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Abstract: With the development of the Internet of Multimedia Things (IoMT), an increasing amount
of image data is collected by various multimedia devices, such as smartphones, cameras, and drones.
This massive number of images are widely used in each field of IoMT, which presents substantial
challenges for privacy preservation. In this paper, we propose a new image privacy protection
framework in an effort to protect the sensitive personal information contained in images collected
by IoMT devices. We aim to use deep neural network techniques to identify the privacy-sensitive
content in images, and then protect it with the synthetic content generated by generative adversarial
networks (GANs) with differential privacy (DP). Our experiment results show that the proposed
framework can effectively protect users’ privacy while maintaining image utility.

Keywords: Internet of Multimedia Things (IoMT); image privacy; object detection; deep learning;
generative adversarial network; differential privacy

1. Introduction

The recent advances in multimedia recording devices, such as phones, cameras,
drones, and other types of sensors, have greatly facilitated the collection of multimedia
data, especially in the form of images and videos. In such an era of IoMT, a massive
number of images are widely used, not only by social network personal users but also
by government and companies. Image data is the most representative type of data in an
IoMT data collection and can contain sensitive information that might be used to uncover
personal information. The relationship between IoMT sensors (phones, cameras, drones,
monitoring cameras) and personal private information shows in Figure 1.

Figure 1. The IoMT collects sensitive private data through sensors (phones, cameras, drones, moni-
toring cameras) that might leak personal privacy.
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Data mining attacks on images can easily cause privacy leakage, which can have
serious consequences. The issue of privacy leakage has attracted the attention of the public
in recent years and has aroused public concern about this issue. Moreover, privacy issues
are no longer just personal concerns as many countries have launched privacy acts and
laws. For example, the European General Data Protection Regulation (GDPR) took effect
on 25 May 2018 [1]. Any violations of the regulation will trigger heavy fines and penalties.
GDPR emphasizes the protection of “personal data”, interpreting this as “any informa-
tion relating to an identified or identifiable natural person (‘data subject’); an identifiable
natural person is one who can be identified, directly or indirectly, in particular by refer-
ence to an identifier such as a name, an identification number, location data, an online
identifier or to one or more factors specific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural person” [2]. According to this defi-
nition, images include a variety of personal identifiers such as people’s faces, text and
license plates. Therefore, effective image privacy protection techniques are in urgent need.
The research community has expended considerable effort on image privacy protection.
The early works mostly focus on the access control of the data, i.e., privacy protection
by safeguarding against unauthorized access. This can be achieved by setting the pref-
erences of users [3,4] or tag controls [5,6]. However, these methods cannot be applied
to scenarios where images are shared openly, but some sensitive information needs to
be concealed. For example, in the “Google Street View” application, we have full access
to photos showing the streets while people’s faces and other personal identifiers have
been obfuscated, e.g., by blurring. To achieve this, privacy protection methods need to
detect, and then cover/remove/replace sensitive content in images. Several recent studies
have explored this direction [7–16]. For example, Viola et al. [8] used a sliding window
detector to identify and blur the license plates in Google Street View images. Yu et al. [11]
used a deep multitask learning algorithm to detect privacy-sensitive objects and provide
simple protection by blurring. Overall, most of the existing work undertakes personal
data detection as the first step in privacy protection, relying on simple approaches such
as blurring or pixelation. Consequently, the image utility suffers to a considerable extent.
It not only makes the images look unnatural, but the person who looks at the image is
aware that the obfuscated part is private. Moreover, such a protection mechanism is pow-
erless against the emerging attacks based on advanced deep neural networks. For example,
McPherson et al. [17] use artificial neural networks to recover hidden information from
images protected by pixelation, blurring and P3. The method obtained good results on
different data sets, MINIST 80%, CIFAR-10 75%, AT&T dataset 95%, FaceScurb 57%.

Moreover, the existing methods almost entirely focus on single object protection,
such as face or text. However, most images that require privacy protection have multiple
objects that need to be protected (For example, in street view images, human faces and
license plates need to be protected at the same time).

Current methods are unable to find a way to quantify the tradeoff between image
usability and privacy protection. To tackle this, we use DP to control the generation of
de-identify objects in images to mitigate privacy threats.

To overcome these obstacles, we propose a three-stage framework for image privacy
protection in this paper. The framework consists of three steps: (1) privacy-sensitive content
detection and position extraction powered by a deep convolutional neural network: we use
CNN networks to detect various objects in images and classify objects as either private or
non-private; (2) projecting real private objects into latent space: we use generative adver-
sarial networks (GANs) to project the real private objects of the images into latent space
and obtain the corresponding latent vector ω∗. (3) private content generation controlled
by DP (de-identification): we use Laplace noise into the latent vector ω∗ and to generate
the de-identification content. Finally, we replace the originally private objects with the
synthetic ones to protect users’ privacy.

