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Abstract: Though current remote sensing technologies, especially synthetic aperture radars (SARs),
exhibit huge potential for soil moisture content (SMC) retrievals, such technologies also present
several performance disadvantages. This study explored the merits of proposing a novel data
fusion methodology (partly decision level and partly feature level) for SMC estimation. Initially,
individual estimations were derived from three distinct methods: the inversion of an Empirically
Adapted Integral Equation Model (EA-IEM) applied to SAR data, the Perpendicular Drought Index
(PDI), and the Temperature Vegetation Dryness Index (TVDI) determined from Landsat-8 data.
Subsequently, three feature level fusions were performed to produce three different novel salient
feature combinations where said features were extracted from each of the previously mentioned
methods to be the input of an artificial neural network (ANN). The latter underwent a modification
of its performance function, more specifically from absolute error to root mean square error (RMSE).
Eventually, all SMC estimations, including the feature level fusion estimation, were fused at the
decision level through a novel weight-based estimation. The performance of the proposed system
was analysed and validated by measurements collected from three study areas, an agricultural field
in Blackwell farms, Guildford, United Kingdom, and two different agricultural fields in Sidi Rached,
Tipasa, Algeria. Those measurements contained SMC levels and surface roughness profiles. The
proposed SMC estimation system yielded stronger correlations and lower RMSE values than any of
the considered SMC estimation methods in the order of 0.38%, 1.4%, and 1.09% for the Blackwell
farms, Sidi Rached 1, and Sidi Rached 2 datasets, respectively.

Keywords: soil moisture content; data fusion; integral equation model; Sentinel-1; perpendicular
drought index; temperature vegetation dryness index; Landsat-8; feature level fusion; artificial neural
network; decision level fusion

1. Introduction

A comprehensive understanding of a variety of hydrological processes and agricul-
tural applications requires accurate surface soil moisture content (SMC) level estimations.
SMC has a key role in global applications such as climate change studies, as well as con-
tributing to the determination of a variety of land-atmosphere interactions [1,2]. SMC is
also a key factor for medium-to-small level applications such as natural resources man-
agement, drought assessments [3], and, especially, agricultural practices like irrigation
scheduling [4].

Given the inherent importance of SMC, a multitude of investigations have been
pursued in the literature to design retrieval methodologies using different sensing plat-
forms [5,6]. Direct in situ measurements of SMC provide the most accurate estimations,
but that accuracy is expensive in terms of time and effort, especially considering that dis-
crete measurements are point-based, which makes them exclusively specific to particular
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locations and does not offer a realistic depiction of the spatial distribution and variability
of soil moisture [6]. These limitations can be overcome by the use of remote sensing [7].

Remote sensing is capable of offering the continuous spatial and temporal coverage of
SMC at all levels, and mission-purposed satellites like Soil Moisture And Ocean Salinity
(SMOS) [8] and Soil Moisture Active Passive (SMAP) [9] are excellent examples of such
coverage [10]. Indeed, such satellites provide accurate SMC estimations (4% error) at
a depth of 0–5 cm every three days [11]. However, their respective spatial resolutions
(30–50 km for SMOS and 10–40 km for SMAP) render them impractical at the regional
level [12]. Conversely, small scale agriculture or family farms (<2 ha), which constitute
75% of the agricultural land of the world [13], require a different set of sensors with a
significantly better spatial resolution, namely synthetic aperture radars (SAR) [14], thermal
infrared imagers, and multispectral imagers [15].

High-resolution SAR imagers possess night and day imaging capability, are indepen-
dent of weather conditions, and have a surface penetration ability that varies from a few
centimetres (for sensors operating at the X-band) to tens of centimetres (for sensors at the
L-band) in dry soil conditions [16]. The backscattered radar signal is directly influenced by
the soil moisture content via the dielectric constant of the soil and is inherently sensitive to
the soil roughness and texture [17]. The relationship of the dielectric constant and SMC
has been described as a polynomial [18]. Numerous models of different natures success-
fully and consistently use this relationship, whether they are semi-empirical like those
of Oh [19] and Dubois [20] or theoretical like the Integral Equation Model (IEM) [21,22].
The IEM has been exhaustively used for the retrieval of soil moisture content and sur-
face roughness parameters [23]. However, it exhibits a questionable performance when
the areas of interest are characterized by medium-to-intense vegetation cover, which is
responsible for a pronounced reduction in radar response sensitivity to SMC in such areas,
especially at very short radar wavelengths [24]. On the other hand, SMC estimations using
multispectral and thermal infrared synergies are not the least affected by the presence of
partial or even full vegetation cover [25]. The designs of these synergies are based on the
strong correlation between surface radiant temperatures and the distribution, as well as the
variability of SMC levels and vegetation [26]. Therefore, surface radiant temperatures are
often represented by land surface temperature (LST) and vegetation cover intensity [27].
LST is derived from atmospherically corrected thermal infrared images (with wavelengths
ranging from 8 to 13 microns), whereas vegetation cover intensity can be represented by a
variety of vegetation indices (VI), which are often derived from algebraic combinations
of the visible red (380–760 nm) and near-infrared (760 nm−1 microns) [28]. The authors
of [29] suggested that the relationship between LST and VI may offer an indication of
SMC levels. When VI/LST data points are plotted in a two-dimensional scatter plot, a
triangular/trapezoidal feature space is formed. The latter is key for the determination of
the extreme boundaries (dry/wet edges) necessary for the calculation of an index called the
Temperature Vegetation Dryness Index (TVDI) that is characterized by a linear relationship
with SMC [30]. However, in the case of variable atmospheric conditions, the performance
of the TVDI may be at risk of uncertainty and subjectivity, not to mention the limitations
imposed by the shortcomings of current satellite technology used in this synergy, especially
coarse temporal resolution and susceptibility to cloudy conditions [27].

