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Abstract: Grain number per rice panicle, which directly determines grain yield, is an important
agronomic trait for rice breeding and yield-related research. However, manually counting grains of
rice per panicle is time-consuming, laborious, and error-prone. In this research, a grain detection
model was proposed to automatically recognize and count grains on primary branches of a rice
panicle. The model used image analysis based on deep learning convolutional neural network (CNN),
by integrating the feature pyramid network (FPN) into the faster R-CNN network. The performance
of the grain detection model was compared to that of the original faster R-CNN model and the SSD
model, and it was found that the grain detection model was more reliable and accurate. The accuracy
of the grain detection model was not affected by the lighting condition in which images of rice
primary branches were taken. The model worked well for all rice branches with various numbers
of grains. Through applying the grain detection model to images of fresh and dry branches, it was
found that the model performance was not affected by the grain moisture conditions. The overall
accuracy of the grain detection model was 99.4%. Results demonstrated that the model was accurate,
reliable, and suitable for detecting grains of rice panicles with various conditions.

Keywords: grain detection; primary branch; convolutional neural network; image; rice

1. Introduction

Rice (Oryza sativa), as a significant food crop, is widely cultivated all over the world.
The grain counts per panicle at the mature stage are critical data for rice breeding research
and yield assessment [1,2]. Additionally, it is viewed as one of the key traits for genetic
improvement of rice yield [3–5]. Therefore, detection of the number of grains per panicle
of rice is of great importance.

The traditional method of counting grains from a panicle is to thresh the rice panicle
first and then manually count the grains. This method has several shortcomings. For
example, some grains may get lost during the threshing process, some grains may get
mechanically damaged, and some other grains may be still attached to the rice panicle.
These shortcomings may lead to some errors. Due to the error of the original method and
the error caused by the lost grains, the final cumulative error of the traditional method
will increase. This error cannot be ignored for rice yield evaluation and breeding. Because
breeding requires precise knowledge of the total grain number per rice panicle. Also, in the
process of yield estimation, there are about one million stubbles of rice per acre, and each
stubble has about nineteen effective panicles. If the number of grains per panicle is wrong,
it will seriously affect the final yield estimation. On the other hand, manually counting
a large number of grains is inefficient. Therefore, it is necessary to develop an efficient
technology to automatically detect and count grains.
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Existing technologies have been focused on counting grains using traditional image
processing methods. For example, visible light imaging and soft X-ray imaging methods
were combined to count grains on panicle [6]. Others involve an engineering prototype
combining traditional image processing methods such as image segmentation and median
filtering [7], and a P-TRAP software for this purpose [8]. Attention has been paid to the
development of grain counting algorithms based on other analyses, such as a Fourier
analysis [9], corner detection and neural network classification [10], as well as contour
curvature analysis [11]. Although these image-based methods were proven viable for
counting grains with reasonable accuracies, their application was to count grains after
threshing, which caused errors as afore-mentioned. Direct counting the grains on the
panicle before threshing can avoid those errors. However, little research has been done in
this regard.

Few methods have been explored to count grains directly on the panicle. For example,
a panicle-image based method integrating image analysis and a five-point calibration
model was proposed for spikelet number per panicle (also known as grain number per
panicle) [12]. An image-based prior edge wavelet correction model was also developed for
grain counting on rice panicles [13]. Although these methods were workable for obtaining
grain number per panicle, their accuracy still needs to be improved. Deep learning, which
is a novel method for object detection with greater accuracy, has been widely used for
agricultural applications [14]. These include the detection and counting of corn kernels [15],
the leaf counting in maize plants [16], the detection and analysis of wheat spikes [17],
seed-per-pod estimation for plant breeding [18], and automatic estimation of heading date
of rice [19]. Deep-learning based image analysis has broad prospects and can be used to
accurately and effectively detect and count grains per panicle.