In order to evaluate the performance of our proposed framework, we conduct exten-
sive experiments on a real-world image data set collected by IoMT cameras, and investigate
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two types of personal identifier-related data: license plate and face. We choose these two
types of objects as they represent the two most significant categories of personal identifiers
in images.

In summary, the contributions of this paper are as follows:

• We propose an image privacy protection framework that can protect the privacy in
IoMT images.

• We propose a GAN-based method to generate the replacement content for private
objects in images.

• We use differential privacy methods to control image generation between image
usability and privacy protection.

The remainder of the paper is organized as follows. In Section 2, we review the related
work. In Section 3, we give the definition and foundation of the methods. In Section 4,
we present our framework on multimedia privacy protection based on Mask-RCNN and
synthetic content generation using GANs. In Section 5, we detail the experiment results
of our framework for multiobject privacy protection (street view scenarios). In Section 6,
we conclude the paper and outline future work.

2. Related Work

Privacy protection, in general, has been extensively studied in recent years. Of all
the research in this area, differential privacy (DP) has attracted the most attention and has
been applied to many different applications. Therefore, in this section, we review the most
relevant research on image privacy and the related fundamental deep learning research,
including: (1) image privacy issues and protection; (2) deep learning and object detection
of images; (3) content generation; and (4) privacy protection.

2.1. Image Privacy Issues and Protection

Image privacy issues first attracted attention with the raipd development of social net-
works. The proliferation of social networks generated a massive number of photos flooding
the Internet, some of which contain sensitive information. For example, Tang et al. [18]
illustrated the problem of unpermitted photo sharing in social media and Pesce et al. [19]
investigated the use of photo tags by third parties to compromise a user’s privacy. The im-
age privacy issue becomes more severe with the widespread use of facial recognition
systems, as people worry that their faces might be used by organizations for profiling or
social control.

To combat image privacy attacks, the previous mainstream method uses access control
on sensitive content. Mannan et al. [3] use instant messaging (IM) networks to control
personal web content sharing. Vyas et al. [4] use annotation data to predict the privacy
preferences of users and control shared content. Wang et al. [5] studied privacy control on
Facebook, and Squicciarini et al. [6] proposed collaborative privacy management to enable
users to collaboratively control their photos. Similarly, to deal with the privacy issue in
facial recognition systems, the current countermeasure is simply banning [20]. However,
an access-control-based method has several limitations. It only gives a “yes” or “no” option
for the use of images, whereas parts of the information in images need to be used by
applications such as Google Street View, and as it cannot automate privacy protection
based on the privacy information of the image itself, it requires human participation.

More recent image privacy research focuses on the inherent implicit information of
the photos. Tonge et al. [10] explore learning models that can automatically classify the
private or public parts in an image using deep neural networks. Yu et al. [11] create a new
tool called “iPrivacy” which uses a deep learning algorithm to detect privacy-sensitive
objects. Yu’s work can detect the private parts of photos, but in the privacy protection step,
they only use blur to protect privacy which does not look good. Uittenbogaard’s work [12]
goes one step further than blurring and sets a framework that automatically removes
moving objects. However, there are two limitations, one is that it is only for moving objects
and the other limitation is that it missed partial information of the image. Liu’s work [13]
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proposes a novel Stealth algorithm, which prevents an automatic detector from detecting
the objects in an image. However, humans can easily extract private information from
an image.

Our framework is a further advancement compared with the aforementioned research.
It can identify the private parts of photos at the pixel level. Then, it generates the target
replacement content based on the private content, not just using a mosaic, blurring or
removal to protect privacy. Our framework can protect private information from both
humans and machines.

2.2. Deep-Learning-Based Image Object Detection and Segmentation

Object detection and semantic segmentation technologies have been advancing rapidly
in recent years. In the beginning, Girshick et al. [21] used high-capacity convolutional
neural networks (CNNs) for bottom-up region proposals, called R-CNN. This algorithm
improves the mean average precision (mAP). In 2015, Hariharan et al. [22] defined the
hypercolumn at a pixel as the vector of activations of all CNN units above that pixel to
improve the results of the experiment. After this, of the majority of the research is based on
the Fast R-CNN [23,24] and Fully Convolution Network (FCN) [25]. The disadvantage of
Faster R-CNN is that it cannot deal with pixel-to-pixel alignment between the inputs and
outputs of the network. To solve this problem, He et al. proposed a method called Mask
R-CNN [26] that extends the Fast R-CNN by adding prediction segmentation masks on
each region of interest (RoI) to get the results. As our goal is to find the private parts of
images, we use Mask R-CNN to obtain the instance segmentation results that can be used
as the basis for the follow-up privacy content detection and positioning. To obtain good
results for our use case, we need to re-train the network using our image dataset which
includes more privacy-sensitive content.

