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Abstract: The application of deep learning is blooming in the field of visual place recognition, which
plays a critical role in visual Simultaneous Localization and Mapping (vSLAM) applications. The
use of convolutional neural networks (CNNs) achieve better performance than handcrafted feature
descriptors. However, visual place recognition is still a challenging task due to two major problems,
i.e., perceptual aliasing and perceptual variability. Therefore, designing a customized distance
learning method to express the intrinsic distance constraints in the large-scale vSLAM scenarios is
of great importance. Traditional deep distance learning methods usually use the triplet loss which
requires the mining of anchor images. This may, however, result in very tedious inefficient training
and anomalous distance relationships. In this paper, a novel deep distance learning framework for
visual place recognition is proposed. Through in-depth analysis of the multiple constraints of the
distance relationship in the visual place recognition problem, the multi-constraint loss function is
proposed to optimize the distance constraint relationships in the Euclidean space. The new framework
can support any kind of CNN such as AlexNet, VGGNet and other user-defined networks to extract
more distinguishing features. We have compared the results with the traditional deep distance
learning method, and the results show that the proposed method can improve the performance
by 19–28%. Additionally, compared to some contemporary visual place recognition techniques,
the proposed method can improve the performance by 40%/36% and 27%/24% in average on
VGGNet/AlexNet using the New College and the TUM datasets, respectively. It’s verified the
method is capable to handle appearance changes in complex environments.

Keywords: visual place recognition; vSLAM; deep distance learning; multi-constraint loss; CNN

1. Introduction

Visual place recognition is a critical and challenging problem in visual Simultaneous
Localization and Mapping (vSLAM) applications. Given a query image, the purpose of
visual place recognition is to find the most similar images upon repeated traversals, which is
also known as loop closure detection [1]. Visual place recognition is especially important for
vSLAM to perform loop closure detection to eliminate accumulated errors. Additionally,
a robust tracking module is necessary for accurate pose and map in vSLAM systems.
However, in practical use, tracking failure is inevitable due to reasons such as fast motion,
blurred images, excessive changes in camera’s angle of view, lack of texture, etc. Therefore,
an efficient relocalization module is indispensable. In modern feature-based vSLAM
systems, such as ORB-SLAM [2], there are two main components to relocalize the robot.
The first step is searching candidate keyframes (visual place recognition) and the second
step is keypoint feature matching (metric localization). Without accurate visual place
recognition, trajectory drift will occur and an ambiguous map of unknown environment
will be constructed in large-scale localization and mapping [3,4]. However, visual place
recognition remains a challenge problem because of perceptual aliasing and perceptual
variability problems. Perceptual aliasing, also called false positive, is the case that images
from different places look similar and treated as from the same place. Perceptual variability,
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also called false negative, is the case that images from the same place look different
and are recognized as from different places by mistake due to significant appearance
variations, such as seasonal variation, viewpoint variation, illumination variation, dynamic
objects and so on [5]. Moreover, for real-time autonomous robotics, time performance is
of great significance to be considered at deployment. Therefore, in large-scale vSLAM
scenarios, with the continuous increasing of map, visual place recognition needs to still
maintain efficiency.

Traditional handcrafted feature descriptors are frequently used for feature extraction
in visual place recognition. The scale-invariant feature transform (SIFT) feature descriptor
is a widely used image feature algorithm, which has certain invariance to scale, rotation
and illumination [6]. The problem with the SIFT method is that it requires a large amount
of calculations in feature extraction. The speeded-up robust feature (SURF) feature descrip-
tor [7], oriented FAST and rotated BRIEF (ORB) feature descriptor [8] and histogram of
oriented gradient (HOG) feature descriptor [9] all improve the efficiency at the expense of
performance. These handcrafted feature descriptors are usually integrated into a Bag of
Visual Words (BoVW) model, which clusters a large number of feature descriptors offline
and finally forms a visual vocabulary to represent images [10]. In order to further improve
real-time performance, Gálvez-López et al. [11] proposed to establish a vocabulary tree to
discretize the binary description space, which makes vocabulary query more efficient. How-
ever, traditional handcrafted feature descriptors cannot cope with strong environmental
appearance changes.

