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Abstract: Pressure sensors are good candidates for measuring driver postural information, which is
indicative for identifying driver’s intention and seating posture. However, monitoring systems based
on pressure sensors must overcome the price barriers in order to be practically feasible. This study,
therefore, was dedicated to explore the possibility of using pressure sensors with lower resolution for
driver posture monitoring. We proposed pressure features including center of pressure, contact area
proportion, and pressure ratios to recognize five typical trunk postures, two typical left foot postures,
and three typical right foot postures. The features from lower-resolution mapping were compared
with those from high-resolution Xsensor pressure mats on the backrest and seat pan. We applied
five different supervised machine-learning techniques to recognize the postures of each body part
and used leave-one-out cross-validation to evaluate their performance. A uniform sampling method
was used to reduce number of pressure sensors, and five new layouts were tested by using the best
classifier. Results showed that the random forest classifier outperformed the other classifiers with an
average classification accuracy of 86% using the original pressure mats and 85% when only 8% of
the pressure sensors were available. This study demonstrates the feasibility of using fewer pressure
sensors for driver posture monitoring and suggests research directions for better sensor designs.

Keywords: driver posture monitoring; pressure measurement; sensor layout; machine learning

1. Introduction

Human driver errors in terms of attention, recognition, decision, and performance have
been reportedly regarded as the main causes of traffic accidents by various sources [1–3].
Although driving automation is beneficial for accommodating human errors, a driver’s
unavailability to take over may pose new challenges to road traffic safety [4–6]. The
postural information associated with the human driver (e.g., head orientation, positions
of hands and feet relative to vehicle controls) should be continuously monitored for a
safe and smooth transition [7,8]. From the perspective of vehicle passive safety, drivers
in autonomous vehicles may adopt postures quite different from the standard driving
posture [9]. In cases of unavoidable collisions, traditional restraint systems calibrated for
proper positioning of the driver may not provide efficient protection [10]. In order to reduce
the potential injuries, the automobile community is striving for intelligent restraint systems
such as smart airbags, for which the collision responses can be modulated according to
driver’s instantaneous seating position [9,11].

The purpose of driver posture monitoring is to provide fundamental information for
evaluating the driver’s attention, operational intention, seating posture and position, and
so on. This information can be incorporated into the development of driving automation
systems and intelligent restraint systems for safer driving.

Many existing postural monitoring methods are vision-based for capturing head or
hand movement, such as RGB cameras and depth cameras [12]. Another noninvasive
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alternative or complementary approach is to detect the driver’s posture using pressure
sensors embedded into driver seat. This technique has been explored by a few researchers
in the field of automotive safety in an attempt to detect the driver’s state, seating position,
or foot behavior [13–15]. However, the methods proposed by these pilot studies were
not well validated on new drivers [16]. In the context of in-vehicle monitoring, the body
pressure distribution (BPD) pattern is not only dependent on posture, but also affected by
the driver’s anthropometric dimensions, as well as by individual seating preferences in
terms of backrest angles, seat height, seat position, seat pan inclination, etc. To leverage the
pressure sensors for in-vehicle monitoring, it is necessary to gain a thorough understanding
of the relationship between the BPD and driver’s postures.

In our previous work [16], we used two Xsenor pressure mats with a resolution of 42
by 44, one on the seat pan and one on the backrest, to measure the BPD for 42 in-vehicle
activities performed by 23 participants. Nine different postures characterized by typical
trunk (normal position and five abnormal positions) and foot positions were defined for
classification. Three different classifiers, including a deep learning classifier and two
random forest (RF) classifiers were trained on raw BPD, as well as on absolute and relative
pressure features with respect to a standard reference posture. The pressure features were
extracted from segmented sensing areas, and their importance was evaluated by estimating
the RF out-of-bag (OOB) errors [17]. The performance of the classifiers was evaluated
by leave-one-out (LOO) cross-validation. Results showed that the RF classifier trained
on relative pressure features achieved an average accuracy of 80.5% and outperformed
the other two classifiers. Apart from further refinement of feature selection, an issue of
using existing pressure sensor products is the price barrier for their implementation in
commercialized vehicles. For example, the two Xsensor pressure mats employed in our
work cost more than 10,000 EUR, which are too expensive to be a practical solution.

