixel.

Experiments showed that some soft masks must be further discarded due to low mask
quality or the existence of several masks for the same object. To address the first problem,
a mask score confidence called maskness is introduced, which is used in the final filtering
step. The maskness is calculated using the following equation:

maskness = ∑i x
∑i y

, where
{

x = 1 if pi > T1 and x = 0 otherwise;
y = 1 if pi > T2 and y = 0 otherwise,

(1)

where i represents the pixel index in the soft masks,T1, T2 are two confidence thresholds
with T1 > 0.5 > T2 (T1 = 0.7 and T2 = 0.2 in our experiments), and pi ∈ [0, 1] is the
probability of the corresponding pixel.

The idea behind the maskness score comes from our observations that a good quality
mask contains values from a wide range such that it is able to distinguish between differ-
ent objects. However, if the mask contains values from a small range, i.e., between the
thresholds T2 and T1, its assigned confidence is reduced.

3.4.3. Final Filtering and Non-Maximum Suppression

The final mask confidence is computed using Equation (2):

mask_con f idence = location_score ·maskness1.3, (2)

where the location score is extracted from the class confidence computed by the object
detection head branch (see Figure 4), and the maskness score is computed by Equation (1).
The proposed post-processing algorithm was inspired by SOLO [6], where the maskness
is computed as the average value of the pixels considered as the foreground, i.e., with a
confidence value greater than 0.5. The final confidence score is computed by multiplying
the classification score with the maskness [6]. In contrast to SOLO, in this paper, we propose
a different strategy where first the maskness is calculated as the ratio between the number
of pixels with a confidence value greater than T1 and the number of pixels with a confidence
value greater than T2, as initially it is hard to define a threshold to divide the pixels into
background and foreground. Moreover, the final confidence score is computed giving the
maskness a higher importance than in SOLO [6]; see Equation (2).

The final filtering algorithm makes use of the mask confidence to filter the remaining
masks. This is performed specifically for each class type, i.e., each class has a different
confidence threshold, which is set by trial and error on the validation set in order to reduce
the false positive rate to less than 3%. The proposed algorithm is able to optimize each
class to not discard true positives and at the same time to remove as many false positives
as possible.
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Finally, the Non-Maximum Suppression (NMS) algorithm is employed to select from
the remaining masks only one mask for each object by taking the highest score confidence
of all the possible masks for each object. Note that during training, several locations were
trained to detect a single object, and if the IoU between the two masks is larger than 0.5,
then the two instances are considered to be the same detection, and the mask with the
highest score is selected.

3.5. Training Details

In this section, we describe in detail the procedure used for training a SOLACT model.
Section 3.5.1 presents the proposed procedure employed for ground truth label assignment.
Section 3.5.2 presents the loss function formulation. Section 3.5.3 presents the learning
rate adjustment.

3.5.1. Labels’ Assignment

The label assignment algorithm decides which feature map and feature map cell must
detect and segment the ground truth objects. The ground truth data contain a binary
mask for each foreground object in the image, with the same resolution as the input patch,
where ones mark pixels corresponding to the object and zeros mark background pixels.

The matrix for object localization is formed by S one-hot encoding vectors, where S
is the number of localization cells. Therefore, each vector contains C + 1 coefficients,
where only one coefficient is set to “1” to signal the class of the object in the cell. Note that
the first index position is signaling the background, i.e., no object is present at the cor-
responding location, while the remaining C coefficients signal an object class. The label
assignment algorithm contains the following steps:

Feature map selection: An object may be detected by a specific FPN feature map
resolution selected based on its size. Therefore, the small resolution feature maps P5 and
P6 are in charge of detecting large objects, while the high resolution feature maps P3 and
P4 are in charge of detecting small objects. The relative size of an object, po, computed as
the ratio between its mask size and the image size, is used to select the appropriate feature
map as follows: (1) if po ∈ [0, 0.005), then P3 is selected; (2) if po ∈ [0.002, 0.05), then P4
is selected; (3) if po ∈ [0.02, 0.3), then P5 is selected; (4) if po ∈ [0.1, 1], then P6 is selected.
The values were selected heuristically by imposing a similar number of instances for each
object’s size and feature map. Note that to ensure a smooth progression, the ranges are
overlapping, and one or two FPN feature maps may be selected for each object.