Recently, the use of deep learning technology in visual place recognition has obtained
better performance than those handcrafted methods because deep neural networks can
extract more comprehensive images features [12–14]. Deep learning can extract abstract
and high-level features of the input image through multi-layer networks, which is more
robust to appearance changes [15,16]. Sunderhauf et al. [17] used AlexNet [13] trained on
the ImageNet dataset [18] to extract features. Xia et al. [19] proposed to use PCANet to
extract features as image descriptors. The method in [20] used AMOSNet and HybridNet,
which were trained on a large-scale scene classification dataset. Sun et al. [21] proposed a
point-cloud-based place recognition task using CNN models. Camara et al. [22] proposed a
two-stage visual place recognition system, which employs the activations of different layers
of VGGNet [23] to encode images. The above methods are superior due to the features can
be automatically learned by deep learning models. However, the neural networks used in
the previously mentioned methods were designed for image classification tasks but not
specifically developed for the characteristics of visual place recognition tasks. Features
suitable for image classification tasks are not necessarily suitable for visual place recognition
tasks, because the models used to extract these features are not designed to deal with strong
environmental appearance changes that commonly occur in vSLAM tasks. In this paper,
visual place recognition is better performed by discriminatively training a network to
embed images in the Euclidean space where small Euclidean distances represent similar
places, as opposed to using handcrafted feature descriptors or feature vectors extracted
from generic deep learning networks.

Recently, some research works significantly improved recognition results by focus-
ing on extracting features from salient regions and discarding confusing regions. Tolias
et al. [24] proposed a method named Regional Maximum Activation of Convolutions
(R-MAC), which used max-pooling operation to encode image regions. Khaliq et al. [25]
used a lightweight CNN to detect local features and combined them with Vector of Locally
Aggregated Descriptors (VLAD) [26] encoding method. These methods significantly im-
proved the robustness of visual place recognition. However, they may not be fast enough
for large-scale real-time vSLAM due to the slow local feature extraction. On the one hand,
it is time-consuming for most existing algorithms to produce salient regions from a single
image. For example, the Edge Boxes [27] algorithm takes nearly 1.8 s to process an image on
a standard desktop machine [28]. On the other hand, to guarantee the robustness of visual
place recognition, it is necessary to increase the number of salient regions, which is more
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complicated than simply using global features since each region requires a CNN forward
propagation to extract features. In contrast to these methods, once the CNN network is
well-trained in this paper, it can be used to extract more distinguishing global features with
a single CNN forward propagation.

Instead of focus on how to extract more comprehensive features from images, some re-
search address the visual place recognition problem by matching sequences of images [29–32].
SeqSLAM [29] is a visual place recognition technique using confusion matrix by subtracting
patch-normalized sequences of images to find the matched place, which shows robust to
seasonal and illumination variations. Oishi et al. [30] proposed SeqSLAM++, which gener-
alizes the SeqSLAM to deal with image deformations and large view direction changes.
However, the calculation of these methods is very time-consuming, especially for large-
scale place recognition tasks. In contrast to these methods, sequence search techniques are
not applied in this paper. Visual place recognition is performed by pure image retrieval
based on the Euclidean distance of the extracted feature vectors.

Deep distance learning is of great significance in learning visual similarity. Recently,
a specially designed triplet loss combined with CNN feature extraction has achieved
good performance in face recognition [33], person re-identification [34,35], camera-LiDAR
place recognition [36] and radar place recognition [37–39] tasks. The main concept behind
the triplet loss is to minimize the distances of the same category images and maximize
those of other categories in the Euclidean space. Inspired by these work, this research
focuses on learning powerful global features to improve the performance and robustness
of visual place recognition under strong appearance changes. In this paper, we develop our
approach based on a novel framework. The basic idea of this framework is to minimize the
distances of images from the same place and maximize those of images from different places.
Therefore, a so-called multi-constraint loss function is customized for the task of visual place
recognition to learn more distinguishing image representation. Consequently, the features
extracted from our proposed method are not only robust to significant appearance changes,
but also fast enough for inference in large-scale visual place recognition applications. The
experimental results on several mainstream datasets indicate that our method can achieve
promising results and outperforms several off-the-shelf approaches.