2.3. GAN-Based Content Generation

Preliminary ways to perform image privacy content protection include blurring, dele-
tion, etc. In this paper, we replace content to protect privacy, i.e., generating content without
any identifying information to replace the private content in the images. Traditional content
generation methods such as [27–30] merely fill the pixels by matching and pasting based
on the low-level features in the images. The effect is not very satisfactory as they often
produce error content and the results obtained are also not good. In 2014, Goodfellow
proposed a new framework called GAN [31] which can synthesize new content by training
the models. Following the GAN-based method, the latest GAN-based generation content
generation technology can generate very realistic content, such as faces, cats, dogs, even
Airbnb rooms [32–35]. In our framework, we use StyleGAN [36] to generate the replace-
ment content. StyleGAN can generate content which is not much different from the real
image. The image content generated by StyleGAN does not exist in real life and this content
can avoid copyright disputes. With the replacement of the generated content, the privacy
of the images can be protected.

2.4. Privacy Protection

Privacy protection is an essential component for information system and management,
such as network security [37,38], reputation management [39], blockchains [40] and the next
generation of communication systems [41]. In traditional privacy protection technology,
one of the most common methods is data encryption, which has high security. However,
directly encrypting and decrypting large-scale data such as image sets will consume a
lot of computing resources. Another privacy protection method is anonymity privacy
protection technology. In 2002, Sweeney et al. proposed the k-Anonymity [42] method to
protect privacy. Machanavajjhala proposed l-Diversity [43] to address the limitations of
k-Anonymity, and Li et al. introduced t-Closeness [44]. However, with the development of
attack technology, attackers can use data mining, machine learning, background knowledge
attack, and big data analysis to obtain enough useful information on a user’s privacy.



Sensors 2021, 21, 58 5 of 21

To solve this problem, Dwork [45] proposed the concept of differential privacy which
has a solid mathematical theoretical foundation. Once differential privacy was proposed,
it attracted attention in the field of privacy protection, and various privacy protection
algorithms based on differential privacy have been proposed. In this paper, we propose a
new image privacy protection method based on the differential privacy method combined
with GANs. Taking advantage of the controllability of differential privacy, our method can
protect the privacy of IoMT images with high controllability.

3. Preliminaries

In this section, we discuss image privacy protection, image utility, provide the basic
knowledge and equations definition of our method.

3.1. Privacy Protection and Image Utility

In this part, we discuss image privacy protection and image utility. Firstly, the different
levels of image privacy risk are shown in Figure 2. On the left are the images that do not
contain any private information (such as a landscape photograph) and the risk of privacy
leakage is zero. On the right are the images that contain private information which can be
linked to specific individuals which violates individuals’ privacy directly. Between the two
extreme cases are images that contain private information but might not leak individuals
privacy. Our goal is to propose a framework to reduce the risk of privacy leak from Level
3/4 back to Level 2 in Figure 2. This means that we can protect the private information in
images so that they cannot be linked to any individual.

Figure 2. The four levels of image privacy risks.

However, the strength of privacy protection will affect the utility of images. The com-
mon methods such as mosaic and blur, might reduce the utility of the image while image
processing. Greater privacy protection, results in lower utility of images, as shown in the
example in Figure 3. Although the mosaic and blur methods protect privacy, it reduces
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the readability and usability of the images. It also makes image sharing pointless. In our
image privacy protection framework, we have developed an effective way to compromise
between privacy protection and image utility.

Figure 3. The privacy and utility.

3.2. Formulation of Image De-Identification

We now formally define the problem of image de-identification which enables us to
define the problem we need to address and build the foundation for the following discussions.

Definition 1 (Image). An image is a matrix I of m columns, n rows and c channels. There are
usually 3 channels in the common color space, such as RGB and YUV. Each cell in matrix I contains
a coding which ranges from 0 to 255. Images should contain multiprivate objects such as face or text.

Definition 2 (Object sets). An object set is a set of M object images contained in image matrix I:
Oi : i = 1, 2, ..., M.

Definition 3 (Private object sets). A private object set is a set of N objects images contained in
image matrix I: Pi : i = 1, 2, ..., N in which Pi ∈ Oi and N ≤ M.

Definition 4 (Private Object De-Identification Function). Let P and Pd be a private object
set and a de-identification object set.

g : P −→ Pd (1)

where g is defined as the de-identification function for each Pi to remove their identity.

Definition 5 (Image De-Identification). Given image matrix I and de-identification function g,
for each private object Pi ∈ Oi:

Id = g(I) (2)

in which we can use the de-identification function to get an image matrix Id with no private information.