Cell assignment: The cells that are assigned to an object are selected based on the
center of the object mask as follows: all the grid cells that are intersected by the object’s
center region must detect it, as shown in Figure 5. The object’s center region is defined as
the rectangle positioned in the center of the object with the following height and width as
defined by Equation (3):

center_region_width = 0.2 ·maskwidth/imagewidth

center_region_height = 0.2 ·maskheight/imageheight
(3)

Note that an object can be assigned to several cells because all adjacent locations will
have similar features. Therefore, all cells must detect the object so that the post-processing
algorithm can select the one with the best mask segmentation; see Section 3.4.

Neutral cell assignment: Our experiments show that only one or two feature map
cells are assigned to detect small objects, while more than six cells are assigned to detect
large objects. In such cases, just a few grids back-propagate the object detection error,
and the adjacent cells are assigned as a background region, which can have an impact on
the learning performance on the right-side cell. In this paper, when one or two feature
map cells are assigned to an object, we propose to mark the adjacent cells as neutral cells.
These neural cells do not back-propagate the error, neither as a foreground object nor as
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background, as depicted in Figure 6. Note that the neutral cells are only taken into account
for the calculation of the classification loss as described in the following section.

Object

 mask

Assigned

    cell

Central 

 region

Mask

center

Figure 5. Cells assigned to detect an object. The blue contour marks the object mask. The red dot
marks the center of the object mask. The red rectangle marks the center region. The cyan areas mark
the cells assigned to detect the object.

Figure 6. The illustration of the class label assignment for different object sizes. The Foreground cells
are marked by “F”. The Background cells are marked by “B”. The Neutral cells are marked by “N”.

3.5.2. Loss Function Formulation

The loss function is computed using two terms: one depending on the object local-
ization and classification error and the other depending on the mask segmentation error.
The loss is computed as given by Equation (4):

L = Llocate + λLmask, (4)

where Llocate is the localization loss, Lmask is the mask loss, and λ is a weighting term.
In this paper, we experimented using λ = 6.

Llocate is the focal loss introduced in [19] and is defined as follows:

Llocate(pt) = −αt(1− pt)
γ log(pt), with pt =

{
pt if ygt = 1
1− pt otherwise,

(5)

where pt ∈ [0, 1] is the predicted classification for each location, ygt ∈ {±1} is the corre-
sponding ground truth, αt is the class imbalance parameter, and γ is the focusing parameter.
Based on our experiments, the parameters in Equation (5) are set to αt = 1 and γ = 1.5,
which provide the best performance.

Lmask is the loss of predicted masks computed based on the predicted mask and the
corresponding ground truth mask. Lmask is computed as given by Equation (6):

Lmask = 1− D(p, q), (6)
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where D(p, q) is the weighted Dice coefficient introduced in [30] and computed as given
by Equation (7):

D(p, q) =
2 ∑x,y

px,yqx,y
nj

+ ε

∑x,y

(px,y
nj

)2
+ ∑x,y p2

x,y + ε

. (7)

where px,y is the prediction in the soft mask corresponding to the location (x, y), qx,y is the
ground truth, nj is the number of different locations for the applicable object j, and ε is the
smooth parameter set to one to avoid the division by zero.

The proposed loss formulation helps the network generate useful prototypes masks
and mask coefficients. Note that the Dice loss term allows the network to learn not only the
shape of the objects, but also the rest of the object mask, which is predicted as background.
This feature has the advantage that we do not depend on bounding boxes to crop the object
masks using the post-processing algorithm.

3.5.3. Learning Rate Adjustment

In this paper, Stochastic Gradient Descent (SGD) is employed as the optimizer with a
weight decay of 0.0001, a momentum of 0.9, and using a batch size of 8 images, while train-
ing the model for 55 epochs. The learning rate is adjusted based on a static schedule, as de-
picted in Figure 7. Note that the training starts by using a small learning rate, e.g., 10−3,
to allow the network to adjust the initial weights during only a few first iterations, e.g.,
the first 0.1 epochs, where the procedure is known as network warm up. Next, the learning
rate is set to 10−2 (initial learning rate) and is further adjusted by halving the value first
every 10 epochs up to epoch 30, and then every 5 epochs until epoch 55.

0 5 10 15 20 25 30 35 40 45 50 55

epoch

0

0.002

0.004

0.006

0.008

0.01
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a
rn

in
g
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a
te

Figure 7. Learning rate adjustment during training.

4. Experimental Validation
4.1. Experimental Setup

COCO dataset:
For instance segmentation, the dataset must provide the objects shapes for every

image, which is a very time consuming task when done manually. To build a new dataset
for traffic videos, thousands of traffic images and their corresponding annotations are
required. One of the most famous datasets for object detection and image segmentation
is the COCO dataset [31], which contains 80 types of objects organized into the following
11 super-categories: person & accessories, animal, vehicle, outdoor objects, sports, kitchenware,
food, furniture, appliance, electronics, and indoor objects.