2. Framework and Methods

The framework of our proposed multi-constraint deep distance learning for visual
place recognition problem is shown in Figure 1. In this paper, we use the CNN model
trained by a novel deep distance learning method to extract feature vectors from images
and compute similarity by comparing the Euclidean distance of two feature vectors. Our
main idea is to improve the feature extraction ability of the CNNs based on a novel multi-
constraint loss function that can represent the essential distance relationship. The kernel is
to extract more distinguishing feature descriptors to better learn the distance constraints in
the Euclidean space for the visual place recognition tasks. The framework can support any
kind of CNN such as the well-known AlexNet [13], VGGNet [23] and other user-defined
networks. In this work, we adopt AlexNet and VGGNet as two instances to illustrate
multi-constraint deep distance learning.

As shown in Figure 1, we construct multi-constraint image sets to train the CNN model
based on the multi-constraint loss function to obtain more effective feature representations
in the Euclidean space that the images from the same place are closer to each other. Once
the CNN model is well-trained, it can be used for visual place recognition. Instead of
inputting a single frame into the neural network, consecutive multiple frames are combined
as input to derive their low-dimensional feature vectors, of which the Euclidean distance
can be directly used to metric the similarity of different places. If the Euclidean distance
between the images being compared is lower than a given threshold τ, a place recognition
hypothesis can be proposed. The threshold τ may be preset manually. In this paper, we
choose τ which maximizes the recall rate with perfect precision.
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Figure 1. The framework of the proposed multi-constraint deep distance learning.

2.1. CNN Based Image Feature Extraction

Deep learning related research have shown that CNNs have strong ability in feature
extraction, especially for images. Fully Connected layers in CNNs are used to integrate high
level features and often encode diverse visual features. Therefore, these fully connected
layers can be used as feature extractors to derive the feature vectors.

In the instance retrieval task that is similar to the visual place recognition task, the
image feature extracted from different layers exhibit different performances [40]. Experi-
ments show that the generalization ability of the top layers is weaker than that of lower
layers. For example, experimental results on AlexNet show that FC6, FC7 and FC8 are
in descending order of retrieval accuracy [40,41]. What’s more, the intermediate layers
feature of AlexNet and VGGNet outperform the fully connected layers feature in tasks of
image search and classification [40,42]. It is noted that, in our research, the architecture
of AlexNet and VGGNet is simplified for the visual place recognition problem, i.e., the
original fully connected layers of AlexNet and VGGNet are replaced with a customized
fully connected layer with adjustable dimensions. Notice that this fully connected layer
is taken as the feature extractor to encode the feature representation learned from deep
distance learning method with adjustable vector lengths.

2.2. Triplet Loss

In a standard triplet loss method, three images are combined into a tuple. Then, a
batch of tuples are taken as inputs. Suppose i, j, k are the sequence numbers of the images
selected from the image set, if the following relationships are met, they can be a suitable
tuple:

• Image i and image j are not the same image and from the same category.
• Image i and image k are from different categories.

Consider a tuple denoted as (xa, xp, xn), where xa and xp belong to the same category
while xn and xa come from the different categories. The purpose of the triplet loss function
is to optimize the CNNs to learn the representation f (x) of image x. The ideal image
representation of a tuple input (xa, xp, xn) should meet the following distance relationship:

‖ f (xa)− f (xp)‖2
2 + α ≤ ‖ f (xa)− f (xn)‖2

2 (1)
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where α is a value of the margin between image pairs of same category and different
categories. Moreover, all feature vectors are constrained in the hypersphere ‖ f (x)‖2 = 1 to
avoid the loss exceeding zero easily [34]. Formally, the triplet loss function is defined as:

Ltri(xa, xp, xn) = max
{
‖ f (xa)− f (xp)‖2

2 + α− ‖ f (xa)− f (xn)‖2
2, 0
}

(2)

The training purpose is to learn a distinguishing image representation, where the
distance between f (xa) and f (xp) is minimized and the distance between f (xa) and f (xn) is
maximized.

The use of triplet loss has been successful in certain research areas such as face recog-
nition and person re-identification. Concerning place recognition problem, our previous
work [43] proposed a multi-tuplet clusters loss (an improved triplet loss) that is customized
for distance learning of visual loop closure detection. The method is more competitive
than the state-of-art approaches in complex environments with strong appearance changes.
However, there are still some drawbacks rooted in the triplet loss should be further im-
proved. In order to maximize the distance between the matched and the mismatched image
pairs for each tuple, it might lead to anomalous distance relationships as shown in Figure 2.
We define a function dist(), which represents Euclidean distance between feature vectors.
To optimize this tuple, the operation of maximizing dist( f (xa), f (xn

1 )) might lead to an
undesirable result of minimizing dist( f (xn

1 ), f (xn
2 )), while negative image1 and negative

image2 may come from different places.
Therefore, it’s necessary to develop a novel metric to learn the multiple constrained

distance relationships in the visual place recognition, thus the so-called multi-constraint
loss is proposed.