In recent years, low-cost BPD measurement systems have given rise to various appli-
cations for identifying the user’s in-chair sitting postures in the area of personal healthcare,
human–computer interaction, and seat ergonomic design. For example, Bibbo et al. [18]
instrumented a chair with four textile pressure sensors on the seat pan and four on the
backrest to investigate if the postural variation is influenced by cognitive engagement. By
referring to the initial posture and analyzing the pressure data over time, posture transi-
tions between eight different postures could be successively detected. To detect the user’s
posture in a wheelchair to reveal their sitting habit, Ma et al. [19] developed a posture
recognition system with five pressure sensors on the backrest and seven on the seat pan.
Similarly, five supervised classification techniques were compared, and the best perfor-
mance was determined using the decision tree method. By using a backward selection
method, the best sensor deployment was identified to have five sensors in total, achieving
an accuracy of 99.47% for classifying five different postures by 10-fold cross-validation.
Unlike previous studies [18,19], Roh et al. [20] implemented only four force sensors on
the seat pan and used the pressure ratios (PRs) in anterior–posterior and medial–lateral
directions to train various machine-learning algorithms for the automatic classification of
six different sitting postures. The best performance was obtained for the support vector
machine (SVM) classifier with an average classification accuracy of 97.2% for nine subjects.
Bourahmoune and Amagasa [21] proposed a so-called LifeChair smart cushion with nine
pressure sensor units only on the backrest for recognizing poor sitting postures. The sensors
were first calibrated by a standard upright posture and the corresponding values stored
as a reference frame. According to the pressure deviations with respect to the reference
data, the RF classifier achieved an accuracy of 98.93% in detecting over 13 different sitting
postures and 97.99% in detecting six common chair bound stretches from 10 subjects.

To more accurately monitor in-chair activities, sophisticated systems based on the
information from other sensors in addition to the BPD measurement have been developed.
For example, Zemp et al. [22] tested five different machine-learning methods on the signal
from 16 force sensors (10 on seat pan, four on backrest, and one on each armrest) and the
backrest angle from a Motion-Module to distinguish seven different sitting positions. The
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best performance was achieved by the random forest (RF) classifier, which produced a
mean classification accuracy of 90.9% by LOO cross-validation from 41 subjects. In one
study performed by Ma et al. [23], the pressure sensors were accompanied by an inertial
measurement unit (IMU) placed on the seat in order to capture the small movements
of the body. The system utilized a sliding window to extract features from the sensors,
and accuracies of 89% and 98% were achieved for activity recognition and activity level
recognition, respectively. In another study [24], a system based on body-worn inertial
sensors combined with six force sensors on the seat was designed by Gravina and Li to
recognize four basic emotion-relevant activities performed by eight volunteers. By fusing
the sensor- and feature-level features, an average classification accuracy of 91.8% was
achieved. More recently, Jeong and Park [25] proposed a smart chair system consisting
of six pressure sensors on the seat pan and six infrared reflective distance sensors on
the backrest. Using a weighted k-nearest neighbor (k-NN) algorithm, 11 different sitting
postures could be recognized with an average accuracy of 92% across 36 individuals.

The results of previous studies [18–25] suggested that low-cost pressure sensors can
possibly serve as the main or complementary part of a monitoring system to recognize
different in-chair sitting postures with considerable accuracy. Although promising, it
remains unclear if these methods are also valid for the monitoring of in-vehicle driver
postures. Apparently, driver’s postural variation is certainly not as large as that of office
chair users due to more restrained in-vehicle space and postural requirement for operating
driving control commands. Monitoring small postural change (e.g., trunk rotation) is
more challenging. More importantly, in-vehicle posture monitoring requires real-time
performance, which is not necessarily important in the office environment. In addition,
the sensor numbers and locations varied from study to study [18–25]. It seems that the
appropriate number of sensors and their position are dependent on the types of chairs and
the postures of interest.

Following our previous work [16], this study aimed to find a cost-effective solution
for driver posture monitoring using only pressure sensors. Our main contributions are
twofold. On one hand, more pressure feature candidates are extracted from the segmented
BPD for capturing the movement of the driver’s local body parts. On the other hand, we
propose a sampling method to design new pressure sensors with a lower resolution. We
show that the number of sensors can be significantly reduced while keeping considerable
posture recognition accuracy.

2. Materials and Methods
2.1. Data Collection

The experimental data from the previous work [16] were used for this study. Figure 1
shows an overview of our driver posture dataset. Here, we briefly review the data
collection process.