Training set for traffic videos:
The goal of this paper is to propose a novel real-time image segmentation method

for traffic monitoring to be deployed on embedded devices. Hence, only the following
C = 9 traffic classes are extracted from the COCO dataset [31]: person, bicycle, car, motorcycle,
bus, train, truck, traffic light, and stop sign. Note that only the images containing an object
from any of these classes are used in our experiments. Therefore, the COCO training set,
which contains 118,287 images, was pruned to 73,004 images, and the COCO validation
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set, which contains 5000 images, was pruned to 3086 images. The number of instances of
each class on each set is presented in Table 1. Note that the COCO dataset also provides a
test set of 20,288 images without publicly available annotations. Therefore, in this paper,
the results over the COCO test set are obtained by uploading the instance segmentation
results to the COCO server [32] as described below. A resolution of H ×W = 640× 640
was chosen for the input patches as it was considered large enough to be used for the
detection of the majority of small and distant objects in the image.

Table 1. Number of instances per traffic class extracted from the COCO dataset [31].

Class
Number of Instances

Training Validation

person 257,253 10,777
bicycle 7056 314

car 43,533 1918
motorcycle 8654 367

bus 6061 283
train 4570 190
truck 9970 414

traffic light 12,842 634
stop sign 1983 75

TOTAL 352,922 14,972

Data augmentation:
To increase the number of training samples and avoid overfitting, two types of data

augmentation techniques were applied: (i) horizontal flipping, where the input image is
flipped horizontally with a 50% probability; and (ii), random cropping, where the input
image is randomly cropped to remove the image borders so that the height and width of the
cropped image select between 90% and 100% of the initial height and width, respectively.

Implementation:
The proposed neural network was developed using the open-source object detection

and segmentation platform from Facebook AI Research (FAIR) called Detectron2 [33],
which was implemented in the Python programming language using the Pytorch [34]
open-source deep-learning library. The system ran on a machine equipped with TITAN
X [35] Graphical Processing Units (GPUs).

Instance segmentation results:
The accuracy of the proposed network, SOLACT, was compared with the state-of-the-

art instance segmentation method YOLACT [5], by means of the COCO metrics results.
The following procedure was used to obtain the results:

(1) A network architecture was trained using the training set, and the trained model
was saved.

(2) The model was tested on the COCO test set, and the instance segmentation results
based on the COCO metrics were saved as a json file.

(3) The json file was uploaded online on the COCO Detection Challenge (Segmentation
Mask) website [32], where the numerical results for each class are provided as a
scoring output log file.

(4) The results obtained for the C = 9 traffic classes were extracted. In this paper, the fol-
lowing six values are reported: (i) the Average Precision (AP) for IoU ∈ [0.50, 0.95]
and all areas (small, medium, and large), called AP; (ii) AP for IoU = 0.50 and all
areas, called AP50; (iii) AP for IoU = 0.75 and all areas, called AP75; (iv) AP for
IoU ∈ [0.50, 0.95] and small areas, called APs; (iv) AP for IoU ∈ [0.50, 0.95] and
medium areas, called APm; (iv) AP for IoU ∈ [0.50, 0.95] and large areas, called AP`.

Note that the results for both YOLACT and SOLACT models were obtained using
this procedure.
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Moreover, the basic SOLACT architecture (presented in Section 3) was further mod-
ified, and six other architecture variations were proposed, as described in the ablation
study presented in Section 4.4 below. Their performance over the COCO test set was also
computed using the procedure presented above.

COCO metric drawbacks:
Recent studies [36] showed that the COCO evaluation metric does not reflect the real

accuracy performance as it does not penalize the false positive detection. More precisely,
the score detection threshold chosen to generate the final COCO results was set very low,
and it provided many false positive detections. In order to implement the model in a real
environment application, we proposed to increase the threshold to reduce the number of
false detections. Therefore, in this paper, the YOLACT results were generated using the
threshold set to 0.4. Furthermore, YOLACT occasionally produces more than one detection
for the same object because in the post-processing stage, the NMS operation was applied
only to objects of the same category class, e.g., vans were often misclassified as both cars
and trucks. We proposed to correct this behavior by including a function in the YOLACT
post-processing procedure, which first computes the IoU between the detected instances,
regardless of their class, and then applies NMS on the obtained results.