3.3. Differential Privacy

Definition 6 (Differential Privacy). The formal definition of DP is given by Equation (3):

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (3)

Definition 7 (The Sensitivity of Differential Privacy). The sensitivity of DP is defined in Equa-
tion (4), which determines how much perturbation is required in the DP mechanism.

∆ f = max
D1,D2

|| f (D1)− f (D2)||1 (4)

4. Image De-Identification Framework

In order to achieve the goal of image privacy protection, we propose an image de-
identification framework which comprises three steps: (a) object detection and private
object extraction; (b) de-identification content generation; and (c) content replacement and
image privacy protection.

Figure 4 shows the diagram of the framework. The original image I contains private
information such as a face or a car license plate. It is first input into a CNN to identify and



Sensors 2021, 21, 58 7 of 21

extract the private objects in the image. Then we transform the extracted private objects
into latent space and use differential privacy to control the de-identified content generation.
Finally, we obtain a de-identified image I′, i.e., an image without any sensitive information.
In the following part of this section, we explain the framework in detail.

Figure 4. The diagram of the proposed image de-identification (DE-ID) framework.

4.1. Step-I: Object Detection and Private Object Extraction

To protect the privacy of an image, it is necessary to detect the sensitive privacy zones
in the image. We use two steps to achieve this. First, all the objects in the image are detected,
and then the private objects are extracted.

4.1.1. Object Detection

The state-of-the-art object detection algorithm Mask-RCNN is used to detect the objects
in the image. The diagram of object detection is shown in Figure 5. Images contain private
information are detected by object detection algorithm Mask-RCNN, and the Mask-RCNN
can detect all objects and position of the Images.

For an image I, the ROI vector Xroi of each object Oi can be detected by R(·):

Xroi = R(I) = (S|E)

=


x1 y1 w1 h1 E11 E12 . . . E1m
x2 y2 w2 h2 E21 E22 . . . E2m
...

...
...

...
...

...
...

...
xn yn wn hn En1 En2 . . . Enm

 (5)
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where Sn = (xn, yn, wn, hn) is the position vector including the information of the upper
left corner coordinate (xi, yi), width wi and height hi of object Oi. The probability of objects
noted as E, the Ei is the probability of Object Oi belonging to the mth class (there are m
class objects in the image I).

Figure 5. The diagram of object detection part in our image de-identification (DE-ID) framework.

In Equation (5), we choose the maximum probability ci in each Ei, so the output of the
object detection is shown as follows:

O = (S|C) =


x1 y1 w1 h1 c1
x2 y2 w2 h2 c2
...

...
...

...
...

xn yn wn hn cn

 (6)

where ∀i ∈ (1, n) :

ci =

{
arg max(Eij), 1 ≤ j ≤ m; if max(Eij) > δ

cbg, if max(Eij) ≤ δ
.

In Mask-RCNN, if the maximum probability is smaller than a threshold δ, this object
will be treated as the background class, otherwise the object belongs to class i.

4.1.2. Private Objects Extraction

After obtaining the objects’ information and position, we set a classifier to classify
the objects as either private or non-private. Figure 6 is the diagram of private objects
extraction part in our framework. As shown in Figure 6, we extract the private objects from
all detected objects. In the street view experiment, the private objects can be human faces,
car license plates, etc. The non-private objects can be the background, trees, traffic lights.

Figure 6. The diagram of private objects extraction part in our image de-identification (DE-ID) framework.
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The extraction process is finished by T(·) accordingly as shown in Equation (7).

T(O) = T



xp1 yp1 wp1 hp1 cp1
...

...
...

...
...

xpα ypα wpα hpα cpα

xnp1 ynp1 wnp1 hnp1 cnp1
...

...
...

...
...

xnpβ ynpβ wnpβ hnpβ cnpβ



=


xp1 yp1 wp1 hp1 cp1
xp2 yp2 wp2 hp2 cp2

...
...

...
...

...
xpα ypα wpα hpα cpα

 (7)

where (xpi, ypi, wpi, hpi) and cpi, i = 1, ..., α are the position and class of private objects,
and (xnpj, ynpj, wnpj, hnpj) and cnpj, j = 1, ..., β are the position and class of non-private
objects. So we obtained the private objects’ position, class, and pixel information.

The private objects’ information is represented as follows:

P = T(S|Cp) =


xp1 yp1 wp1 hp1 cp1
xp2 yp2 wp2 hp2 cp2

...
...

...
...

...
xpα ypα wpα hpα cpα

 (8)

4.2. STEP-II: De-Identification Content Generation

In the second step, we use a content generator G(·) and the differential privacy method
to generate the de-identified content. The Algorithm 1 is shown as follows:

Algorithm 1: Image de-identification content generation.

Input: The private image Ip ∈ <n×m×3 to de-identify; A pretrained generator
G(·).