Since all sensors and methods discussed above produce results with variable degrees
of success under different conditions, data fusion techniques have been proposed as a
potential solution. For optimal SMC estimations in terms of accuracy, information is
extracted from multiple sensors and merged instead of inferring SMC estimations from a
single sensor [31]. The goal of this research work was to address the performance issues of
the above-highlighted SMC estimation methods by designing a system with reconfigurable
capabilities for SMC retrieval through the exploitation of multiple EO sources and methods.
The aim was to design a new system that incorporates a multi-level data fusion to achieve
an SMC determination with optimal accuracy. The proposed system ensures the retrieval
of SMC levels using satellite data via:
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• The inversion of an updated version of the IEM.
• The use of a multispectral index called the Perpendicular Drought Index (PDI).
• The exploitation of the TVDI using a synergy of thermal and multispectral images.
• A feature level fusion based on different combinations of features.
• A decision level fusion where all achieved estimations are considered in a weight-

based system.

The eventual goal was to achieve better accuracy of SMC estimation with a fusion
scheme than that of each method separately.

The paper is organized as follows: Section 2 illustrates the data and proposed method-
ologies, Section 3 provides a detailed description of the study areas, and Section 4 offers an
analysis of the achieved results. Lastly, the research work is completed with conclusions.

2. Methodology

This section offers a detailed view of each of the indices and models involved in the
data fusion scheme, namely the inversion of IEM, the TVDI, the PDI, the proposed feature
level fusion, and, finally, the novel architecture for SMC estimation based on a decision
level fusion scheme of the methods above.

2.1. The Considered Integral Equation Model

SAR is a popular active microwave technology with relevant potential for SMC
and surface roughness parameter retrieval at regional scales [32,33]. In addition to SMC
levels, a variety of other factors contribute to the backscattered radar signal, from surface
characteristics like the surface roughness profile, the mineralogical composition of the soil,
and the dielectric features of the soil to radar characteristics like the incidence angle (from
nadir), the operating frequency of the radar sensor, and polarisation [24]. Moreover, the soil
dielectric features or dielectric constant (εs) exhibit a polynomial relationship with SMC,
and other dependencies have been found between SMC and the mineralogical composition
of soil and SAR frequency [18,34].

The soil moisture estimation performed in this study was based on the inversion of
the single scattering contribution to the radar cross-section as modelled by the IEM [23].

The IEM is a theoretical model for backscattered radar signal representation with an
established ability in estimating SMC and surface roughness parameters, as demonstrated
in numerous studies [35–39]. The IEM has a wide validity range for a variety of surface
roughness values commonly found in agricultural surfaces (satisfying the k·s≤ 3 condition,
where k is the wavenumber and s is the root mean square (RMS) of surface heights) [40].

Equations (1)–(9) represent the backscattering coefficient of the surface contribu-
tion [23]:
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where σ0
pp is the backscattering coefficient, with pp signifying the polarisation state (co-

polarized SAR data are then used); θi is the incident angle; kz = kcosθi; kx = ksinθi; Rh and
Rv are the horizontally and vertically polarized Fresnel reflection coefficients, respectively;
εs and µr are the relative permittivity and permeability, respectively, of the soil; and Wn

is the Fourier transform of the nth power of the surface correlation function ρ(x, y). The
latter presents an exponential distribution (Equation (8)) for low surface roughness values
and a Gaussian (Equation (9)) for high surface roughness values [1]. For one-dimensional
surface roughness profiles, the correlation functions are expressed in Equations (8) and (9):

ρ(x) = e−
|x|
l (8)

ρ(x) = e−
x2

l2 (9)

where l is the correlation length.
The roughness of a surface influences the backscattered signal from that surface,

justifying the importance of the correct identification of a model for the surface roughness
profile [2] and level of roughness. The Rayleigh criterion is frequently used to establish
the degree of smoothness of a given surface. A surface is considered rough if it satisfies
Equation (10):

s >
λ

8cosθ
(10)

where λ is the wavelength of the incoming electromagnetic radiation [3].
The RMS height can be calculated using Equations (11) and (12):
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where N is the number of points and Z is the mean of heights [4].
As for the approximation of the correlation length l, it is obtained once the normalised

autocorrelation function ρ(ξ) is defined. The latter is calculated using Equation (13):

ρ(ξ) =
∑

N−j
i=1 Zi Zi+j

∑N
i=1 Z2

i
(13)

The surface correlation length l is the horizontal distance over which the surface
profile is auto-correlated with a value larger than 1/e [5].