Model deployment on embedded devices:
The network speed was computed by deploying the trained models on two real-time

embedded devices with different hardware specifications: NVIDIA Jetson TX2 having basic
hardware specifications [8] and NVIDIA Jetson AGX Xavier having more advanced hard-
ware specifications [9]. The trained models were first exported from the training framework
into the open neural network exchange format called ONNX [37]. The converted ONNX
model was then optimized to run on the selected embedded device using TensorRT [38],
which provides the best computation strategy for the selected device by arranging the
code in such a way that parallel calculations are performed as much as possible on the
GPU. The network speed was computed based on the average inference time over around
100 images.

4.2. Experimental Results

Figure 8 shows the SOLACT training and validation loss. Note that the validation
error curve is always very close to the training error curve, which clearly proves that the
proposed SOLACT architecture successfully avoids over-fitting.

0 5 10 15 20 25 30 35 40 45 50 55

epoch
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1
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s
s

Training error

Training error - localization

Training error - masks

Validation error

Validation error - localization

Validation error - masks

Figure 8. SOLACT model training.

Table 2 shows the comparison between the instance segmentation results over the
COCO test set [31] of nine traffic classes, for the proposed architecture, SOLACT,
and YOLACT [5] methods. Note that SOLACT achieves a better average performance,
31.57 AP, compared with YOLACT [5], 30.33 AP. Moreover, for six classes (person, bicycle,
motorcycle, bus, train, and traffic light) SOLACT provides a better instance segmentation,
while for three classes (car, truck, and stop sign), YOLACT provides a slightly better instance
segmentation. Such behavior may be caused by the imbalanced class training; see Table 1.
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Table 2. Instance segmentation results over the COCO test set [31] using COCO metrics (↑). APs, Average Precision, small
areas; APm, AP, medium areas; APl, AP, large areas.

Class
SOLACT YOLACT [5]

AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

person 32 51.1 34.7 9.2 37.8 60.5 22.1 37.5 23.5 5.2 22.1 48.6
bicycle 9.9 21.1 6.8 2.2 11.5 25.6 9.7 25 5.1 1.8 10.9 26

car 19.8 29.6 22.3 8.2 35.3 41 23 41 22.6 12.5 36.8 44.5
motorcycle 22.8 40.1 22.2 2.7 16.4 42.7 21.6 43.3 19.5 2.5 14.7 42.2

bus 56.1 66 62 1.8 36.9 74.2 51.4 62.7 56.8 4.8 29.4 69.7
train 57 73.5 66.1 12.6 26.2 65.4 55.4 72.4 65.3 11.6 29.3 63
truck 15.5 21 17.9 2 12.9 28.6 22 33.3 24.8 3.4 17.9 41.5

traffic light 14.2 26.5 14.3 8.4 31.6 38.6 9.5 18 8.7 4.9 21.8 38.4
stop sign 56.8 63.1 62 16.3 58.3 80.7 58.3 66.5 65 18.7 60.9 81.6

AVERAGE 31.57 43.56 34.26 7.04 29.66 50.81 30.33 44.41 32.37 7.27 27.09 50.61

4.3. Qualitative Results

In this paper, the quality of the proposed SOLACT architecture was also tested on a
traffic surveillance video. Figure 9 shows the instance segmentation results obtained for a
traffic video recorded using a Macq smart traffic surveillance camera [39], kindly provided
by Macq S.A./N.V. Note that the sequence was first anonymized in accordance with the
General Data Protection Regulation.

Figure 9. Qualitative instance segmentation results of SOLACT on a real traffic video.

Note that the quality of the object masks is quite high and the edges are well adjusted
to the object’s shape; although, the resolution of the images captured by the five megapixel
camera is about four times larger than the input patch used by the proposed network.
Note that for the two cars in the video sequence, the instances detected in the first frame
are also detected in all the following frames.

4.4. Ablation Study

The final goal of this paper is to achieve real-time performance on embedded devices,
while maintaining a competitive performance. Here we propose to further modify the
basic architecture design of SOLACT by studying the performance of six different archi-
tecture variations of SOLACT, devised based on the following strategies: (1) reduce the
complexity of the segmentation head branch; (2) reduce the number of channels in the
convolutional layers; (3) design a lightweight version of SOLACT; (4) reduce the input
patch size; (5) change the ResNet50-based backbone to a PeleeNet-based backbone [40];
(6) change the ResNet50-based backbone to a MobileNetV2-based backbone [41]. All vari-
ations were trained under the same conditions as SOLACT and YOLACT [5]; however,
the comparison was performed over the COCO validation set because different COCO
accuracy metrics were compared in our attempt to reduce the number of false positive
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instances detected for each class. Since the annotations on the COCO test set are not
publicly available, it is not possible to compute the number of false positive detections on
the COCO test set.