Figure 2. The possibly anomalous distance relationship caused by the triplet loss.

2.3. Multi-Constraint Loss

The triplet loss only constrains two aspects of distance relationships, i.e., the distance
constraint between f (xa) and f (xp) and the constraint between f (xa) and f (xn). To overcome
the weakness of triplet loss, we proposed a novel loss function named multi-constraint loss,
which is dedicated to describe the intrinsic distance constraints in the problem of visual
place recognition.

Different from triplet loss, we construct multi-constraint image set X = (Xp, Xn)
rather than tuple as the input. Each multi-constraint image set contains two different image
sets: one positive image set and one negative image set. The former one Xp = (xp

1 , . . . , xp
A)

contains A images from the same place and the latter set Xn = (xn
1 , . . . , xn

B) contains B
images from different places. It is assumed that images from the same place should be
close to each other and images from different places should be separated far apart in the
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feature space. The principle of the multi-constraint loss is illustrated in Figure 3, where cp

denotes the center point of images in the positive image set, and it can be computed as:

cp =
1
A

A

∑
i=1

f (xp
i ) (3)

Figure 3. Illustration the idea of multi-constraint loss.

Different from the triplet loss, the multi-constraint loss constrains three aspects of
distance relationships. The first constraint is about the distance relationship between the
positive image and the center point, which is called distance relationship 1 (for short DR1).
The second constraint is about the distance relationship between the negative image and
the center point, which is called distance relationship 2 (for short DR2). The third constraint
is about the distance relationship between images in the negative image set, which is called
distance relationship 3 (for short DR3).

For a multi-constraint image set X = (Xp, Xn), the desired distance relationships of
DR1 and DR2 should satisfy the following condition:∥∥∥ f (xp

i )− cp
∥∥∥2

2
+ α ≤

∥∥∥ f (xn
j )− cp

∥∥∥2

2
, ∀1 ≤ i ≤ A and 1 ≤ j ≤ B (4)

where α is the predefined hyperparameter.
Meanwhile, in order to tackle the problem existing in triplet loss as shown in Figure 2

(i.e., to maximize dist( f (xn
j ), f (xn

k )), where image xn
j and image xn

k are negative images but
from different places. According to the distance relationship of the triangle, we have to
meet the following constraint between DR1 and DR3:∥∥∥ f (xp

i )− cp
∥∥∥2

2
+ β ≤

∥∥∥ f (xn
j )− f (xn

∗)
∥∥∥2

2
, ∀1 ≤ i ≤ A and 1 ≤ j ≤ B (5)

where β is the predefined hyperparameter, and xn
∗ can be randomly selected from the

negative image set with xn
∗ 6= xn

j . As mentioned before, there is only a single image from
each place in Xn. Therefore, xn

∗ and xn
j are from different places. In a multi-constraint

image set, the distance constraints can be converted to the minimization problem of the
following objective,

Lmulti(Xp, Xn) = max
{

0,
∥∥∥ f (xp

i )− cp
∥∥∥2

2
+ α−

∥∥∥ f (xn
j )− cp

∥∥∥2

2

}
+max

{
0,
∥∥∥ f (xp

i )− cp
∥∥∥2

2
+ β−

∥∥∥ f (xn
j )− f (xn

∗)
∥∥∥2

2

}
, ∀1 ≤ i ≤ A and 1 ≤ j ≤ B

(6)

If the multi-constraint image set is large, the optimization process would be too time-
consuming to be carried out in an embedded system. To accelerate this process, we can first
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find out the farthest positive image xp
f arthest from cp by max

i
(
∥∥∥ f (xp

i )− cp
∥∥∥2

2
), i = 1, 2, . . . , A,

and the nearest negative image xn
nearest from the cp by min

j
(
∥∥∥ f (xn

j )− cp
∥∥∥2

2
), j = 1, 2, . . . , B.