Due to the mathematical complexity of IEM, alternative methods are used to invert it
to calculate SMC, mostly commonly artificial neural networks (ANNs) [6]. ANNs have an
established ability to invert IEM for SMC and roughness parameter retrieval, as investigated
in numerous studies [1,7–9]. An ANN is a parallel distributed information processing
structure composed of processing elements interconnected together with unidirectional
signal channels named connections or weights [10]. The ANN used for the IEM inversion
is a multi-layer perceptron (MLP) [6]. An MLP consists of an input layer, one or many
hidden layers, and an output layer, and the training algorithm uses ground truth data to
minimise error [10,11]. The IEM inversion does suffer from some performance issues due
to several factors summarised by the following bullet points:

• Speckle is an interference characterised as multiplicative noise typical of coherent
sensors [12]. Consequently, such interference leads to a granular appearance of SAR
images [13]. Filters can consequently be applied to obtain better soil moisture content
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retrieval, which comes at the expense of soil moisture heterogeneity in the filtered
pixels [13].

• The effect of SMC on radar signals is less pronounced when SMC levels exceed 35%,
especially at the HH polarisation [14].

• The dielectric behaviour of the soil is substantially affected by the distribution of grain
size. The latter determines the amount of free space for available water within the soil,
which emphasises the significance of the accurate identification of the mineralogical
composition of that soil [15].

• The accuracy of IEM-based SMC retrieval is largely influenced by the characterisation
and accuracy of the measurement of surface roughness parameters [5]. However, the
authors of [16,17] proposed semi-empirical calibrations of RMS height and correla-
tion length to improve the characterisation of surface roughness parameters, which
produced better results.

• The revisit time of high-resolution SARs is still inadequate, which makes tracking
SMC temporal variations difficult [18].

• Susceptibility to medium-to-thick vegetation cover, which consequently causes vol-
ume scattering, has a direct and negative impact on the accuracy of SMC retrieval [19].

• Due to the limitations described above, alternative methods to estimate SMC us-
ing a different group of sensors, namely multispectral and thermal remote sensors,
were explored.

As will become clearer later, for one of the areas in the case study, the measurements
collected to estimate the surface roughness parameters showed that the condition (k·s ≤ 3)
was not satisfied, which means the IEM, as described above, could not be applied in princi-
ple. Therefore, the following measures were necessary to increase the IEM validity range:

• The inclusion of a semi-empirical calibration parameter Lopt [20].
• The implementation of an updated version of the IEM called the Empirically Adapted

Integral Equation (EA-IEM) in [21].

2.2. The Updated Version of the IEM

In [20], the authors introduced a semi-empirical calibration of IEM by replacing the
estimation of correlation length l with a calibration parameter called Lopt. It was done due
to the fact the correlation length is the most difficult parameter to measure, especially if
the used profilometers are 1–2 m long (which produces an error of 50%) [22]. Therefore,
Lopt was suggested as a forcing parameter that accounts for both a better approximation
of l and any inaccuracies of the IEM model. Furthermore, plotting the IEM as a function
of l for a given configuration, specifically, a configuration consisting of frequency (s),
SMC, polarisation, and incidence angle, revealed that its corresponding radar measured
backscattering coefficient had two possible solutions, Lopt1 and Lopt2, and both ensured a
good agreement between backscattering coefficients produced by the radar and IEM model.
The results of the fitting process suggested that Lopt2 ensures a more correct representation
of the physical behaviour of the backscattering coefficient as a function of s, especially
if the correlation function is Gaussian [17]. Since all the correlation functions related to
this study were Gaussian, the coefficients of Lopt2 were considered and are referred to as
Lopt henceforth.

Moreover, no further modifications of the IEM model were necessary, which made
this a semi-empirical calibration. For a given frequency, Lopt is dependent on the RMS of
the surface heights, incidence angle, and polarisation, and the parameters relevant to the
configuration of this research work are expressed by Equation (14) [8]:

Lopt(s, θi, VV) = 1.281 + 0.134(sin0.19θi)
−1.59s (14)

where s is the RMS of surface heights, θi is the incidence angle at pixel i, and VV is
the polarisation.



Sensors 2021, 21, 3457 6 of 32

Lopt demonstrates a better agreement between radar signal calculated from the IEM
and SAR data at the C-band (at 5.6 cm wavelength) in both HH and VV polarisation, as
well as incidence angles from 20◦ to 48◦ with an improved validity range of (s < 4 cm) [17],
which can produce a more accurate IEM inversion with a decreased bias and root mean
square error in terms of SMC estimation.