The following six architecture variations of SOLACT are proposed:
(1) Lightweight segmentation head:
In the first network variation, we introduce the following changes with respect to the

proposed basic SOLACT network design: the number of convolution layers in the Segmen-
tation head branch is halved. More exactly, the second part of the network contains only
two convolutional layers, and the last part contains one convolutional layer, as depicted in
Figure 10.

Figure 10. Lightweight segmentation head.

(2) Channel pruning:
The second network variation uses the same number of layers as SOLACT, but the

number of channels in the convolutional layer used by FPN to process the feature maps
received from the backbone is reduced from 256 channels to 128 channels. The proposed
variation aims to heavily reduce the network inference time and study how much the
performance is affected by the change.

Our experiments showed that by halving the number of channels only in the Seg-
mentation head branch, a small performance drop is achieved while the inference time is
heavily reduced. Therefore, for the remaining architecture variations, this modification
is maintained.

(3) Lightweight SOLACT:
The two previously proposed strategies were combined to obtain the third network

variation, called lightweight SOLACT. In this case, the segmentation head branch (see
Figure 3) contains only one convolution layer with a 3× 3 kernel and 128 channels, followed
by the BN and ReLU layers. Similarly, the second part of the object detection head branch
(see Figure 4) contains only one convolutional layer (followed by the BN and ReLU layers)
instead of two convolutional layers.

Our experiments showed that the lightweight SOLACT variation provides a good
speed-performance trade-off. Therefore, for the remaining variations, the proposed modifi-
cations in the segmentation and the object detection head branches are maintained.

(4) Reduced patch size:
The fourth network variation proposes to train the lightweight SOLACT architecture

by reducing the size of the input patches from 640× 640 to 512× 512.
Therefore, the size of each of the four FPN feature maps is also reduced, so the

grid cells on the object detection head branch were also decreased as follows: (i) for
P3, from 60× 60 to 40× 40; (ii) for P4, from 30× 30 to 24× 24; (iii) for P5, the 14× 14
resolution is maintained; and (iv) for P6, from 10× 10 to 8× 8. Additionally, one more
processing block (convolution + BN + ReLU) was introduced in the second part of both the
segmentation and object detection head branches.

(5) PeleeNet-based backbone:
The fourth network variation proposes to replace the ResNet-50-based backbone with a

PeleeNet-based backbone. More exactly, in Figure 2, the Stage 3, Stage 4, and Stage 5 feature
maps are now extracted by a PeleeNet network [40] instead of a ResNet-50 [12] network.
Additionally, one more processing block (convolution + BN + ReLU) was introduced in the
second part of the object detection head branch.



Sensors 2021, 21, 275 16 of 19

(6) MobileNetV2-based backbone:
Similarly to the PeleeNet-based backbone variation, the MobileNetV2-based backbone

network variation proposes to replace the ResNet-50-based backbone with a MobileNet
V2 [41] architecture. The Stage 3, Stage 4, and Stage 5 feature maps are now extracted by a
MobileNet V2 network [41], and one more processing block (convolution + BN + ReLU)
was introduced in the second part of the object detection head branch.

Table 3 shows the instance segmentation results obtained with the different architec-
ture variations, as well as a comparison between speeds (expressed in frames per second)
when deploying these models on the NVIDIA Tegra TX2 [8] and AGX Xavier [9] platforms.
The ablation study shows that:

(a) The lightweight SOLACT variation provides the closest performance compared to the
basic SOLACT architecture.

(b) The lightweight SOLACT equipped with a PeleeNet-based backbone represents the best
choice in terms of speed when deployed on the NVIDIA Tegra TX2 embedded device.

(c) The lightweight SOLACT variation equipped with a MobileNetV2-based backbone
represents the best choice in terms of speed when deployed on the NVIDIA AGX
Xavier embedded device.

(d) The basic SOLACT architecture remains the best choice in terms of performance.
(e) All proposed architectures achieve real-time performance (more than 30 Frames Per

Second (FPS)) when deployed on the NVIDIA AGX Xavier [9].

Table 3. Study of the architecture and scheme variations of SOLACT.