Thus, the loss function can be simplified as:

Lmulti(Xp, Xn) = max
{

0,
∥∥∥ f (xp

f arthest)− cp
∥∥∥2

2
+ α− ‖ f (xn

nearest)− cp‖2
2

}
+max

{
0,
∥∥∥ f (xp

f arthest)− cp
∥∥∥2

2
+ β− ‖ f (xn

nearest)− f (xn
∗)‖

2
2

} (7)

Therefore, multi-constraint loss can learn effective feature representations that can
satisfy the relative distance relationship in visual place recognition, and can make the
extracted features more discriminative. Instead of selecting anchor image, the center
point cp is used to constrain the overall distance relationship between positive images and
negative images. Moreover, the construction of the multi-constraint image set guarantees
all images from the same place will move closer to the center point cp. Thus, the overall
distance relationship between positive images and negative images can be measured and
constrained by the center point cp derived by the clustering method. In the original tuple
generation approach, the training process is inefficient, which may cause computational
burden for the deployment use of visual place recognition in real-time autonomous robotics.
Therefore, the idea of multi-constraint image set is introduced, which can guarantee faster
training and testing process based on ‘image place’. It facilitates the proposed method to
handle consecutive frames, which can speed up the testing process.

2.4. Construction of Multi-Constraint Image Set

Existing datasets for visual place recognition task usually contain images and ground-
truth labels. We mark images from the same place with the same label. For the kth place
that contains u images, if the distance relationship in Equation (8) is met, we add the image
xi into the temporary positive image set Xp

tem:

‖ f (xi)− cp‖2
2 > γ, ∀1 ≤ i ≤ u (8)

For other places, e.g., the tth place, if the distance relationship in Equation (9) is met,
we add the image xj into the temporary negative image set Xn

tem:∥∥∥ f (xj)− cp
∥∥∥2

2
< γ′, ∀1 ≤ j ≤ v (9)

where v is the total number of images in the tth place. Thus, we can construct the suitable
multi-constraint image set by Algorithm 1. Each image in the training set has a corre-
sponding place label. The number of images contained in each place is not fixed. Some
places contain only one image and some other places contain multiple images. At first, we
traverse each image and calculate the center point of the place to which this image belongs.
Then, a temporary positive sample set Xp

tem and a temporary negative sample set Xn
tem are

constructed according to the distance relationship. However, the lengths of Xp
tem and Xn

tem
do not necessarily match the input lengths defined by Xp and Xn. Hence, we can adjust
the length of Xp

tem and Xn
tem as A and B, respectively.
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Algorithm 1. Method to construct multi-constraint image sets.

Input: Training set with place labels {(xi, yi)}, i = 1, 2, . . . , n;
Output: Multi-constraint image sets X;
1: Extract the feature vector for each training image;
2: for each i in {1, 2, . . . . . . , n} do
3: Find u images from the same place with xi;
4: Calculate the center point cp;
5: for each j in {1, 2, . . . . . . , n} and j 6= i do
6: Find images from the same place & satisfy the distance relationship∥∥∥ f (xp

j )− cp
∥∥∥2

2
> γ. Add these images into positive image set Xp

tem;
7: Find images from different places & satisfy the distance relationship∥∥∥ f (xj)− cp

∥∥∥2

2
< γ′. Add these images into negative image set Xn

tem;
8: end for
9: if len(Xn

tem) > B then
10: Randomly select B images from Xn

tem;
11: end if
12: if 0 < len(Xn

tem) < B or (len(Xn
tem) = 0 and len(Xp

tem) 6= 0) then
13: Randomly select (B− len(Xn

tem)) images from different places.
14: end if
15: if len(Xp

tem) > A then
16: Randomly select A images from Xp

tem;
17: end if
18: if 0 < len(Xp

tem) < A or (len(Xp
tem) = 0 and len(Xn

tem) 6= 0) then
19: Randomly copy (A− len(Xp

tem)) images from the same place.
20: end if
21: if Xp and Xn exist then
22: Add (Xp, Xn) into X;
23: end if
24: end for
25: return X

2.5. Training Process

The diagram of the training process is shown in Figure 4. First, we divide the training
set into several mini-batches with the size of (A + B). These mini-batches are input into
CNN models which share parameters updated by the multi-constraint loss function. In
this way, feature vector of each image can be derived by forward propagation. Then, we
can construct suitable multi-constraint image sets according to the Algorithm 1. If there
exist multi-constraint image sets, we will update the parameters of the CNN model using
the multi-constraint loss function. If there isn’t any multi-constraint image set existing, the
training process ends and it means the CNN is successfully trained.