A deep learning model for automatically counting grains on the rice panicle by [20]
had higher counting accuracy. However, this method failed to identify partially covered
grains due to the few pixels of small objects. There is a need for improving the deep
learning method so that it can successfully detect small grains. The objectives of this study
were to: (a) develop a model to automatically recognize grains on rice panicles based on
CNN deep learning, (b) evaluate the accuracy of the grain detection model using images
taken from rice fields, and (c) verify whether the model can be applied to different grain
moisture conditions.

2. Materials and Methods
2.1. Image Collections
2.1.1. Description of Image Capture

A rice panicle has a complex branching structure consisting of a main axis, a neck,
and lateral branches (Figure 1a). These lateral branches are called primary branches from
which secondary branches extend. Third branches are not common and may be observed
from some hybrid rice. Grains located in a whole rice panicle are very small objects in
an image, and the overlapping grains will be even smaller. Such a smaller grain has too
few pixels to provide enough information for detection. It would be difficult to perfectly
recognize every grain through a whole panicle image. Therefore, primary branch images
were collected in this study.

Images were taken from a paddy field during the rice maturity state. The field was
located at the Institute of Agricultural Sciences in Jiangmen, Guangdong province, China
(22◦34′49.404′′ N, 113◦4′48.036′′ E). Firstly, a fresh primary branch was detached from the
panicle and was placed on the ground (Figure 1b). Then, an RGB image of the primary
branch was taken at 60–110 mm above the ground from the nadir direction using a mobile
phone with a camera resolution of 3968 × 2976 pixels. A primary branch of rice panicle
captured in the image is shown in Figure 1c. Separate sets of images were collected for
model development and model verification. Details on rice variety and environmental
condition are described in the following section.
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Figure 1. Illustration of the process of image capturing: (a) structure of a rice panicle; (b) rice primary branch and image
taking with a mobile phone; (c) image captured showing the rice primary branch.

2.1.2. Image Sets

One set of rice primary branch images (referred to as Original image set hereafter) was
collected to establish the grain detection model. Images were taken in the paddy field on
1–3 July 2019 when the rice was mature, under different environmental conditions. The rice
variety was Guguangyouzhan belonging to Indica rice. The grain morphology of this rice
variety was slightly thin and long. In total, 796 images were collected. Among them, the
number of images taken was 378, 315, and 103 for sunny, cloudy, and blurred conditions,
respectively.

The other set of rice primary branch images (referred to as Verification image set
hereafter) was collected to verify if the grain detection model could be robustly applied to
different grain moisture conditions. Images were taken on 1 July 2020 at the rice maturity
stage in the same field, but with different rice variety, Zhenguiai that has relatively fatter
and shorter grains. In the rice yield measurement, the manual grain count is usually directly
performed on the newly harvested rice panicle, while in the rice variety improvement
study, the grain on the rice panicle is counted after drying. Through observation, it was
found that, due to the scattered growth of the branches directly connected to the grains, the
degree of occlusions between the grains on the branches of the newly harvested rice panicle
was slightly less. After drying, due to lack of water, the small branches on the rice panicle
branches will slightly shrink and gather in the direction of the main branches, which will
increase the overlap between the grains. Therefore, it was expected that grain moisture
conditions may have affected on grain detection results, as different grain moistures may
have different occlusions on images. Images were taken using the same mobile phone
at two moisture conditions: fresh and dry. The difference between fresh and dry is that
the color of freshly harvested grains is bright yellow, and the yellow will fade slightly
after drying. First, 35 images of mature fresh rice primary branches were taken, then the
35 branches were exposed to the sun to let them completely dry, and the images of the
dried branches were taken. In summary, for each grain moisture condition, 35 images were
collected, totaling to 70 images. The detailed information of the two image sets can be seen
in Table 1.

Table 1. Detailed information of image sets.

Image Set Rice Variety No. of Samples Imaging Conditions No. of Samples

Original
image set

Guguangyouzhan 796
sunny 378
cloudy 315
blurred 103

Verification
image set

Zhenguiai 70
fresh 35
dry 35
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2.2. Grain Detection Method

The faster R-CNN [21] model based on feature pyramid networks (FPN) [22], which is
effective for multi-scale object detections, was used for grain detection. The grain detection
model based on Faster R-CNN with FPN was trained using the images of the Original set.
For this, the images needed to be preprocessed, as discussed in the following sections.