Twenty-three differently sized males and females participated in our experiment. They
were asked to perform 42 in-vehicle tasks, including primary driving tasks (e.g., braking,
switching gear), secondary driving tasks (e.g., answering phone call, drinking coffee),
non-driving-related tasks (e.g., reading books, sleeping), and general driver body actions
(e.g., trunk rotation, arm flexion), on an experimental driving mockup. The standard
posture (upright looking forward, right foot on the accelerator pedal, and left foot on the
floor) was taken as both the initial and the final postures of each task.

The postural measurement (Figure 1) consisted of image flows from depth and RGB-D
cameras (25 fps), motion capture data (mocap) by the VICON system (50 fps), and BPD data
(25 fps) from two Xsensor pressure mats on the seat pan and backrest. The data acquisition
process was electronically synchronized. The mocap data were used to reconstruct the joint
angles and joint positions and served as the ground truth for data analysis.
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Figure 1. Driver posture dataset.

2.2. Data Analysis
2.2.1. Definition of Posture Classes

The reconstructed driver postures (Figure 2) were classified them into nine classes in
our previous work [16] by concurrently considering trunk and foot positions. In the present
work, we define postural classes by body part, making it possible to select more relevant
pressure features for recognizing the posture of the trunk, as well as the left and right
feet. The posture class definition scheme is illustrated in Figure 3. The trunk posture was
characterized by three trunk angles (rotation, inclination, and lateral tilt) with respect to the
standard trunk position (TP0) at the beginning of each task. By analyzing the trunk angles,
four additional trunk posture classes (TP1 to TP4) were defined with noticeable deviations
from TP0 in terms of rotation, inclination, or lateral tilt. For the right foot, three classes
(RFP0—right foot on accelerator pedal, RFP1—right foot on brake pedal, and RFP2—right
foot on floor) were defined, while two classes (LFP0—left foot on floor and LFP1—left foot
on clutch) were defined for the left foot.
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Figure 3. Definition of posture classes for trunk, right foot, and left foot.

To reduce data redundancy and overfitting risk of the classifiers, an intra- and inter-
motion filter was applied to remove similar postures of the same participant. Two trunk
postures were regarded as different if one of the three trunk angles was higher than 3◦. Two
right-foot positions were regarded as different if the Euclidean distance between the foot
centers was bigger than 2 cm. The same rule applied to the left foot. The filtering process
was independently performed for each body part. Finally, 3999 trunk postures, 8024 right-
foot postures, and 5216 left-foot postures were extracted from the experimental dataset.

2.2.2. BPD Feature Extraction and Evaluation

According to the measured contact areas, 42 by 44 effective cells (1.27 × 1.27 cm2

for each cell) for both the seat pan and the backrest mats were determined. As in our
previous work [16], the whole sensing area was divided into 12 (B1–B12) and eight (S1–S8)
subareas for the backrest and seat pan, respectively (Figure 4) and 44 pressure parameters
were defined. In the present work, we extended this feature collection to 200 candidates
(Table S1, Supplementary Materials) by considering not only the global areas (B and S) and
individual subareas, but also the regional areas composed of multiple adjacent subareas.
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by the respective peak pressure.

As relative features with respect to the standard driving postures showed better predic-
tion than absolute features from our previous study [16], only relative pressure parameters
were used to evaluate the importance of pressure features using the OOB error estimation
method proposed in [17] and to train the respective classifier for posture recognition.

2.2.3. Posture Classification and Evaluation

In addition to the RF classifier [26], four other supervised machine-learning techniques,
namely, support vector machine (SVM) [27], multilayer perceptron (MLP) [28], k-nearest
neighbors (k-NN) [29], and naïve Bayes (NB) [28] were compared to find the best one for
driver posture classification. The classifiers were implemented in Maltab 2020a, and their
configurations are listed in Table 1.

Table 1. Summary of configurations of classifiers.

Classifier Parameters Value

RF Number of variables to sample 10
Maximum number of splits 200
Predictor selection criterion “interaction curvature”

Other parameters Default

SVM Model error-correcting output code multiclass
Kernel function “rbf”

Kernel scale “auto”
Standardize true

Other parameters Default

MLP Number of hidden layers 512
Size of mini batch 300

Optimizer “adam”
Maximum number of epochs 40

Other parameters Default

k-NN Number of neighbors 3
Other parameters Default

NB Data distributions Multivariate multinomial distribution
Other parameters Default
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In order to objectively evaluate the generalization capability of a classifier, LOO cross-
validation was performed, where the data of all participants except one were used for
training the classifier and the excluded one was used for validation. Iterating this procedure
for each participant resulted in 23-fold cross-validation.