In this work, the sizes of the positive image set and the negative image set are set to
be 4 and 4, respectively. The batch size is set to be 5. The hyperparameters α, β, γ and γ′

are set to be 0.5, 0.3, 0.1 and 0.4, respectively.
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Figure 4. The diagram of the training process.

3. Results

This section first discusses the contemporary techniques used in visual place recogni-
tion that are compared with our method. Then, we illustrate the experimental results of
our method based on the mainstream datasets to outline its performance and its merits
for visual place recognition. As mentioned above, the proposed framework can support
any kind of CNN structure, therefore in this work, we adopt AlexNet and VGGNet as two
examples to illustrate the superiorities over other methods.

3.1. Baselines

Some contemporary visual place recognition techniques are compared in this paper:

(1) AMOSNet: Spatial-pyramidal pooling operation is implemented on the conv5 layer
of AMOSNet to extract feature vectors. The model is open-sourced [20]. L1-difference
is used to measure the distance.

(2) HybridNet: HybridNet and AMOSNet have the same network structure. However,
the weights of HybridNet are initialized from CaffeNet. The deployed model parame-
ters of HybridNet are also available [20].

(3) NetVLAD: We have employed the Python implementation of NetVLAD open-sourced
in [44]. NetVLAD plug the VLAD layer into the CNN architecture. Given N D-
dimensional local image feature vectors and K cluster centers (“visual words”) as
input, the output feature vectors of the VLAD layer are D × K dimensional. The
concept of clustering is only used to obtain more global feature vectors in NetVLAD.
In contrast to NetVLAD, the clustering method used in this paper is to directly
optimize the distance constraint relationships in the Euclidean space. The model
selected for evaluation is VGGNet which has been trained in an end-to-end manner on
Pittsburgh 250 K dataset [45] with a dictionary size of 64 while performing whitening
on the final descriptors.

(4) R-MAC: We have employed the Python implementation for R-MAC [24]. We use
conv5_2 of object-centric VGGNet for regions-based features and post-process it with
L2 normalization and PCA-whitening [46]. The retrieved R-MACs are mutually
matched, followed by aggregation of the mutual regions’ cross-matching scores.

(5) Region-VLAD: We employed conv4 of AlexNet for evaluating the Region-VLAD
visual place recognition approach [25]. The employed dictionary contains 256 vi-
sual words used for VLAD retrieval. Cosine similarity is subsequently used for
descriptor comparison.
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3.2. Evaluation Datasets

In this experiment, the outdoor dataset New College [47] and the indoor dataset
TUM [48] are used. The New College dataset, which contains 1237 image pairs, was
collected by the Oxford Mobile Robotics Team. These images were collected by placing a
camera on the left and right sides of the mobile platform and acquiring an image every
1.5 m. These images include dynamic objects, and in addition, they were collected on sunny
and windy days, which makes the features of images with leaves and shadows unstable.
The robot traveled twice in a loop with a total path length of 2 km. When the robot was
running around the second loop, it can achieve closed loops.

The TUM dataset is a large dataset containing RGB-D data which is designed to
evaluate the vSLAM systems but without ground truths. This dataset contains ground
truth poses for key-frames Ti, i = 1, . . . , N. Therefoe, we can compute the relative distance
between the ith frame and the jth frame according to their poses, which can be shown
as below:

Di,j = trans(T−1
i Tj) + rot(T−1

i Tj) (10)

where the function trans(·) and rot(·) denotes the translation part and the rotation part of
the transform matrix T−1

i Tj. If Di,j is below the given threshold, it means the ith frame and
the jth frame are close from each other, and they are considered to be from the same place.

3.3. Results and Analysis
3.3.1. Comparison with Mainstream Methods

To verify the performance of the methods used, we calculate the corresponding
precision rate and recall rate and plot the Precision-Recall (PR) curves [5]. Figures 5 and 6
show the performance of different methods on the New College dataset and the TUM
dataset. We may derive the following remarks:

(1) Among all deep learning-based methods, the performance of AMOSNet, HybridNet
and NetVLAD is relatively poor.