2.2.1. Image Annotation

To maintain the data consistency and reduce computing memory, the longest side of
the images in the Original image set was uniformly scaled to 1280 pixels, and the shortest
side was scaled accordingly to the image aspect ratio. The image annotation process was
completed using the LabelImg annotation tool [23]. The annotation process had mainly
two steps: drawing a rectangular frame around a grain (Figure 2a), and storing the labels
and coordinates of the rectangular frame in the XML file, in the same format of PASCAL
VOC dataset used by ImageNet [24]. Finally, each image in the dataset had a corresponding
XML format annotation file.

When the image was collected, the lighting condition was different. Besides, during
image acquisition, the accidental shaking of hand may result in blur occurrence. As the
results, the appearance of grains had different scales and clarities in the images, including
small scales (Figure 2b) or large scales (Figure 2c), blurred conditions (Figure 2d), and
sunny (Figure 2e) or cloudy environments (Figure 2f). To increase the robustness of the
model, these images were carefully labelled. Also, when the occluded area of grain was
more than 90% or when the area of the grain located on the edge of the image was less than
10%, this grain was not labelled. After the annotation process was done, the 796 images in
the Original image data set were randomly separated into training, validation, and testing
sub-sets with the ratio to the total images of 0.56, 0.24, and 0.2, respectively.
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2.2.2. Grain Detection Based on Faster R-CNN with FPN

Figure 3 shows a schematic diagram of the Faster R-CNN with FPN network used
in this study. Faster R-CNN with FPN was comprised of three parts: FPN for generating
multi-scale feature maps, a region proposal network (RPN) using these multi-scale feature
maps for generating multi-scale region proposals for objects, and a Fast R-CNN using these
multi-scale proposals to detect objects. The backbone CNN extracted multi-scale feature
maps of the original images through a set of basic conv+relu+pooling layers. The FPN
network uses the inherent multi-scale pyramid structure of the deep convolutional neural
network to construct a feature pyramid. Specifically, this is to up-sample the feature map of
the highest layer of the convolutional neural network (i.e., 2× large the size) and then add
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it to the feature map of the lower layer of the convolutional network after 1× 1 convolution
(horizontal connection) to form a layer of the M feature layers. Follow this operation,
each layer of the M feature layers was built from top to bottom layer by layer. After each
feature layer in the M feature layers undergoes 3 × 3 convolution, the feature pyramid was
obtained. The RPN was used to generate multi-scale region proposals through multi-scale
feature maps produced by FPN. Both of the multi-scale feature maps and region proposals
were fed into an ROI (Region of Interest) pooling layer to obtain the proposal feature maps.
The prediction of the grain is carried out through feeding the proposal feature maps into
the fully connected layer.
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FPN consists of two parts: the first part is the process of bottom-up, and the second
part is the fusion process of top-down and lateral connection.

In the bottom-up process, CNN networks are divided into different stages according
to the size of the feature map, and the scale ratio of the feature map between each stage
differs by two. Among them, each stage corresponds to a feature pyramid level, and the
last layer of each stage feature is selected as the feature corresponding to the corresponding
level in FPN. Taking ResNet as example, the last residual block layer features of conv2,
conv3, conv4, and conv5 layers are selected as the features of FPN, which are recorded as
{C2, C3, C4, C5}. The steps of these feature layers relative to the original image are 4, 8, 16,
and 32, respectively.

The top-down process uses up-sampling to enlarge the small feature map on the top
layer (such as 20) to the same size as the feature map of the previous stage (such as 40). The
advantage of this is that it not only utilizes the strong semantic features of the top layer
(facilities classification), but also uses the high-resolution information of the bottom layer
(facilitates positioning). The up-sampling method can be implemented with the nearest
neighbor difference value. In order to combine the high-level semantic features with the
bottom-level precise positioning capabilities, a lateral connection structure similar with
the residual network is used. The lateral connection merges the features of the upper layer
that have the same resolution as the current layer after up-sampling through the addition
method. (Here, in order to correct the number of channels, the current layer is subjected
to a 1 × 1 convolution operation.) The specific schematic diagram can be seen in the FPN
part of Figure 3.