This version of the IEM [23] is used independently from ground truth measurements.
The IEM is calculated for a specific range of the parameters discussed above, then the
results are fed to an ANN. The resulting network is trained on simulations then validated
by ground truth measurements. However, in this research, the authors proposed using
the EA-IEM [21] to directly infer the dielectric constant from remotely sensed SAR data
instead of using the empirical model of [24]. This work focused especially on the equations
related to VV-polarisation since this was the only co-polarized configuration available in
the Sentinel-1 datasets. The idea was to directly infer the dielectric constant from the active
microwave backscattering coefficient knowing that [21]:

Fv =
σ0

vv

k2

2 exp(−2k2
zs2)∑∞

n=1
(2skz)

2nWn(−2kx ,0)
n!

(15)

εr =
1(

0.5−
(

Fvs0.05sin3.35(θ+1.1)(Lopt−0.049)[0.042+0.06sin(θ−1)]

106exp(−1.996s2k2
z)tan0.46(θ+0.32)

) 5
27
) 1

cos (1.02θ−0.2)

− 3 (16)

where Fv in Equation (15) is calculated using the calibrated σ0
vv extracted from Sentinel-l and

the dielectric constant εr in Equation (16) is calculated for the Gaussian surface correlation
function due to the rough nature of the surface height measurements, where the correlation
length was replaced by Lopt.

Despite the measures described above, SMC estimation through the inversion of the
EA-IEM still has no parameters to account for the vegetation effect and high SMC levels
(>35%) on the radar signal. These are the reasons why the authors of this study chose to
add relevant parameters suitable for this particular purpose. The parameters in question
are the PDI and the TVDI.

2.3. Perpendicular Drought Index

Incident radiances in the violet, blue, and red wavelengths are potently absorbed by
vegetation lamina tissues, whereas near-infrared (NIR) wavelengths are highly reflected.
High vegetation cover intensity signifies small reflectance in the red band and high re-
flectance in the NIR bands [25]. Since the absorption of the red range is rapidly saturated,
the increase of vegetation cover intensity can only be reflected by the increase of the re-
flectance in the NIR region. The reflectance of bare soil is typically high in the red-to-NIR
spectral region; however, the presence of water content in bare soil results in a decrease in
said reflectance, especially in the NIR domain [26]. Numerous investigations have found
that plotting atmospherically corrected red band pixels against their NIR counterparts
results in a triangular spectral feature space that can represent vegetation cover and SMC
conditions [25,27,28], as depicted in Figure 1.
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Figure 1. NIR/red triangular feature space. Adapted from [27]. Reprinted with permission from
ref. [27]. Copyright 2011 Elsevier Ltd.

The soil line (bare soil) can be expressed using Equation (17) [26]:

RNIR = MRred + I (17)

where Rred and RNIR are surface reflectance derived from red and NIR bands, respectively,
and M and I are, respectively, the slope and intercept of the soil line in the NIR–red feature
space [28].

In [26], it was suggested that any mathematical operation reinforcing the contrasts
between NIR and red could be used to indicate the vegetation surface drought status and
discriminate bare soil pixel information from that of vegetated pixels. In the same paper,
the concept of an orthogonal axes system, above the aforementioned triangular feature
space and represented by an index named the PDI, was proposed. Indeed, the observation
of Figure 2 is necessary to fully comprehend the concept of the PDI.

Figure 2. Definition of the PDI. Adapted from [26]. Reprinted with permission from ref. [26].
Copyright 2006, Springer-Verlag.
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Figure 2 illustrates the concept of PDI where:

• AD line is a representation of the change in terms of vegetation cover intensity from
full (A), to partial (E), to bare soil in (D).

• BC is a line depicting SMC levels from a wet surface (B) and semi-arid (D) to a
completely dry surface in (C). BC is also called the soil line because it denotes the
direction of drought severity.

• F is the line perpendicular to the soil line while dissecting the coordinate origin and
parallel to the AD line.

• The PDI is the vertical distance from any given pixel point to line F, and the mathe-
matical formula for the PDI is expressed through Equation (18) [26]:

PDI =
1√

M2 + 1
(Rred + MRNIR). (18)

The PDI can be a viable descriptor of SMC levels and distribution. In the NIR/red
triangular feature space, points far from the normal line F represent dry surfaces and points
near the same line correspond to wet surfaces [28]. The PDI is normalized, and it varies
between 0 and 1, with 0 designated to low water stress and 1 to extreme water stress [26].

Since the PDI is dependent on NIR–red reflectance, any variability induced by the
biophysical features of the soil, such as soil surface colour, vegetation species, and vege-
tation conditions, has a palpable effect on the index, so each study area requires a local
calibration to determine its correspondent coefficient M (slope of the soil line) [26,29].
The PDI produces its best performance at low vegetation presence/bare soil applications.
Conversely, in areas with variable vegetation cover intensities from bare soil to densely
vegetated surfaces, it encounters a decrease in performance in terms of correlation, and it
has inherent susceptibility to surfaces with non-flat topography, illumination factors, and
cloud presence [28].