(2) Generally, the CNNs trained with multi-constraint loss function exhibit the best per-
formance on both outdoor and indoor datasets. This proves that the multi-constraint
loss based deep distance learning is suitable for the visual place recognition and
the multi-constraint loss function has great advantages in discriminative feature
extraction.

(3) In Figures 5 and 6, the proposed method performs better on the TUM dataset than the
New College dataset. It is because images from the TUM dataset are more stable and
static and the New College dataset contains more dynamic objects and illumination
variations. We may conclude that the proposed method is more suitable for the static
indoor environment. This is also valid for NetVLAD, R-MAC and Region-VLAD.

(4) The versatility of the multi-constraint loss is verified in the experiment, i.e., it can
support AlexNet, VGGNet and other user-defined networks. In other words, the
AMOSNet and HybridNet model can also be combined with the multi-constraint
loss for possible further improvement. The influence of the network structure on the
performance is not as important as that of the loss function.

3.3.2. Comparison of Multi-Constraint Loss Function and Triplet Loss

In this section, we present the experimental results of our method and compare them
with those of the triplet loss method [33–35]. We carry out comparison on VGGNet and
AlexNet using the same experimental steps and network model. The results are shown in
Figures 7 and 8.

The results reveal that the loss function is of great significance in visual place recog-
nition. The triplet loss function is originally designed for image classification rather than
visual place recognition, it is therefore the improvement on the performance is almost
negligible even it is combined with the updated deep learning technology. It is the reason
for us to propose the multi-constraint loss function, and it is demonstrated that the multi-
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constraint loss performs much better than the triplet loss although they worked with the
same CNN structures. The features extracted by the multi-constraint based deep distance
learning is more essential.

Figure 5. Precision-recall curve of different methods on the New College dataset.

Figure 6. Precision-recall curve of different methods on the TUM dataset.
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Figure 7. Comparison of multi-constraint loss and triplet loss (New College dataset).

Figure 8. Comparison of multi-constraint loss and triplet loss (TUM dataset).

The effectiveness of the proposed method is further verified in this part by visual-
ization of the results. The New College dataset is taken as an illustrative example. The
ground-truth trajectory is shown in Figure 9a. The trajectory of the vehicle is marked as
blue circles. Once a place is revisited, the first visiting coordinate is marked as a yellow
circle and the revisiting coordinate is marked as a green circle. The recognized image pair
is denoted as red lines.

The places recognized by triplet loss and multi-constraint loss are shown in Figure 9b,c,
respectively. The results indicate that most of the closed loops can be detected by the
proposed method on the New College dataset. It is clearly shown from the visualization
that there exist false detected closed loops. In Figure 9b, the results using triplet loss
show many false detected closed loops located in area A, B, C, D and E, which indicates
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unreliable of using the triplet loss in visual place recognition. While in Figure 9c the false
detected closed loops can only be found in area A and E.

Figure 9. Results visualization of recognized places on the New College dataset. (a) The ground-truth
trajectory. (b) Using triplet loss. (c) Using multi-constraint loss.

Therefore, we carry out a thorough analysis of the New College dataset to find out
the reasons for the false recognized places. The images in area E were taken continuously
along a straight road. Figure 10a shows a representative false detected closed loop in area
E. These two images are similar in that they contain a large lawn and the same houses in
the distance. But they were not shot in the same location. There are many similar situations
in area E. It is a hard task for the existing methods to distinguish whether it’s a revisited
place or not. Figure 10b shows another example of a false recognized place in area A. These
two images contain lots of leaves and shadows, which lead to strong condition variations
that both methods are easily confused to have a revisited place.

The proposed method can learn a more discriminative distance preserving embed-
ding. It can be further verified with the visualized distance matrix images. The distance
matrices obtained by multi-constraint loss and triplet loss are visualized in Figure 11b,c.
These distance matrices are plotted as heatmaps, where bright color means large distance
between image pair. From the experimental result, the proposed multi-constraint loss is
able to recognize the most revisited places while the triplet loss performs relatively poor.
The distance contrast of Figure 11c is more obvious than that of Figure 11b. It means
that the proposed method with multi-constraint loss can provide more accurate distance
preserving embedding in visual place recognition with complex scenarios because the
distances between images from the same place are reduced and those from different places
are enlarged.
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Figure 10. False recognized places (a) in area E. (b) in area A.