Specifically, the C5 layer first undergoes 1 × 1 convolution to obtain M5 features.
M4 layer was obtained by up-sampling the M5 and then plus the C4 layer after 1 × 1
convolution. Do this process two more times to get M3 and M2, respectively. The M layer
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features are then subjected to 3 × 3 convolution to obtain the final P2, P3, P4, and P5 layer
features. Since each P layer has different scale information relative to the original image,
the scale information in the original image was separated to make each P layer process
only a single scale information. Specifically, the anchor of the five scales {322, 642, 1282,
2562, 5122} correspond to the five features {P2, P3, P4, P5, P6}. Each feature layer processes
three candidate frames with 1:1, 1:2, and 2:1 aspect ratio. P6 is specifically designed for
RPN networks and was used to process 512-dimensional candidate boxes. It is obtained by
down-sampling from P5.

Each feature layer of the FPN was compared to the features of each level of the image
pyramid, thereby the regions of interest (ROI) were mapped to the corresponding feature
layers. Taking the input of 224 size pictures as an example, the ROI with width and height
will be mapped to the feature level k, and its calculation formula is as follows:

k =
⌊

k0 + log2

(√
wh/224

)⌋
(1)

where k is the feature level, k0 is 4, w is the width of the ROI, and h is the length of the ROI.
In ResNet, the value of k0 is 4, which corresponds to the level of the box with a length

and width of 224. If the length and width of the box are divided by 2 related to 224, then
the value of k will be reduced by 1, and so on.

2.2.3. Training of the Grain Detection Model

The training and verification image sub-sets separated in Section 2.2.1 were served as
inputs for transferring learning using the pretrained ResNet 50 network. The algorithm was
implemented based on the deep learning framework Pytorch written in Python, primarily
developed by Facebook’s AI Research lab (FAIR) and executed on a graphics workstation.
Detailed information of the hardware and software was provided in Table 2. The training
processes for the model were done under the conditions with epoch of 228, learning rate of
0.001, momentum of 0.9, and weight decay of 0.0001. When the loss function converged
and stabilized, training was stopped, and the training model was saved.

Table 2. The hardware and software configurations for the deep learning model.

Project Content

CPU Intel I7-9700k@3.6GHz x8
RAM 62G
GPU GeForce GTX 1080 Ti

GPU memory 11G
Operating System Ubuntu 16.04 LTS

Cuda Cuda 9.0 with Cudnn v7
Data processing Python 3.6, OpenCV, LabelImg, etc.

Deep learning framework Pytorch
Deep learning algorithm Faster RCNN ResNet50 with FPN

2.3. Evaluation Metrics

To verify the generalization ability and accuracy of the trained model, the precision
rate, recall rate, as well as the accuracy of the model were evaluated. Also, the intersection
over union (IOU) [25], based on Jaccard index, was used to evaluate the overlap between
labelled bounding box and detected bounding box. The standard IOU threshold value of
0.9 was used. The IOU is defined in Equation (2).

IOU
(

Bp, Bl
)
=

area
(

Bp ∩ Bl
)

area
(

Bp ∪ Bl
) (2)

where Bp and Bl are the predicted bounding box and the labelled bounding box, respec-
tively; Bp ∩ Bl is the intersection of the detected bounding box and the ground truth
bounding box. Bp ∪ Bl is the union of two boxes.
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If grain was surrounded by a detected bounding box, the detected bounding box
was regarded as correctly detected (true positive, TP). Inversely, if the background was
surrounded by a detected bounding box, the detected bounding box was regarded as mis-
takenly detected (false positive, FP). When grain could not be detected, it was regarded as
false negative (FN). The precision and recall were then calculated by Equations (3) and (4).