Despite the shortcomings discussed above, the PDI is still an effective indicator of
SMC levels because of its strong correlation to SMC. However, in this paper, an additional
index/model to counterbalance those limitations, along with the limitations imposed by
the IEM inversion, was investigated. The selected model was the LST/VI triangular feature
space or, more specifically, the TVDI.

2.4. Temperature Vegetation Dryness Index

The theoretical basis and biophysical properties of the LST/VI relationship have
culminated in an index: the TVDI. This index operates under the assumption that the
relationship between SMC levels, the intensity of fractional vegetation cover, and LST can
be expressed through a two-dimensional scatter plot of which data points formulate a
triangle/trapezoid shape [30,31]. Variations in SMC levels are modelled through plotting
surface temperature as a function of fractional vegetation cover, with the latter often
expressed by vegetation indices [32]. The difference in radiative temperatures between
soil and vegetation canopy can be sensed via LST. Evapotranspiration is another factor
that influences surface temperature through the energy balance at the surface [33]. The
available energy for sensible heating of the surface increases whenever there is a decrease
in evapotranspiration due to stomatal resistance to transpiration, which is an indication
of soil moisture levels [34]. Therefore, the modelling of fractional vegetation cover and
surface temperature facilitates the estimation of SMC for a different range of vegetation
intensities [35]. The determination of the TVDI via the LST/VI triangular space provides
surface SMC information, as depicted in Figure 3.
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Figure 3. Definition of the TVDI in the LST/VI feature space. Adapted from [30,32]. 1. Reprinted with permission from
ref. [30]. Copyright © 2001 Elsevier Science Inc. 2. Reprinted with permission from ref. [32]. Rights managed by Taylor
& Francis.

Figure 3 illustrates the concept of TVDI where:

• LST is the observed surface temperature (in Kelvin) at a random pixel.
• LSTmax is the regression line (least square) of the maximum surface temperatures

observation for each of VI values, and LSTmax represents the dry edge denoted
LSTmax = a1 + b1VI.

• LSTmin is the regression line (least square) of the minimum surface temperatures
observation for each of VI values, and LSTmin represents the wet edge denoted as
LSTmin = a2 + b2VI.

• a1 and b1 are, respectively, the intercept and the slope of the linear dry edge (LSTmax),
and a2 and b2 are, respectively, the intercept and the slope of the linear wet edge
(LSTmin).

• The TVDI is expressed by Equation (19):

TVDI =
LST − LSTmin

LSTmax − LSTmin
(19)

with the obvious meaning of variables.
TVDI values may range from 0 to 1, where 1 signifies the lowest levels of SMC and

0 indicates maximum evapotranspiration and water access (meaning high SMC levels).
In [30], the authors compared TVDI values to soil moisture levels from a simulation
produced by the MIKE SHE distributed hydrological model [36], determining that SMC
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and the TVDI have a relationship represented by a linear function (mv = xTVDI + y) that can
be easily calculated using linear regression (R2 = 0.7). Subsequently, different variations of
the TVDI were validated using in situ measurements in numerous investigations, yielding
promising results [37,38].

The performance of the TVDI can be subject to a few sources of error, which can
decrease the accuracy of its SMC retrieval, and those sources may cause few performance
issues such as:

• The spatial and temporal variability of SMC is diminished because of the poor spatial
and temporal resolution of the satellites pertinent to this model [38].

• The determination of the “triangle” from satellite data without huge data grids of
large scale areas may become subjective—any given region of interest may not be
spatially variable in terms of land surface conditions such as dry bare soil, wet bare
soil, vegetation exhibiting water stress, and well-watered vegetation [30]. This can
lead to difficulties in calculating an optimal dry and wet edge with generalisation
capabilities due to local specific factors such as vegetation species, topography, net
radiation, and cloud presence [31,39].

• Atmospheric effects and illumination effects (shadows) lead to the susceptibility of
LST estimation errors, in addition to the fact that the TVDI only accounts for SMC in
the top surface layer without any consideration of root zone SMC [35].

Despite the aforementioned limitations, the TVDI can still be considered a valid
indicator of SMC levels, making it a viable addition to the fusion scheme of the previously
discussed IEM inversion and the PDI. Its robustness for applications over large areas, as
well as its insensitivity to surface cover type [30], can be beneficial for the proposed SMC
estimation pipeline because it reduces any uncertainties brought about by the limitations
of IEM inversion and the PDI in intensely vegetated areas. With this purpose, the authors
of this paper opted to investigate whether the use of data fusion techniques, described in
the next paragraph, could successfully ameliorate SMC retrieval accuracy.

2.5. SMC Estimation Scheme Fusion

In this paper, a novel soil moisture content estimation system is proposed, and the
novelty of this system comes from the fusion aspect of the aforesaid estimations methods
and indices at the feature and the decision levels. This system gains reconfigurable abilities
via decision level fusion, which signifies that each method offers its independent estimation,
and, consequently, in case of the absence of one data source, the system is still able to
perform an estimation that is based on the other considered methods. Figure 4 illustrates a
flowchart of the different components of such a system.