Figure 11. Visualization of the distance matrices. (a) The ground truth of the New College dataset.
(b) The triplet loss. (c) The multi-constraint loss.

3.3.3. Comparison of Multi-Constraint Loss Function and Triplet Loss

As previously mentioned, we can extract the low-dimensional feature vector from
the fully connected layer of CNN to speed up the visual place recognition process. In the
experiment, we set the dimension of the feature vector as 1000, 2500 and 4096, respectively
to compare the corresponding performances.

The results on the New College dataset and the TUM dataset are shown in Figure 12a,b
respectively. It is expected that a higher dimension enables better performance. VGGNet
can provide slightly better performance than AlexNet because VGGNet has a deeper
network structure.

Generally, by using multi-constraint loss, the performance won’t degrade too much
when the feature dimension reduces. It indicates that even the vector dimension or the
model is compressed into one quarter, the loss of the performance is within 5–10%. There-
fore, it is possible to use the proposed method for embedded applications.
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Figure 12. Performance comparison with different dimensions of feature vector (a) Results on the
New College dataset. (b) Results on the TUM dataset.

3.3.4. Time Performance Comparison

In this part, the superior of the proposed method for real-time inference is described.
First, we compare the average processing time for feature extraction. Given a single query
image, the feature extraction time for all visual place recognition techniques is shown in
Figure 13. As expected, AlexNet, AMOSNet and HybridNet show the best performance
because of the lightweight network structure. The results also indicate that the proposed
framework no matter with AlexNet or VGGNet is much more efficient. For AlexNet with
multi-constraint loss, the average time reduces to 0.022 s per image pair, almost 77 times
faster than that of the R-MAC method. It is noted that in the proposed method, the feature
extraction time is only related to the feature extraction network used, and it has nothing to
do with the loss function used during training and the dimension of feature vectors. In the
future, we may design a faster and more lightweight network model to further reduce the
feature extraction time.

In visual place recognition, similarity metric time is an important factor that needs to
be considered when comparing a query image against a large number of reference images.
In this section, we show the time taken to match feature vectors of a query and a reference
image in Figure 14. In our method, since we have performed deep distance learning in
the Euclidean space, the Euclidean distance can be directly used to metric the similarity
of images. Therefore, the similarity metric time is related to the length of the feature
vectors. The average similarity metric time in our method with a 4096 dimension vector
is around 0.0189 ms, which is fast enough for the real-time inference of large-scale visual
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place recognition. Thus, the proposed method could be easily plugged on any embed
device.

Figure 13. Comparison on feature extraction time.

Figure 14. Comparison on similarity metric time.

Although the performance of visual place recognition can be improved as the feature
dimension increases, it may not applicable for real-time inference of visual place recognition
tasks. It is of great significance to have a compact feature vector due to the limited
resources of the embedded vSLAM systems. The feature vector sizes of different methods
are compared in Figure 15. It is interesting to note that Region-VLAD suffers from a
significantly higher feature vector size. In the AMOSNet and HybridNet methods, the size
of the feature map after feature extraction is (256, 13, 13). In the R-MAC method, the size of
the feature vector of each image is 512. In the NetVLAD method, the size of the feature
map after feature extraction is 4096. In Figure 15, the feature vector size of our method
with 1000-dimensional is the smallest.
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Figure 15. Feature vector sizes of different methods.

4. Conclusions

In this paper, we present an effective multi-constraint based deep distance learning
framework for visual place recognition. In this model, we can support any kind of CNN
network that is trained by the multi-constraint image set to produce more discriminative
feature representations that can satisfy the relative distance relationship in visual place
recognition. Our learning algorithm ensures the overall computation load mainly depends
on the number of training places rather than the number of training images. The results
of extensive experiments demonstrate that the proposed method generally outperforms
mainstream methods in terms of both effectiveness (precision-recall) and efficiency (run-
time). In future research, we plan to integrate our model into various vSLAM systems with
complex scenarios. Additionally, the application of our model for visual place recognition
in a vSLAM application like urban autonomous driving is of great significance, and the
results can be further improved by adding extra false positive rejection methods (i.e., a
geometric check).
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