Precision =
TP

FP + TP
(3)

Recall =
TP

FN + TP
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where P is precision; R is recall; TP is the total number of correctly detected grains; FP is the
total number of incorrectly detecting background regions as grains; FN is the total number
of incorrectly detecting grains as background regions; TN is the correct identification of
background which is always ‘zero’ and is not needed to be used in a binary classification
problem that always determines the foreground for object detection; FP + TP represents for
the total numbers of detected grains; FN + TP represents for the total numbers of true grains.
The accuracy curve in Equation (5) was plotted to evaluate the detection performance of
the grain model.

Finally, to further verify the applied robustness of the grain detection model, the
Verification image set of 70 images (35 for fresh and 35 for dried rice primary branches) were
used to test. Then, the testing results were compared with manual counting results. Several
metrics were used to evaluate the agreement between the two sets of results: the coefficient
of determination (R2), root mean square error (RMSE), the relative RMSE (rRMSE), and
mean absolute error (MAE). These metrics were computed using the following equations:

R2 = 1−
∑n

j=1
(
mj − ej

)2

∑n
j=1
(
mj −m

)2 (6)

RMSE =

√
∑n

j=1
(
ej −mj

)2

n
(7)

rRMSE =

√√√√ 1
n∑n

j=1

(
mj − ej

mj

)2

(8)

MAE =
∑n

j=1
∣∣ej −mj

∣∣
n

(9)

where mj and ej are the manual calculation and model detection of image j, respectively;
n is the total number of the detected images.

3. Results and Discussion
3.1. The Behavior of the Grain Detection Model during the Training Process

Figure 4 showed how the model loss and accuracy changed during the training process.
The loss value gradually decreased with the increase in training epochs (Figure 4a). The
loss value of the first 25 training epochs changed rapidly. Afterward, the change was slow
down. After 60 epochs, the loss value remained fairly stable in the range from 0.05 to
0.06. Hence, the training was suspended at 228 epochs. While the loss was decreasing,
the accuracy value was increased with the increase in training epochs (Figure 4b). The
accuracy of the model experienced a rapid increase during the first 25 training epochs, and
a slowing down from 25 to 60 epochs. After 60 epochs, the accuracy value tended to be
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stable. The loss and accuracy values fluctuated slightly in different epochs, but the main
trends eventually converged. Therefore, the training was successfully completed.
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3.2. Performance of the Grain Detection Model

Next, the model was used for grain detection using the 160 testing sub-set images
from the Original image set. The detection results are shown in Table 3 for confidence
values from 0.4 to 0.9. They were compared with the manual counting results of 1779
grains. Over all cases, more than 1770 grains were correctly detected (true positive). The
number of incorrected identifications (false positive) were found to be from 0 to 17, and
only few grains were missed. The resultant precision rate was as high as 100%. Even at
the confidence value of 0.4, the precision rate could still reach 99.0%. The recall rate was
99.5% and above, over the confidence value from 0.4 to 0.9. Over the range of confidence
value, the mean accuracy was found to be from 98.8 to 99.7%, with an average of 99.4%.
This proved that the performance of the grain detection model was good and stable.

Table 3. Precision and recall from grain detection model using testing set images at different
confidence values (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) set as the cutoff points.

Confidence
Value

Manual
Grain

Counting

Correctly
Identified

(True
Positive)

Incorrectly
Identified

(False
Positive)

Missed
Grain
(False

Negative)

Precision
(%)

Recall
(%)

Accuracy
(%)

0.9 1779 1770 0 9 100.0 99.5 99.5
0.8 1779 1774 0 5 100.0 99.7 99.7
0.7 1779 1774 1 5 99.9 99.7 99.7
0.6 1779 1775 6 4 99.6 99.8 99.4
0.5 1779 1775 12 4 99.3 99.8 99.1
0.4 1779 1775 17 4 99.0 99.8 98.8

mean 1779 1774 6 5 99.6 99.7 99.4

3.3. Comparison with the Other C-NN Models

To further verify the grain detection model (faster RCNN combined with FPN), the
model performance was compared with that of the original faster R-CNN model and the
SSD model. The same data set was used for training the faster R-CNN model and SSD
model, respectively. The P-R curves for the three models during testing are shown in
Figure 5. The area under the P-R curve of the grain detection model was larger than that
of the Faster R-CNN method and the SSD method, which demonstrated that the grain
detection model had better performance in detecting grains. The main reason for the
better performance was that the grain detection model had a better capability in detecting
different scales of grains.
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Figure 5. The Precision-Recall curve of the grain detection model compared with the original Faster
R-CNN method and SSD method.