Output: The de-identified image Id optimized via G(·)
Initialize latent vector ω, differential privacy Laplace noise with ∆ f and ε;
while not converged do

Ip ' I′p = G(ω∗);
end
Ipd = G(ω∗ + Lap(∆ f

ε )) ;

Figure 7 is the diagram of de-identification content generation part in our framework.
Firstly, we find the latent vector ω∗ of each input image Ip which contains private informa-
tion. We initialize a latent vector ω and search for an optimized vector ω∗ which minimizes
the loss function (9). This loss function measures the similarity between the private object
image and an image generated by latent vector ω∗ [46].

ω∗ = min
ω
Lpercept(G(ω), Ip) +

λmse

N
||G(ω)− Ip||22 (9)

where image Ip ∈ <n×m×3 is the input private image. G(·) is the pretrained generator, N is
the number of scalars in the image, ω is the latent code to optimize, λmse = 1.
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Figure 7. The diagram of de-identification content generation part in our image de-identification (DE-ID) framework.

The loss term Lpercept is calculated as follows:

Lpercept(Ip1, Ip2) =
4

∑
j=1

λj

Nj
||Fj(Ip1)− Fj(Ip2)||22, (10)

where Ip1, Ip2 ∈ <n×m×3 are the input private images, Fj is the feature output of VGG-16
layers conv1_1, conv1_2, conv3_2, conv4_2. Nj is the number of scalars in the jth layer
output, λj = 1 for all js are empirically obtained for good performance.

Above step enables the image to be editable. Secondly, after we obtain latent vector
ω∗ of each private object, we put the Laplace noise on latent vector ω∗ and get the new
latent vector ω′.

ω′ = ω∗ + Lap(
∆ f
ε
) (11)

Then, we put the new latent vector ω′ into the generator G(·) and obtain the de-
identified content Ipd.

Ipd = G(ω∗ + Lap(
∆ f
ε
)) (12)

In Equation (12), we used the DP criterion to protect the sensitive information in an
image using the Laplace mechanism. Generally speaking, the Laplace mechanism adds a
controlled Laplace noise to a query result before returning it to the user. Here, the Laplace
noise is sampled from a Laplace distribution, which is shown in Equation (13).

Lap(x) =
1
2b

exp(−|x|
b
) (13)

The Laplace mechanism can be summarized as

M(D) = f (D) + Lap(
4 f

ε
) (14)

The Laplace mechanism in Equation (14) indicates that the size of the Laplace noise is
related to the sensitivity of query f and the privacy budget ε. A larger sensitivity leads to a
higher noise. In our method, we use privacy budget ε to control our GAN generator to
generate the synthetic de-identified content.
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4.3. STEP-III: De-Identified Content Replacement

After de-identified content has been generated, we use the generated content to replace
the original private object images. The Algorithm 2 is shown as follows:

Algorithm 2: Image protected by de-identification content swapping.

Input: The original image I ∈ <n×m×3 contains private objects Pi, i = 1, 2, ..., N;
de-identified objects in the image: Pi

d, i = 1, 2, ..., N
Output: The protected image Id ∈ <n×m×3

for each Pi
d in Pd do

Pi swapping←− Pi
d

end
Id = g(I)

The original image I contain private objects and we use the de-identified objects
generated by our method to replace the private objects. Figure 8 is the diagram of de-
identified content replacement part in our framework. We use the images of the de-identify
objects (not contain private information) to replace the original private object images
(contain private information). After the private image I processed by the above three steps,
we finally obtain the de-identified image Id.

Figure 8. The diagram of de-identified content replacement part in our image de-identification
(DE-ID) framework.

5. Experiments and Discussions

In this section, we provide the experiment setup, performance evaluation metrics,
street view image protection (include human face privacy protection and car license plate
privacy protection) and performance evaluation.

5.1. Experiment Setup

First of all, we set up an experiment database containing the street view images
collected by IoMT technology. The street view images contain human faces, car license
plates, road signs, traffic lights and more. In these images, the sensitive private information
are human faces and car license plates. In our test database, the human faces and car
plates are the private objects, and the road sign, the traffic light and background are the
non-private objects. We use the camera to collect about 4000 typical street view images as
the test database.
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5.2. Performance Evaluation Metrics
5.2.1. Privacy Metrics

Confidence Score. In the privacy protection metric for a human face, we use the open-
source “face recognition” platform to evaluate the confidence in face privacy. This platform
was built using dlib’s state-of-the-art face recognition which was built with deep learn-
ing. The model has an accuracy of 99.38% on the Labeled Faces in the Wild benchmark.
The output of the platform is the facial distance between each unrecognized face and the
recognized face. By setting the corresponding threshold, the distance metric can judge
whether the face is protected. This means after the face photo is processed by our method,
we can determine whether the general third-party platform still considers it be the same
person. The default threshold is 0.3.