The components of this system are regrouped by functionality to facilitate their de-
scription; the groups are pre-processing, PDI and TVDI determinations, feature level fusion
and fusion centre.



Sensors 2021, 21, 3457 11 of 32

Figure 4. The proposed soil moisture content estimation system.

2.5.1. Pre-Processing

All of the extracted EO data from Landsat-8 and Sentinel-1, respectively, were pre-
processed using Sentinel Application Platform (SNAP) [40].

Initially, SAR data underwent radiometric calibration, then Range Doppler Terrain
corrections, and finally multi-looking. Multispectral and thermal infrared datasets were
transformed from digital numbers (DNs) to Top Of Atmosphere (TOA) reflectance and
temperatures, respectively. Subsequently, the resulting SAR, multispectral, and thermal
infrared products were resampled to 30 m, which is both the spatial resolution of OLI and
the sampling distance of the ground truth SMC measurements points. The 30 m resolution
was a good compromise between the spatial resolution of TIRS (100 m) and the spatial
resolution of Sentinel-1, which is (20.4 × 24.5 m). After image resampling, all products
were co-registered. Then, the resampled co-registered MS image was used to calculate
the NDVI and the PDI and to formulate the LST/NDVI feature space scatterplot when
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combined with the resampled co-registered thermal infrared image. On the other hand,
the backscattering coefficient σ0 from the SAR product, along with the RMS height (s), the
calibrated parameter (lopt), and incidence angle θi, were used to calculate the simulated
backscattered coefficient, which was the product of EA-IEM.

2.5.2. PDI and TVDI Determinations

For the PDI, the slope of the soil line was obtained via the least-squares linear re-
gression of the co-registered resampled pixels of the red reflectance with the lowest NIR
reflectance extracted from the MS images.

As for the TVDI determination, the NDVI was calculated through the resulting re-
sampled MS images, and the LST was derived from the resampled thermal images. Then,
the intercept and slope of the dry edge of the LST/NDVI feature space were calculated by
selecting the maximum LST for each NDVI value and then applying least-squares linear
regression to those temperatures. Conversely, to infer the intercept and slope of the wet
edge, the minimum LST for each of the NDVI values were used instead.

2.5.3. Feature Level Fusion

In this study, the feature level fusion was achieved through simple concatenations of
the feature vectors extracted from the methods of SMC estimation discussed above.

Let X = {x1, x2 . . . xn} and Y = {y1, y2, . . . ym} denote feature vectors (X ∈ Rn and
Y ∈ Rm). The idea is to merge vectors X and Y to generate a new joint feature vector Z,
defined as [41]:

Z = X ∪Y = {x1, x2 . . . xn, y1, y2, . . . ym}, Z ∈ Rn+m (20)

The study conducted in [42] concatenated features extracted from radar parameters
{σ0

VV , θi}, vegetation index {NDVI}, and thermal image {LST}. The inclusion of the non-
radar parameters seemed to increase the SMC estimation accuracy, as demonstrated by
a lowered RMSE value in the order of 2.7% across all study areas. Similarly, the authors
of [9] implemented a feature level fusion for SMC estimation by merging a feature vector
containing radar and surface features {s, l, θi, σ0

VV} with the synergetic index {TVDI}. The
implementation yielded less bias and smaller RMSE values by an order of 0.474%. However,
in this study, three joint feature vectors with different combinations of features were used to
test whether increasing the dimensionality of features space increased the overall accuracy
of SMC estimations. The features were grouped into three joint feature vectors: FLF1, FLF2,
and FLF3. Table 1 offers a description of the corresponding features composing each vector.

Table 1. Feature level fusion joint vectors.

Joint Feature Vector Features Composition

FLF1 {s, lopt, θi , σ0
VV} ∪ {TVDI}

FLF2 {TVDI} ∪ {PDI}
FLF3 {s, lopt, θi , σ0

VV} ∪ {TVDI} ∪ {PDI}

FLF1 is the same feature vector used in [9] with the replacement of l with lopt. The
goal behind that specific selection of features was to introduce a new parameter resistant
to vegetation cover presence (TVDI) to the EA-IEM inversion. FLF2 is composed of the
PDI and the TVDI in cases when the surface roughness parameters are too high to be in the
valid range for EA-IEM inversion. Furthermore, the multispectral component of this vector
(PDI) enables the future exploitation of several potential multispectral imagers (such as
Sentinel-2) if the temporal gap between the acquisition of Sentinel-1 and Landsat-8 data is
too large. Finally, FLF3 is the joint feature vector composed of all of the available features.
This was done to explore whether increasing the dimensionality of feature space even
further resulted in a better SMC estimation in terms of accuracy.
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The choice of the feature level fusion estimator has been the subject of the investigation
of several studies [43–47]. The most popular estimation techniques were LS-regression,
support vector machine (SVM), random forest (RF), and artificial neural network (ANN).
Therefore, these methods underwent experimentation to ascertain which was the optimal
estimator for this study. In this study, the ANN was the most accurate and consistent
estimator in terms of performance. Its estimations were found to provide the strongest cor-
relations along with the lowest RMSE values out of all other methodologies. Consequently,
the authors of this study decided to perform all feature level fusion estimations through
artificial neural networks.