Moreover, the three models were compared in detail, choosing 0.9 as the critical
confidence value. Table 4 showed that under the same confidence value, the grain detection
model could correctly detect 1770 grains out of 1779 which were identified manually, the
number of false detections was zero, and the number of missed detections was only 9.
The corresponding results of the original faster R-CNN model were 1707, 3, and 72. Also,
the corresponding results of the SSD model were 1324, 0, and 455. As the result, the
precision rate, recall rate, and accuracy of the grain detection model all were higher than
those of the original faster R-CNN model. Further, the recall and accuracy of the grain
detection model were much higher than those of the SSD model, although the precision
of the grain detection model was equal to that of the SSD model. Therefore, it can be
concluded that the grain detection model performed better than the faster R-CNN model.
These further demonstrated that the grain detection model (faster RCNN with FPN) had
improved performance.

Table 4. The precision, recall and accuracy of the grain detection model (No. 1) and the original
Faster R-CNN method (No.2) and SSD method (No.3).

No. Manual Grain
Counting

True
Positive

False
Positive

False
Negative

Precision
(%)

Recall
(%)

Accuracy
(%)

1 1779 1770 0 9 100.0 99.5 99.5
2 1779 1707 3 72 99.8 95.9 95.7
3 1779 1324 0 455 100.0 74.4 74.4

Examples of grains detected by the three models and their corresponding confidence
values were displayed in Figure 6. When the grain color was similar with the background
color, the faster R-CNN model and SSD model usually incorrectly recognize these grains as
the background, whereas the grain detection model could completely avoid these errors.
When more than half of the area of grains was covered, the Faster R-CNN model would
miss these grains, but the grain detection model can perfectly detect these grains. This
means that the incomplete information of grain did not affect the detection accuracy of
the grain detection model. When the grains are relatively small and the color is brighter,
the SSD model will incorrectly recognize these grains as the background, but the grain
detection model can be completely unaffected and can perfectly recognize these grains.
Also, detection bounding boxes of the grain detection model were more perfect in enclosing
the grains, when compared to those of the faster R-CNN model and SSD model. Therefore,
the score of the grain detected by the grain detection model was usually higher than that of
the faster R-CNN model and SSD model. The high scores (up to 1.000) demonstrated that
the grain detection model was quite reliable.
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After analyzing the false positive and false negative cases, it was found that the subtle
discrepancy between the model results and the manual counting results can be attributed
to the following reasons. When most area of grain was obscured by other grains and in a
dark and fuzzy condition, the grain was easily mistakenly identified as the background
(Figure 7a). When the surrounding area of the grain was covered by other grains and under
the condition of blurred reflection, the grain was easy to be missed (Figure 7b). These two
situations led to the emergence of false negative cases, and accounted for 30% of the nine
false negative cases. Also, when two grains overlapped in the same direction and under a
light reflect condition, the two grains sometimes could be mistaken as one grain (Figure 7c),
which reduced the recognition accuracy. The other 70% of the nine false negative cases
were caused by this situation. However, in general, all these situations are rare and can be
avoided in the process of taking images.