Method

COCO Validation Set Test Set Embedded Device

Average COCO Metric (↑) Speed (FPS) (↑)

AP AP50 AP75 APs APm APl AP Tegra TX2 AGX Xavier

SOLACT 30.63 42.03 33.70 7.15 28.46 53.08 31.57 6.66 33.15
Lightweight segmentation head 26.14 35.63 28.29 2.90 23.80 45.87 27.50 8.32 40.04

Channel pruning 25.39 34.53 27.55 3.46 23.93 44.13 27.64 12.49 58.86
Lightweight SOLACT 26.91 37.22 29.23 3.48 24.93 46.54 28.20 9.04 43.54

Reduced patch size 25.18 35.69 26.98 2.77 23.58 45.53 26.90 13.72 64.58
PeleeNet-based backbone 24.20 34.97 26.17 2.16 19.13 46.07 25.14 15.19 59.76

MobileNetV2-based backbone 20.82 30.07 22.51 0.79 18.16 40.88 22.08 12.69 66.25

Table 4 shows the false positive detections of the proposed architectures over the
COCO validation set [31]. Note that all proposed architectures achieved a small false
positive rate, so we recommend that the models can be used in real-time applications that
require high accuracy.

Table 4. False positive detections (↓) of the proposed architectures over the COCO validation set [31].

Method Person Bike Car Motorcycle Bus Train Truck Traffic Stop
Light Sign

SOLACT 2.78% 1.91% 2.40% 1.91% 2.47% 2.11% 2.42% 2.68% 4.00%
Lightweight segmentation head 2.94% 1.91% 2.66% 2.45% 2.83% 2.63% 1.93% 2.21% 2.67%

Channel pruning 2.68% 1.91% 2.35% 1.63% 2.47% 2.11% 2.90% 2.21% 2.67%
Lightweight SOLACT 2.95% 2.23% 2.45% 2.72% 2.47% 1.58% 2.42% 2.68% 4.00%

Reduced patch size 2.93% 1.91% 2.71% 2.72% 2.12% 1.58% 2.66% 2.37% 2.67%
PeleeNet-based backbone 2.85% 1.91% 3.08% 3.00% 2.83% 1.58% 3.14% 2.05% 4.00%

MobileNetV2-based backbone 2.96% 2.55% 2.97% 3.27% 3.18% 3.16% 3.14% 2.05% 4.00%

Figures 11 and 12 show the speed-vs.-performance trade-off study, where the models
were deployed on the embedded devices, Jetson Tegra TX2 [8] and Jetson AGX Xavier [9],
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respectively. Figure 11 confirms again that for the basic Jetson Tegra TX2 [8] configuration,
the PeleeNet-based backbone architecture provides the best speed-vs.-performance trade-
off. Figure 12 shows that for the more advanced Jetson AGX Xavier [9] configuration,
the reduced patch size architecture provides the best speed-vs.-performance trade-off.
Although the MobileNet V2-based backbone architecture achieves the best performance
in terms of network speed, its average performance drops too much compared with the
basic SOLACT architecture, and therefore, it is not able to provide the a good speed-vs.-
performance trade-off.
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Figure 11. Speed-vs.-performance trade-off, where the models are deployed on the NVIDIA Tegra
TX2 [8].
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Figure 12. Speed-vs.-performance trade-off, where the models are deployed on the AGX Xavier [9].

5. Conclusions

The paper proposes a novel real-time instance segmentation method for traffic videos
designed for embedded devices. A novel neural network architecture, SOLACT, was pro-
posed by modifying several blocks in the conventional neural network design for instance
segmentation. An improved network training procedure was proposed based on a novel la-
bel assignment algorithm. SOLACT outperforms the state-of-the-art methods and achieves
an average AP of 31.57. The speed-vs.-performance trade-off study was performed for six
different SOLACT network variations and demonstrated that: the PeleeNet-based backbone
architecture provides the best speed-vs.-performance trade-off when deployed on the Jetson
Tegra TX2 [8] module, and the Reduced patch size architecture provides the best speed-
vs.-performance trade-off when deployed on the more advanced Jetson AGX Xavier [9]
module. All proposed architectures achieved real-time performance when deployed on the
NVIDIA AGX Xavier [9] and provided a small false positive rate, which confirmed that the
models can be used in real-time applications. Future research will aim at further reducing
the complexity and optimizing the performance-complexity trade-offs for the most recent
embedded platforms.