To quantify and evaluate the classification accuracy, the F1 score (a harmonic mean
of precision and recall) was calculated from the confusion matrix. The precision (PREC) is
referred to as the proportion of data samples that the classifier predicts true actually are
true (Equation (1)), while the recall (REC) is referred to as the ability to predict the true
results given the data samples of a specific class (Equation (2)). As opposed to the accuracy
which is simply calculated as the number of all correct predictions divided by the total
number of data samples, the F1 Score (Equation (3)) takes both false positives and false
negatives into account and is, therefore, usually more useful, especially when the classes
are unevenly distributed.

PREC =
TP

TP + FP
, (1)

REC =
TP

TP + FN
, (2)

F1 Score =
2·PREC·REC
PREC + REC

, (3)

where TP denotes the true positives, FP denotes the false positives, and FN denotes the
false negatives.

2.2.4. Pressure Sensor Layout Designs

To test if the number of pressure sensors could be reduced to overcome the price
barrier, posture classification was performed on the basis of five newly designed pressure
mats (D1–D5, Figure 5) by lowering the number of sensing elements compared to the
original mats. These new layouts were designed using a uniform sampling method for
both seat pan and backrest pressure mats (Figure 5). D1 was equipped with 13 sensors
(one at each corner, one at the middle of each side, one at the center of each quadrant, and
one at the center of the whole mat). Based on D1, we added extra points to the center
of the hypotenuse of each triangle formed by three adjacent key points to generate D2
(25 sensors). In a similar manner, the new designs D3 (41 sensors), D4 (81 sensors), and D5
(145 sensors) were obtained by adding extra key points to the previous one. We preferred
a uniform sampling method in an attempt to keep the features identified from initial
high-resolution mats.

The new layouts were then overlaid onto the original full mats to extract pressure
values. Note that some of the key points on the new layouts may not exactly lie at the
center of one cell on the original mat. In these cases, the pressure value was read from the
closest cell relative to the key point. After extracting the pressure values, an interpolation
method based on inverse distance weighting [30] was performed to reconstruct the BPD.
Finally, the important features identified for the original full mats were recalculated from
the reconstructed BPD to train and test the classifiers. The posture classification accuracy
based on the original pressure mats was regarded as benchmark. To determine if there
was a significant difference between the results from the newly designed layouts and the
original full mats, a paired t-test was performed.
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3. Results
3.1. Evaluation of Importance of Pressure Parameters

Using the average F1 score across all posture classes from each body part as a metric,
the best combination of pressure features for each RF classifier was determined. Figure 6
shows that the classifier RF-trunk achieved the highest prediction accuracy (91%) when only
27 important features were used, and the accuracy was notably compromised when more
than 40 features were involved. The prediction accuracy of RF-leftFoot plateaued (93%) at
around 24 important features and remained stable thereafter. For classifier RF-rightFoot, the
potential best accuracy (around 74%) was first approached when 22 important features were
selected. Note that the use of more features did not necessarily improve posture recognition
scores. The selected important features are given in Table S2 (Supplementary Materials).
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3.2. LOO Cross-Validation of the Posture Classifiers

With the best combinations of pressure features extracted from the original pressure
mats, the F1 scores from the 23-fold cross-validation of different classifiers are summarized
in Table 2. The RF classifier outperformed the other four classifiers regardless of which
body part or posture class was used. Using the three RF classifiers, F1 scores ranged from
85% to 98%, from 90% to 97%, and from 61% to 92% for the trunk, left-foot, and right-foot
posture classes, respectively. An average F1 score of 86% across the 10 posture classes was
obtained. The confusion matrices of the three RF classifiers are given in Figure 7. Among
the three body parts, the main confusion was determined for the classification of right-foot
postures. As shown in Figure 7b, RFP0 (right foot on accelerator pedal) was occasionally
misclassified as RFP1 (right foot on brake pedal) or RFP2 (right foot on floor).

Table 2. Classification results with the best combination of features based on original pressure mats.