Sensors 2021, 21, 281 11 of 14

Sensors 2021, 21, x FOR PEER REVIEW 11 of 15 
 

 

After analyzing the false positive and false negative cases, it was found that the subtle 
discrepancy between the model results and the manual counting results can be attributed 
to the following reasons. When most area of grain was obscured by other grains and in a 
dark and fuzzy condition, the grain was easily mistakenly identified as the background 
(Figure 7a). When the surrounding area of the grain was covered by other grains and un-
der the condition of blurred reflection, the grain was easy to be missed (Figure 7b). These 
two situations led to the emergence of false negative cases, and accounted for 30% of the 
nine false negative cases. Also, when two grains overlapped in the same direction and 
under a light reflect condition, the two grains sometimes could be mistaken as one grain 
(Figure 7c), which reduced the recognition accuracy. The other 70% of the nine false neg-
ative cases were caused by this situation. However, in general, all these situations are rare 
and can be avoided in the process of taking images. 

 
(a) (b) 

 
(c) 

Figure 7. Examples of images causing grain detection errors: (a) most area of the grain was cov-
ered and blurred; (b) most area of the grain was covered and under lighting reflection; (c) two 
bonded grains under light reflection. 

3.4. Further Analysis of Testing Results 
The main purpose of this research was to provide researcher and breeders with a fast 

and accurate algorithm for counting grain number per rice panicle. The algorithm should 
be able to perform the task under various shooting conditions such as lighting condition 
and the number of grains on the branch. Therefore, further statistical analysis was carried 
out to verify the accuracy of the proposed method under these different conditions.  

3.4.1. Effects of the Number of Grains 
It was expected that the grain number per primary branch may have effects on grain 

detection results, as the images with different numbers of grains had different receptive 
fields. If there was only one grain in an image, the grain would be usually complete, clear, 
and highly recognizable. However, in reality, an image contains multiple grains, these 
grains would be minimally identified in the cases where two or more clusters of grains 
were occluded. Generally, there were 6–9 grains on each primary branch, and 3–5 grains 
on each secondary branch. Therefore, 160 images in the test set were grouped into three 
categories, namely 1–9, 10–14, and greater than 14, to see if the number of grains had ef-
fects on the grain detection accuracy.  

Results showed that, with an increase in the number of grains in the image, the recall 
rate had a slight downward trend because more grain overlaps and occlusion appeared 
in the image (Table 5). However, the precision rate and recall rate didn’t change much, 

Figure 7. Examples of images causing grain detection errors: (a) most area of the grain was covered
and blurred; (b) most area of the grain was covered and under lighting reflection; (c) two bonded
grains under light reflection.

3.4. Further Analysis of Testing Results

The main purpose of this research was to provide researcher and breeders with a fast
and accurate algorithm for counting grain number per rice panicle. The algorithm should
be able to perform the task under various shooting conditions such as lighting condition
and the number of grains on the branch. Therefore, further statistical analysis was carried
out to verify the accuracy of the proposed method under these different conditions.

3.4.1. Effects of the Number of Grains

It was expected that the grain number per primary branch may have effects on grain
detection results, as the images with different numbers of grains had different receptive
fields. If there was only one grain in an image, the grain would be usually complete, clear,
and highly recognizable. However, in reality, an image contains multiple grains, these
grains would be minimally identified in the cases where two or more clusters of grains
were occluded. Generally, there were 6–9 grains on each primary branch, and 3–5 grains
on each secondary branch. Therefore, 160 images in the test set were grouped into three
categories, namely 1–9, 10–14, and greater than 14, to see if the number of grains had effects
on the grain detection accuracy.

Results showed that, with an increase in the number of grains in the image, the recall
rate had a slight downward trend because more grain overlaps and occlusion appeared in
the image (Table 5). However, the precision rate and recall rate didn’t change much, and
both were above 99.0%. This was attributable to the good performance of the proposed
algorithm in dealing with grains of different scales. Few false negatives occurred where
images had larger number of grains, causing overlap and occlusion of grains. Also, the
shooting distance of an image with large number of grains was usually longer, and the
grains in the image were small, which negatively affected the grain detection, resulting in
false recognitions.
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Table 5. The detection results of images with different numbers of grains.