Distance. In the privacy protection metric for the car license plate, as the license plate
is a set of characters, we believe that the distance between the original license plate and the
processed license plate is the privacy metric. In the experiment, we set the threshold of
the car license plate as 3. This means that the sensitive information on the license plates is
protected when the distance is greater than 3.

5.2.2. Image Utility Metrics

Quantitative judgment is necessary for the degree of modification between the original
image and the protected image. So, we use several metrics to calculate the degree of
modification, including L0, L2, ALDp, the structural similarity index (SSIM), and the
difference value hash(Dhash). Deciding when there are two images: processed image Ia

and original image I, the utility image metrics are:
L0 calculates the number of changed pixels.

L0 = num(Ia, I) (15)

where num is calculated as the number of pixels changed between Ia and I.
L2 calculates the Euclidean distance between the original image and the protected im-

age.

L2 = ||Ia − I||2 =

√√√√ N

∑
i=1

(Ia
i − Ii)2 (16)

ALD calculates the average L distance between the images.

ALDp =
1
n

n

∑
i=1

‖Ia
i − Ii‖p

‖Ii‖p
(17)

SSIM is the common method to evaluate the similarity between the original image
and the protected image.

SSIM(Ia, I) =
1
n

n

∑
i=1

SSIM(Ia
i , Ii) (18)

Dhash uses the difference hash to evaluate the degree of modification where the
smaller the value, the better.

Dhash(Ia, I) = hash(Ia)− hash(I) (19)

5.3. Street View Image Protection
5.3.1. Human Face Privacy Protection

The human face is the most sensitive information in IoMT images, which can reveal
a person’s identity. Therefore, we use our method to protect facial privacy in the street
view experiment.

The algorithm to de-identify the facial image is shown in Algorithm 3.
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Algorithm 3: Facial image de-identification.

Input: A human face image I ∈ <n×m×3 to protect; a pretrained generator G(·)
Output: The de-identify facial image Id.
Initialize latent code ω∗ = ω;
while not converged do

I ' I′ = G(ω∗);
end
Id = G(ω∗ + Lap(∆ f

ε ))

Firstly, we use Mask-RCNN to extract facial images I from the experiment street
view images.

Secondly, we initialize latent vector ω and use the loss function to find latent vector
ω∗ of human face I.

Thirdly, we put the Laplace noise on latent vector ω∗ and use generator G(·) to
generate the de-identified facial image.

Id = G(ω∗ + Lap(
∆ f
ε
)) (20)

Finally, we swap the de-identified facial image for the original facial image. In this step,
we use Dlib, which is a toolbox in OpenCV based on key-point face detection, to obtain the
68 key points of the faces and use seamless cloning to swap the faces. The face swapping
algorithm can transfer the input facial features to the target face without being obtrusive.

Figure 9 is an example of the original human face image and the human face generated
by GAN with no modification.

Figure 9. The original face image projected into StyleGAN: (a) Original face. (b) Face generated by GAN.

The de-identified example result is shown in Figure 10. Intuitively speaking, a larger
Laplace noise results in the generation of a very different face compared with the original
photo of the face. In our experiments, we use Laplace noise parameter ε to control the
distance between the de-identified facial image and original facial image. In addition,
we use the open-source “face recognition” platform to determine if the synthetic facial
image and the original facial image represent the same person.
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Figure 10. Face images comparison: (a) face in street view, (b) mosaic methods, (c) blur method,
and (d) our method.

5.3.2. Facial Privacy Protection Discussion

There are currently many methods for face swap and generation, the main meth-
ods include DeepFakes [47], Face2Face [48], FaceSwap [49], and NeuralTextures [50], etc.
These methods can well swap the source face to achieve the purpose of changing the
source face. However, in 2019, Andreas et al. propose an automated benchmark for fa-
cial manipulation detection called FaceForensics++ [51] which can detect manipulated
facial images. This benchmark can easily detect the manipulated facial images with high
efficiency. However, the previous methods discussed the application and effects of face
swapping and how to detect manipulated facial images. We are more concerned about
the privacy protection of IoMT images. In our method, we propose a framework that uses
GAN and DP to protect the multiobject privacy of IoMT images. Different from other face
swap methods, our method can not only protect facial information but also protect other
private information, such as license plates. Our replacement content is generated by GAN,
and DP technology is applied to control the generated content.

Figure 10 shows the original photo of the face, the mosaic face, the blurred face,
and the new facial image generated by our method. It can be seen that it is not easy
for either a human or a machine to recognize the de-identified generated facial image in
Figure 10d compared to Figure 10a. It is worth mentioning that if the protected person sees
that his\her facial information is replaced by computer-generated content, he should feel
at ease because his\her personal facial information has been de-identified.