An ANN is defined as a system that consists of artificial neurons interconnected by
weights, and its basic structure is composed of an input layer, one (or more) hidden layer,
and an output layer [48]. For this study, six different ANNs were created, with a different
input vector assigned to each one. Furthermore, all ANN input vectors were trained,
validated, and tested through the same ground truth SMC measurements.

Table 2 clarifies the input vectors for each ANN.

Table 2. Description of the input feature vectors of all of the used artificial neural networks.

ANN Input Feature Vector

ANNTVDI TVDI
ANNPDI PDI

ANNEA-IEM (s, lopt, θi , σ0
VV)

ANNFLF1 (s, lopt, θi , σ0
VV ,TVDI)

ANNFLF2 (TVDI,PDI)
ANNFLF3 (s, lopt, θi , σ0

VV ,TVDI,PDI)

The backpropagation training algorithm for all ANNs is the Levenberg–Marquardt [48].
A total of 260 available samples were collected from all study areas: 70% of those samples
were used for training, 20% were used for validation, and 10% were used for testing. There
was an emphasis on the process of validation to ensure the adequate generalisation of
the ANN as an attempt to minimise overfitting (when an ANN becomes too specific to a
data sample) [49]. The size of the hidden layer size (10 nodes) and the specific division
of the training sample was decided after several experiments from which it emerged that
this specific configuration produced the most accurate results. Finally, all corresponding
estimations were sent to the fusion centre, where a weight-based fusion was performed to
improve the accuracy of SMC estimation.

2.5.4. Fusion Centre

All estimations produced by the ANNs are the input arguments of the fusion centre
function. The latter was an upgrade of a weight-based system designed by the author
of this research in [50]. Moreover, instead of assigning weights w1, w2, and w3 to the
estimations achieved by ANNTVDI, ANNPDI, and ANNEA-IEM, respectively, the proposed
weight-based system also assigns weights w4, w5, and w6 to estimations produced by
ANNFLF1, ANNFLF2, and ANNFLF3, respectively. The reason behind this inclusion was
to utilise the improved accuracy of the feature level fusion estimations to ameliorate the
accuracy of the weight-based fusion estimation using Equation (21):

SMCfused = w1SMCTVDI + w2SMCPDI + w3SMCEA−IEM + w4SMCFLF1 + w5SMCFLF2 + w6SMCFLF3 (21)

where SMCfused is the weight-based decision level fusion estimation; SMCTVDI, SMCPDI,
SMCEA-IEM, SMCFLF1, SMCFLF2, and SMCFLF3 are the output estimations of ANNTVDI,
ANNPDI, ANNEA-IEM, ANNFLF1, ANNFLF2, and ANNFLF3, respectively; and w1 + w2 + w3
+ w4 + w5 + w6 = 1.

Figure 5 illustrates the inner workings of this fusion centre.
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Figure 5. Flowchart of the fusion centre.

Initially, all weights are put in loops, where they are incremented from 0 to 1 with a
step of 0.01. To optimise the process, each weight is incremented from 0 to 1 minus the
value of the previous weights. Finally, SMCfused is only calculated if the sum of all of the
weights is equal to 1. The metric selected for an estimation of the accuracy of estimation
is the root mean square error (RMSE). After the RMSE of the final fusion is determined
(RMSEfused), it is compared with the lowest achieved RMSE value out of all the estimations
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discussed above (RMSEmin). If RMSEfused is lower than RMSEmin, then RMSEfused becomes
the new RMSEmin.

Finally, after repeating this process for all combinations of weights satisfying the pre-
scribed conditions, the weights respective to the lowest RMSE values (RMSEmin) represent
the optimal weights that are later used to derive the final fusion. Finally, said weights are
saved for future SMC estimations.

3. Study Area

The validation and testing of the proposed methodology required direct measurements
from suitable areas of interest or study areas. Therefore, three different study areas were
selected to meet that requirement in this study.

The first dataset was relative to the agricultural fields in Blackwell farms, located in
Guildford, a county town of Surrey in South East England. The size of the farm is approx-
imately 295 × 308 m, and at the time of measurement collection, the field was spatially
homogenous with sparse vegetation cover intensity. The field was also characterised as a
non-flat surface topography (with just a little slope in the middle).

The second study area was an agricultural field in Sidi Rached, Tipasa, Algeria,
and this region of interest is by far the largest (540 × 180 m). The field had a spatially
heterogeneous cover intensity, with some areas containing minimal vegetation or bare soil,
and other areas containing intense vegetation cover. However, this particular field was
characterised by relatively flatter surface topography.

The third study area was another agricultural field in a different location at Sidi Rached,
Tipasa. This field is the smallest of all of the datasets (180 × 180 m) due to restrictions
made by the field owner. It was also visibly heterogeneous in terms of vegetation cover,
and similarly to the second study, it presented a flat surface topography.