The Number
of Grains in

an Image

Total
Number of
the Images

Manual
Counting

True
Positive

False
Positive

False
Negative

Precision
(%)

Recall
(%)

1–9 71 500 500 0 0 100.0 100.0
10–14 47 578 575 0 3 100.0 99.5
>14 42 701 695 0 6 100.0 99.1

Total 160 1779 1770 0 9 100.0 99.5

3.4.2. Effects of Lighting Conditions

Different lighting conditions may also affect the detection accuracy, since images taken
under sunny condition were usually bright and clear, while images taken under cloudy
condition were darker and blurry. The 160 images in the test set were divided into two
groups according to the lighting conditions: sunny and cloudy. The precision rate of the
detection results of the images taken under two lighting conditions remained unchanged,
while the recall rate under cloudy condition was slightly lower than that of sunny condition
(Table 6). However, in general, the detection accuracy was very high, which indicated that
lighting condition had little effect on the detection performance of the model.

Table 6. The detection results of images taken under different lighting conditions.

Lighting
Condition

Total Number
of Images

Manual
Counting

True
Positive

False
Positive

False
Negative

Precision
(%)

Recall
(%)

Sunny 97 1024 1017 0 7 100.0 99.3
Cloudy 63 755 753 0 2 100.0 99.7

Total 160 1779 1770 0 9 100.0 99.5

3.5. Application of the Grain Detection Model

The grain detection model was applied to another rice variety and two different grain
moisture conditions (fresh and dry), and the detection results shown in Table 7. Out of
446 grains, 444 grains were correctly identified, two grains were missed, and no grains
were mistakenly identified for the fresh primary branches. While for the dry primary
branches, 443 grains were correctly identified, three grains were missed, and two grains
were incorrectly identified. The detection precision rate and recall rate of the fresh primary
branch were slightly higher than those of the dry primary branch. The reason for the
slight difference can be summarized as follows. Grains on the fresh primary branches
were usually more scattered, and the color of the grains was brighter, which were easier
to detect. The grains on the dry primary branches had shrunk due to the shrinkage of
the branches. The grains on the dry branches also had more dragons, and the color was
relatively tarnished, which would increase the difficulties for grain detection. However,
the precision and recall values were similar between the two grain moisture conditions,
and both were over 99% in all cases, indicating that the performance of the grain detection
model was reliable and not affected by the grain moisture condition.

Table 7. The detection results of grains with different dry humidity.

Grain
Moisture

Condition

Total
Number of

Images

Manual
Counting

True
Positive

False
Positive

False
Negative

Precision
(%)

Recall
(%)

Fresh 35 446 444 0 2 100.0 99.6
Dry 35 446 443 2 3 99.6 99.3
Total 70 892 887 2 5 99.7 99.4

To further examine the accuracy of the grain detection model, model results were
compared with the manually observed values. Figure 8a showed that fresh grains esti-
mated by the proposed model had relatively good agreement with the observed values,
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with extremely low errors and a high coefficient of determination (R2 = 0.998). Besides, the
regression line was highly consistent with the 1:1 line. Also, the model had similar results
for detecting dry grains (Figure 8b). These demonstrated that the proposed grain detec-
tion model can be applied to another rice variety, and provide accurate grain detections,
regardless of the grain moisture condition.
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4. Conclusions

In this study, a high-precision grain detection model was established and tested based
on the deep learning convolutional neural network (CNN) for automatic detection and
counting of grains per rice panicle. The following conclusions were drawn. The grain
detection model, based on faster R-CNN with feature pyramid network (FPN), was capable
of detecting grains on the rice panicles under different conditions. The model proposed
was found to perform better for recognizing and counting grains per rice primary branch
compared to faster R-CNN method along, in terms of precision, recall rate, and accuracy.
The mean accuracy of the model was found to be reaching 99.4%, when compared to the
results from manual counting of grains. Also, the model could be applied to different
numbers of grains per primary branch and various lighting conditions. The detection
performance was not affected by the rice varieties and grain moisture conditions. A further
step should involve implementing the grain detection model in a smart-phone based APP
for convenient and easy applications in the daily life. In addition, the model, after some
modifications, can be potentially applied to other crops, such as wheat and corn.
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