Class RF NB SVM MLP k-NN

TP0 0.98 0.96 0.89 0.90 0.96
TP1 0.94 0.87 0.75 0.77 0.82
TP2 0.91 0.77 0.84 0.82 0.84
TP3 0.86 0.60 0.42 0.51 0.77
TP4 0.85 0.61 0.51 0.70 0.64

LFP0 0.97 0.94 0.86 0.91 0.95
LFP1 0.90 0.88 0.84 0.86 0.80
RFP0 0.92 0.85 0.82 0.83 0.84
RFP1 0.70 0.62 0.57 0.59 0.65
RFP2 0.61 0.53 0.50 0.53 0.57

Average 0.86 0.76 0.70 0.74 0.78
Time * (ms) 45 33 138 0.25 28

* Total prediction time for the three body parts for each frame.
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3.3. Evaluation of the Proposed Pressure Sensor Layouts of Lower Resolution

Table 3 shows the F1 scores of posture classification with the RF classifiers for the five
proposed pressure sensor layouts with different resolutions. Significant differences were
found between the sensor layouts (D1, D2, D3, D4) and the original pressure mats. For D5
(145 × 2 sensors) with the highest resolution among the new layouts, only the recognition
of TP4, LFP1, RFP1, and RFP2 showed significant difference, and the F1 scores were close
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to those achieved using the original pressure mats. Using the layout D5, an overall F1 Score
of 85%, slightly lower than 86% for the original pressure mats, was obtained. Meanwhile,
the sensor number was reduced by 92% ((44 × 42 × 2 – 145 × 2)/44 × 42 × 2), suggesting
the possibility of using lower-resolution pressure mats for driver posture monitoring.

Table 3. F1 score for each posture class based on new sensor designs.

Layout TP0 TP1 TP2 TP3 TP4 LFP0 LFP1 RFP0 RFP1 RFP2

D1 0.89 ** 0.72 ** 0.62 ** 0.64 ** 0.05 ** 0.89 ** 0.64 ** 0.91 ** 0.29 ** 0.47 **
D2 0.92 ** 0.69 ** 0.61 ** 0.67 ** 0.10 ** 0.90 * 0.69 ** 0.91 ** 0.22 ** 0.50 **
D3 0.97 ** 0.91 * 0.89 * 0.84 ** 0.57 ** 0.94 * 0.80 ** 0.93 * 0.42 ** 0.54 *
D4 0.98 * 0.91 * 0.85 * 0.83 0.68 ** 0.94 0.81 ** 0.92 0.56 ** 0.53 **
D5 0.98 0.94 0.88 0.85 0.83 * 0.95 0.86 * 0.93 0.68 * 0.58 *

** p < 0.01, * 0.01 ≤ p < 0.05.

4. Discussion and Conclusions

The aim of this study was to provide insights into the development of a reliable yet
pragmatic driver posture monitoring system using only pressure sensors. Results showed
that the number of sensing elements could be reduced by 92% from the original pressure
mats by using RF classifiers at the expense of a slight loss in posture recognition accuracy.
This result is expected because the pressure features were extracted from regional sensing
areas instead of individual sensing elements. Pressure features are not too sensitive to the
mapping resolution unless too few sensors are available.

Compared to our previous work [16], we proposed a more systematic method for
extracting and evaluating important pressure features. As opposed to the use of the 15
important features by the single RF classifier in the previous work, this work selected 40,
24, and 22 important features to classify trunk postures, left-foot postures, and right-foot
postures, respectively. Thanks to the enrichment of important pressure features and the
individualized posture recognition for each body part, we obtained an average F1 score
of 86% across 10 posture classes by using the original pressure mats and RF classifiers.
Even with the new pressure design D5 with only 145 × 2 sensing elements, an average F1
score of 85% was achieved, higher than the average F1 score of 80.5% across nine posture
classes achieved in the previous work. Overall, the different trunk postures could be
recognized with considerable accuracy (91% vs. 90% by original mats and new design
D5). The main errors are still related to the recognition of two right-foot postures, RFP1
and RFP2, for which relatively low F1 scores of 70% and 61%, respectively, were obtained
even when using the full original pressure mats. This is because foot movements (e.g., leg
extension and lateral movement) are much more subtle than trunk movements. Therefore,
the pressure variations caused by the former are much smaller than the latter. Another
factor leading to low recognition performance of foot posture recognition is related to the
behavioral difference across individuals, which was addressed in our previous work [16].
To overcome this issue, more data need to be collected to refine foot position classes, while
the use of additional pressure sensors on the floor could also be of help.

When it comes to body pressure monitoring system, one attendant issue concerns the
“BMI divergence”, which has been repeatedly mentioned in previous studies [19,21]. To
investigate the effects of participant BMI on monitoring performance using our proposed
system, we built a regression model between classification accuracy and BMI. However, no
clear relationship was found, suggesting that the proposed system has robust performance
across drivers of different body sizes. This could be, in large part, attributed to the relative
features used by this study, which could reduce the effects of body size, as well as seat
configuration, on the BPD.