Sensors 2021, 21, 275 18 of 19

Author Contributions: Conceptualization, R.P.M., I.S., and A.M.; methodology, R.P.M., I.S., and A.M.;
software, R.P.M.; validation, R.P.M. and I.S.; investigation, R.P.M. and I.S.; resources, B.C. and A.M.;
writing, original draft preparation, I.S.; writing, review and editing, R.P.M., I.S., B.C., and A.M.;
visualization, I.S. and R.P.M.; supervision, I.S. and A.M.; project administration, I.S., B.C., and A.M.;
funding acquisition, I.S., B.C., and A.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research work is funded by Innoviris within the research project DRIvINg.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors would like to thank Macq S.A./N.V. for providing access to the two
embedded devices and to the traffic video sequence.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
nor in the decision to publish the results. All authors read and approved the final manuscript.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Image Net Classification with Deep Convolutional Neural Networks. In Proceedings

of the International Conference on Neural Information Processing Systems, Stateline, NV, USA, 2012; Volume 1, pp. 1097–1105.
Available online: https://dl.acm.org/doi/10.1145/3065386 (accessed on 16 August 2020).

2. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. arXiv 2016, arXiv:1604.01685.

3. Kirillov, A.; He, K.; Girshick, R.B.; Rother, C.; Dollár, P. Panoptic Segmentation. arXiv 2018, arXiv:1801.00868.
4. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
5. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-Time Instance Segmentation. In Proceedings of the International Conference

on Computer Vision (ICCV), Seoul, Korea, October 2019; pp. 9156–9165. Available online: https://openaccess.thecvf.com/
content_ICCV_2019/html/Bolya_YOLACT_Real-Time_Instance_Segmentation_ICCV_2019_paper.html (accessed on 16 August
2020).

6. Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. SOLO: Segmenting Objects by Locations. arXiv 2019, arXiv:1912.04488.
7. Li, Y.; Qi, H.; Dai, J.; Ji, X.; Wei, Y. Fully Convolutional Instance-aware Semantic Segmentation. arXiv 2016, arXiv:1611.07709.
8. NVDIA. NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge| NVIDIA Developer Blog. Available online:

https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge (accessed on 16 August 2020).
9. NVDIA. AI-Powered Autonomous Machines at Scale|NVIDIA Jetson AGX Xavier. Available online: www.nvidia.com/en-

us/autonomous-machines/embedded-systems/jetson-agx-xavier (accessed on 16 August 2020).
10. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

arXiv 2015, arXiv:1506.01497.
11. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016,

arXiv:1605.06409.
12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
13. Lin, T.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. arXiv 2016,

arXiv:1612.03144.
14. Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; Wang, X. Mask Scoring R-CNN. arXiv 2019, arXiv:1903.00241.
15. Chen, L.; Hermans, A.; Papandreou, G.; Schroff, F.; Wang, P.; Adam, H. MaskLab: Instance Segmentation by Refining Object

Detection with Semantic and Direction Features. arXiv 2017, arXiv:1712.04837.
16. Carreira, J.; Sminchisescu, C. CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts. IEEE Trans.

Pattern Anal. Mach. Intell. 2012, 34, 1312–1328. [CrossRef] [PubMed]
17. Pinheiro, P.H.O.; Collobert, R.; Dollár, P. Learning to Segment Object Candidates. arXiv 2015, arXiv:1506.06204.
18. Zhang, Y.; Chu, J.; Leng, L.; Miao, J. Mask-Refined R-CNN: A Network for Refining Object Details in Instance Segmentation.

Sensors 2020, 20, 1010. [CrossRef]
19. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002.
20. Yu, J.G.; Li, Y.; Gao, C.; Gao, H.; Xia, G.S.; Yu, Z.L.; Li, Y. Exemplar-Based Recursive Instance Segmentation with Application to

Plant Image Analysis. IEEE Trans. Image Process. 2020, 29, 389–404. [CrossRef]
21. Sun, Y.; Liao, S.; Gao, C.; Xie, C.; Yang, F.; Zhao, Y.; Sagata, A. Weakly Supervised Instance Segmentation Based on Two-Stage

Transfer Learning. IEEE Access 2020, 8, 24135–24144. [CrossRef]
22. Liu, Y.; Wu, Y.H.; Wen, P.S.; Shi, Y.J.; Qiu, Y.; Cheng, M.M. Leveraging Instance-, Image- and Dataset-Level Information for

Weakly Supervised Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [CrossRef]
23. Liu, R.; Lehman, J.; Molino, P.; Such, F.P.; Frank, E.; Sergeev, A.; Yosinski, J. An Intriguing Failing of Convolutional Neural