To protect the privacy of IoMT images, just replacing faces is not enough to protect
privacy, multiobject privacy needs to be protected. So we set a framework that can protect
multiobject privacy. There are many private contents in IoMT images that need to be
protected. In our method, we added car license plates as another type of privacy that needs
to be protected.
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5.3.3. Car License Plate Privacy Protection

Car license plates are another type of sensitive objects in IoMT images. We use Chinese
car license plates as our experimental objects. The car license plates should be generated
according to the rules enforced by the vehicle management authority. The rules of a valid
Chinese car license plate are: (1) the first character is a Chinese character, representing a
province; (2) the second symbol is an English letter; (3) the last five symbols form a random
string of letters and numbers, and (4) the background of a license plate is dark blue.

After obtaining the car license plate images from the street images, we use OCR to
recognize the characters and symbols on the car license plates, and then map the car license
plate into a sequence of numbers. As previously mentioned, the first character will be one
of 31 Chinese province abbreviation characters (with the exception of special districts).
Because the first Chinese character represents location information, we map this into two-
digit numbers 00–30 based on the sorted distances from each province to the capital city
Beijing. The mapping table for the first character is shown in Table A1.

Next, the numerical values 0–9 are translated into two-digit codes 00–09, and the
English symbols are translated into two-digit codes 10–33. For example, a car plate “Beijing
A132B3” will be mapped to a sequence of numbers “00 100103021103”. After we translate
each car plate into a sequence of numbers, we add Laplace noise onto the number sequence
and obtain a synthetic number sequence satisfying DP. In Laplace noise generation, we
let ∆ f = 1 and control ε to generate the Laplace noise. For example, if we add a random
Laplace noise on the above car plate “00 100103021103”, we obtain a perturbed sequence
as “03 130214231502”, which can be translated to a synthetic car plate “Hebei D2ENF2”.
The above example is illustrated in Figure 11. There is a cyclic shift if the Laplace noise
results in the value being out of the bounds, e.g., the province code > 33.

Then, we use the generator to generate a synthetic car plate image according to the car
plate code. Finally, we swap the car plate with the synthetic car plate image. The synthetic
car plate is protected by the DP criterion.

Figure 11. A new car plate content created by DP.

In the car license plate number transfer, the larger the noise, the longer distance car
number is generated. For example, if a province name is Jilin on a car plate, the province
codes should be generated for Jilin based on the distance from the other provinces to Jilin.
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5.3.4. Car License Plate Privacy Protection Discussion

Car license plates as another type of sensitive objects in IoMT images. We choose car
license plate as another type of multiobject privacy protection representative. The frame-
work we proposed can add more types of private objects, which is highly scalable. In future
work, We will add more types of private objects.

It is important to note that the replacement of the private content in an image is
not simply a copy-and-paste job. Instead, it needs to transform the synthetic content by
generating an image that fits into the original image area with the correct orientation.
Therefore, the synthetic image is generally not perceptible to human eyes.

Our method uses the synthetic DP car plate to protect the private car plate information.
As shown in Figure 12, we can see that the car plate is smoothly replaced by our synthetic
car plate.

Figure 12. A typical Chinese car plate swap to protect the private information in street view image:
(a) Original street view image. (b) Our method.

5.4. Performance Evaluation
5.4.1. Privacy Protection Metrics

In this part, we calculate the distance between the original private image and the
protected image to measure the degree of privacy protection.

For a human face, the average distance between the same person is 0.12, which has a
confidence score of 88. After using our processing method, the average facial distance is
0.45 with a confidence score of 55, which is over the threshold of the confidence score of
70. This experiment result means our method can remove the identity of the human face,
which means our method can protect the privacy of facial image.

For car license plates, because the license plates are strings, their distances are integers.
In the experiment, the distance between the same license plate is 0. After using our
processing method, the distance is 3, so the sensitive information in the image of the car
license plate is protected.

5.4.2. Image Utility Metrics

In this part, we set an automatic evaluation module to calculate the degree of image
modification using different metrics through L0, L2, ALDp, SSIM, and Dhash. We compare
our method with the blur and mosaic methods. As shown in Figure 13, the blur and
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mosaic methods remove the sensitive private area. However, a human can easily notice the
blur and mosaic in the image. Hence, a computer can recover the information from the
processed image [52–54].

In our method, we control the generator to generate the de-identified content image
with DP Laplace noise. The de-identified images make it very difficult for human eyes
and computer vision detection methods to detect the differences and obtain the private
information for sensitive private objects. The results of the street view image are shown
in Figure 13. It can be seen that a human and a computer can easily detect the sensitive
information in the unprotected street view image in Figure 13a. In Figure 13b,c, the al-
gorithm cannot detect the face or the car license plate number after being blurred, but a
human can easily see there is a blur or mosaic in the image. In relation to Figure 13d, both a
computer algorithm and a human can detect the changed sensitive information, so neither
a human nor a computer can not see the real sensitive information of the face and the car
plate. Hence, our method protects the private information in the image.