This study also compared the performance of different machine learning methods
(SVM, MLP, k-NN, and NB) for driver posture classification. The results revealed that the
RF classifier outperformed the others and, therefore, is a suitable choice to deal with our
pressure features.
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Finding the optimum design of pressure sensors for driver posture monitoring was not
the main focus of this study. This is a complex task requiring not only domain expertise but
also trial and error. To test if high posture recognition accuracy could be maintained when
reducing the resolution of the pressure sensors, we used a uniform sampling method. The
motivation behind this choice is mainly related to our pressure feature engineering process,
which was performed on the whole BPD from seat pan and backrest. Such a sampling
method enabled reconstructing the BPD by interpolation. The use of interpolation, on the
other hand, enables easily implementing the proposed sensor designs to new driver seat,
because the exact match in terms of sensor location is not necessarily required.

According to the results revealed by the current study, several possible facets could
be identified for exploring better pressure sensor layouts in terms of posture recognition
performance and cost. First of all, the desirable layout is dependent on the posture classes
to be recognized. As shown in Table 3, the accuracy of postural classification was affected
differently by the reduction in sensor numbers. In particular, the worst case was found
for TP4, which was quite similar to TP1 with a slight difference in the range of lateral tilt.
The similarity between these two classes could explain the poor results obtained for TP4.
Clearly, merging TP1 and TP4 as one class would allow more space by reducing the sensor
number at the sacrifice of more distinctive posture descriptions. Furthermore, if one is
only interested in distinguishing abnormal posture (trunk out of position, both feet on
floor) from normal posture (standard trunk posture, right foot on the pedals, left foot on
the floor or the clutch), the potential for reducing the sensor number will also become less
constrained because fewer classes will facilitate the classification task.

Secondly, the pressure feature selection process could be further improved for better
posture classification given a new layout with fewer sensors. In the current work, the same
best pressure features were adopted for evaluating all sensor layouts. With a reduction in
the number of sensor elements, the order of the importance of these feature candidates may
be affected. New best pressure features may, thus, need to be reselected from the feature
candidates calculated from the new pressure sensor design.

Thirdly, the sensor design on the backrest and seat pan was treated identically in this
work. As indicated by the important features in Table S2 (Supplementary Materials), the
BPDs on the backrest and seat pan have different impacts on the posture recognition of each
body part. Therefore, further effort is needed to individually investigate the suitable sensor
number for the backrest and seat pan and to find the best combination of sensor designs.

In summary, this study demonstrated the feasibility of using only a BPD measurement
system with fewer sensor elements for driver posture monitoring and suggests research
directions for better pressure sensor designs to further reduce the economic cost. The
proposed method also provides insights into the development of a cost-effective pressure
sensors based system for monitoring in-chair activities in the office environment.

However, this study was subject to some limitations. First, the experiment was per-
formed in a laboratory. In real driving conditions, the unevenness of the road, vehicle
acceleration, and vibrations may challenge the robustness of our system. To this end, an
extra inertial measurement unit (IMU) may be needed to compensate for vehicle accel-
eration and noise [15]. Second, the feasibility and effectiveness of the proposed method
on different driver seats in different vehicles is somewhat unknown. Therefore, further
validation is needed. In addition, using the proposed BPD measurement system alone
cannot provide a holistic description of the driver’s posture. This can be supported by
recent studies [22–25], where the pressure sensors served as a complementary part of the
monitoring systems. Last but not least, the driver’s head posture and hand positions were
beyond the detection range of pressure sensors on the seat. Recently, the advancement of
computer vision technologies has allowed capturing driver body postures in detail [31].
However, researchers are still struggling with the posture recognition errors caused by
body occlusions in the field of view. One possible solution is to build conditional posture
recognition models based on some latent variables such as the trunk rotation relative to the
camera [32]. In this circumstance, the trunk postures predicted by pressure sensors could
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be used as a priori knowledge to help the camera to achieve better performance. Inspired
by previous studies [22–25,32], future work will be extended to use cameras in conjunction
with pressure sensors to monitor driver posture and, of course, to test our method on a
real road.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21103346/s1: Table S1: Pressure features extracted from segmented pressure mats; Table S2:
Best feature combinations used by classifiers RF-trunk, RF-leftFoot, and RF-rightFoot.
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