Networks and the CoordConv Solution. arXiv 2018, arXiv:1807.03247.

https://dl.acm.org/doi/10.1145/3065386
https://openaccess.thecvf.com/content_ICCV_2019/html/Bolya_YOLACT_Real-Time_Instance_Segmentation_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Bolya_YOLACT_Real-Time_Instance_Segmentation_ICCV_2019_paper.html
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge/?ncid=afm-chs-44270{&}ranMID=44270{&}ranEAID=a1LgFw09t88{&}ranSiteID=a1LgFw09t88-sIB7DIG1pTGNo6G8mmMMGg
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/?ncid=afm-chs-44270{&}ranMID=44270{&}ranEAID=a1LgFw09t88{&}ranSiteID=a1LgFw09t88-VS{_}65uMcrwXzRxGIi4armw
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/?ncid=afm-chs-44270{&}ranMID=44270{&}ranEAID=a1LgFw09t88{&}ranSiteID=a1LgFw09t88-VS{_}65uMcrwXzRxGIi4armw
http://dx.doi.org/10.1109/TPAMI.2011.231
http://www.ncbi.nlm.nih.gov/pubmed/22144523
http://dx.doi.org/10.3390/s20041010
http://dx.doi.org/10.1109/TIP.2019.2923571
http://dx.doi.org/10.1109/ACCESS.2020.2969480
http://dx.doi.org/10.1109/TPAMI.2020.3023152


Sensors 2021, 21, 275 19 of 19

24. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

25. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. arXiv 2019, arXiv:1904.01355.
26. Lee, Y.; Park, J. CenterMask: Real-Time Anchor-Free Instance Segmentation. arXiv 2020, arXiv:1911.06667.
27. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Shi, J. FoveaBox: Beyond Anchor-based Object Detector. arXiv 2019, arXiv:1904.03797.
28. Xiang, C.; Tian, S.; Zou, W.; Xu, C. SAIS: Single-stage Anchor-free Instance Segmentation. arXiv 2019, arXiv:1912.01176.
29. Yang, H.; Deng, R.; Lu, Y.; Zhu, Z.; Chen, Y.; Roland, J.T.; Lu, L.; Landman, B.A.; Fogo, A.B.; Huo, Y. CircleNet: Anchor-free

Detection with Circle Representation. arXiv 2020, arXiv:2006.02474.
30. Milletari, F.; Navab, N.; Ahmadi, S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.

In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 565–571. [CrossRef]

31. Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft
COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312.

32. Cui, Y.; Lin, T.Y.; Kirillov, A.; Ronchi, M.R.; Girshick, R.; Dollr, P. COCO Detection Challenge (Segmentation Mask). 2009.
Available online: https://competitions.codalab.org/competitions/20796#learn_the_details (accessed on 30 September 2020).

33. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 13 January 2020).

34. PyTorch. Available online: https://pytorch.org/ (accessed on 23 July 2020).
35. NVDIA. TITAN X Specifications. Available online: www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/

(accessed on 6 November 2020).
36. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
37. ONNX Homepage. Available online: https://onnx.ai/ (accessed on 15 August 2020).
38. NVIDIA TensorRT. Available online: https://developer.nvidia.com/tensorrt (accessed on 23 July 2020).
39. Macq S.A./N.V. Smart Mobility Solutions. Available online: https://www.macq.eu (accessed on 15 July 2020).
40. Wang, R.J.; Li, X.; Ao, S.; Ling, C.X. Pelee: A Real-Time Object Detection System on Mobile Devices. arXiv 2018, arXiv:1804.06882.
41. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. Inverted Residuals and Linear Bottlenecks: Mobile Networks for

Classification, Detection and Segmentation. arXiv 2018, arXiv:1801.04381.

http://dx.doi.org/10.1109/3DV.2016.79
https://competitions.codalab.org/competitions/20796#learn_the_details
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://pytorch.org/
www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://onnx.ai/
https://developer.nvidia.com/tensorrt
https://www.macq.eu

	Introduction
	Related Work
	Proposed Method
	Backbone Architecture
	Segmentation Head
	Object Detection Head
	Post-Processing Algorithm
	Initial Filtering
	Masks' Generation and Maskness Computation
	Final Filtering and Non-Maximum Suppression

	Training Details
	Labels' Assignment
	Loss Function Formulation
	Learning Rate Adjustment


	Experimental Validation
	Experimental Setup
	Experimental Results
	Qualitative Results
	Ablation Study

	Conclusions
	References