Figure 13. The result of four street view images: (a) unprotected image. (b) image processed with
blur, (c) image processed with mosaic, (d) image processed with our method.

Next, we use metrics to evaluate the efforts of our method. Table 1 shows the perfor-
mance of our method, blur, and mosaic. The metrics are DHash, SSIM, L0, L2 and ALDp.
The blur and mosaic are modified to change the sensitive area in our experiment images.

First, compared with the other methods, our method changes the minimum number
of pixels to protect the private part of the image. For Dhash, our method is better than
the others. Compared with blur and mosaic, our method decreases the Dhash metric by



Sensors 2021, 21, 58 18 of 21

95.02% and 95.2%. Our method is better than the others in SSIM metric by 1.17% and 1.67%.
Our method decreases the L0 metric by 73.6% and 72.97% compare with blur and mosaic.
In L2 metric, our method decrease the L2 metric by 86.25% and 25.99%. In ALDp metric,
our method’s result is higher than blur and mosaic, which is 160.65% and 98.85%.

This shows that our method is better than the other two methods in metrics: SSIM,
Dhash and L0. However, the results show that in metrics: L2 and ALDp, our method is
not the best. After analysis, we found that L2 and ALDp are more suitable in big area
modification. These metrics are not sensitive to minor modifications.

We use the facial image as an example to show the metrics’ results in the minor
modification in a small area. We choose 4000 face swap images to analyze and the results
are shown in Table 2. In Dhash metric results, compared with blur and mosaic, our method’s
result decreases by 96.68% and 96.97%. In SSIM metric results, our method increases by
50.67% and 102.24% compared with blur and mosaic. In L0 metric result, our method
decreases by 76.55% and 76.84% than blur and mosaic. In L2 metric result, our method
decreases by 64.93% and 81.08% than blur and mosaic. In ALDp metric result, compared to
blur and mosaic, our method decreases by 65.11% and 79.68%. As we can see, our method
is the best for all metrics in the evaluation of minor modification in a small area.

Table 1. Average result of 4000 street view images with the metrics: Dhash, SSIM, L0, L2, ALDp.

Methods Original Blur Mosaic Our Methods

Dhash 0 12,873.65 13,370.19 641.71
SSIM(10−2) 100 98.18 97.70 99.33

L0(102) 0 1692.25 1652.57 446.74
L2 0 9983.06 14,757.19 18,593.41

ALDp(10−2) 0 3.99 5.23 10.4

Table 2. Average result of 4000 facial images with the metrics: Dhash, SSIM, L0, L2, ALDp.

Methods Original Blur Mosaic Our Methods

Dhash 0 4047.80 4427.79 134.25
SSIM(10−2) 100 64.63 48.15 97.38

L0(102) 0 1009.4 1022.25 236.72
L2 0 5832.96 10,812.2 2045.48

ALDp(10−2) 0 16.68 28.64 5.82

6. Conclusions

In this paper, we propose a new image privacy protection method based on GAN and
DP. Our method can protect the sensitive private information contained in IoMT images.
We use the deep neural network to identify the private data in images and de-identify
this with the GAN-based content. Compared with traditional blur and mosaic methods,
the proposed method can protect the sensitive information in image data and avoid privacy
leakage. The experiment results of the collected IoMT image data show that our privacy
protection method can protect privacy with high efficiency and controllability. In future
work, we will study the privacy protection of IoMT videos and improve the real-time
nature of our method. We will also add more types of private objects into our framework
and propose a higher effectively privacy protection method for the privacy of IoMT images.
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Appendix A

Table A1. The transfer two-digit code based on distance between Beijing and each province of China.

Province Name Distance to Beijing (km) 2-Digit Code

Beijing 0 00
Tianjin 96.07188 01
Hebei 239.4603 02

Shandong 356.9375 03
Shanxi 407.3106 04

Neimengu 424.5428 05
Henan 620.2232 06

Liaoning 630.724 07
Jiangsu 860.7032 08

Jilin 867.213 09
Ningxia 884.2019 10
Anhui 897.8403 11
Shanxi 907.8513 12
Hubei 1041.318 13

Shanghai 1041.987 14
Heilongjiang 1056.846 15

Zhejiang 1102.843 16
Gansu 1184.73 17
Jiangxi 1242.833 18
Hunan 1316.041 19
Qinghai 1340.82 20

Chongqing 1419.309 21
Sichuan 1505.931 22
Fujian 1527.525 23

Guizhou 1729.627 24
Guangdong 1856.641 25

Guangxi 2047.263 26
Yunnan 2068.306 27
Hainan 2249.545 28
Xinjiang 2433.955 29
Xizang 2559.149 30
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