Table 3 contains detailed descriptions of all study areas, including location, coordi-
nates, size, and the mineralogical composition of each soil (which is important for the
EA-IEM inversion), as well as the respective NDVI means for the datasets as an indicator
of the intensity of vegetation cover calculated from a TOA Landsat-8 product:

Table 3. A detailed description of the used study areas.

Study Area Location
Coordinates

(Latitude,
Longitude)

Size
(m ×m) Soil Type NDVI

(Mean)

Blackwell farms Guildford, Surrey,
United Kingdom

51◦14′10′ ′ N,
000◦37′32′ ′ W 295 × 308 Clay loam 0.26

Sidi Rached 1 Tipasa, Algeria 36◦33′ 18′ ′ N,
002◦31′28′ ′ E 540 × 180 Sandy loam 0.43

Sidi Rached 2 Tipasa, Algeria 36◦31′30′ ′ N,
002◦32′38′ ′ E 180 × 180 Sandy loam 0.33

The selection of suitable study areas was predicated by the scarcity of concurrent
acquisitions from different satellites. Indeed, Sentinel-1 and Landsat-8 acquisitions dates
coincide on the same day only twice a month, and that was exacerbated by the frequently
poor weather conditions in the United Kingdom. This complication prompted the authors
to pursue different study areas elsewhere (in addition to the Blackwell farms datasets), and
the chosen study areas were two agricultural fields in Sidi Rached, Tipasa, Algeria.

Figure 6 offers the point-of-view images of the considered agricultural fields.
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Figure 6. Field photographs of the landscapes of Blackwell farms (a), Sidi Rached 1 (b), and Sidi Rached 2 (c).

The Blackwell farms dataset was characterised by low vegetation presence as visible
in Figure 6a, whereas Sidi Rached 1 and 2 datasets were characterised by relatively thicker
vegetation cover as illustrated by Figure 6b,c.

3.1. Earth Observation Data

Earth observation datasets were collected from two different satellites—Sentinel-1 as
the active microwave sensor for the integral equation inversion model and Landsat-8 as
the data source to calculate both the PDI and the TVDI.

3.1.1. Sentinel-1

Sentinel-1 is a mission of twin satellites Sentinal-1A and Sentinel-1B, both equipped
with a C-SAR on board (5.405 GHz frequency) [51].

All products used in this study were ground range detected (GRD), the acquisition
mode was interferometric wide swath (IWS), and the available polarisations in this acquisi-
tion mode in the concerned datasets were VV and VH polarisations. However, due to the
superior potential of co-polarized configurations at SMC estimation, only acquisitions with
VV polarisation were considered [52]. The spatial resolution of this acquisition mode was
20 × 23 m, with a swath of 250 km. Table 4 provides further acquisition details:
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Table 4. Sentinel-1 acquisition details.

Study Area Spatial Resolution
(Range, Azimuth)

Incidence Angle (◦)
(Min–Max) Acquisition Date Acquisition Time

Blackwell farms
20.4 × 22.5 m

38.2–41.52 18 November 2017 06:21
Sidi Rached 1 44.98–45 7 April 2018 17:51
Sidi Rached 2 34.4–34.41 9 May 2018 5:45

3.1.2. Landsat-8

The thermal infrared and multispectral data were generated from the Landsat-8
satellite. This satellite was chosen for its high spatial resolution in comparison to other
satellites used in literature for similar purposes (such as MODIS) [53]. Landsat-8 has two
sensors onboard: Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS).
Landsat-8 data are acquired at 185 km swaths with a revisit time of 16 days [54]. Table 5
details the acquisition details for the study areas.

Table 5. Landsat-8 acquisition details.

Study Area Acquisition Date Acquisition Time

Blackwell farms 17 November 2017 10:52
Sidi Rached 1 7 April 2018 10:25
Sidi Rached 2 9 May 2018 10:25

It is clear from inspecting Tables 4 and 5 that there were temporal gaps between the
times of acquisitions. It was unfortunately unavoidable due to the respective revisit cycles
of the different used satellites in this research. The longest temporal gap occurred in the
Blackwell farms datasets (approximately 20 h), while the other two datasets had a relatively
shorter delay (approximately 5 h). Measures were taken to minimise the temporal gap; the
ground truth measurement collection campaigns were scheduled in between the respective
times of acquisitions of Landsat-8 and Sentinel-1. For Blackwell farms, the collection of
SMC measurements was scheduled from 14:00 to 17:00. For Sidi Rached 1, SMC levels were
measured from 11:30 p.m. to 14:00. For Sidi Rached 2, SMC measurements were collected
from 09:00 (a.m.) to 10:30 (a.m.).

3.2. Ground Truth Measurements

There were two types of measurements to be collected for the proposed methodology:
SMC levels and soil surface roughness. Three different instruments were used to collect
such measurements: the ML3 theta soil moisture probe for SMC level measurements and
the needle and laser profilometers for surface height measurements.

3.2.1. ML3 Theta Soil Moisture Probe

The instrument used for SMC level measurements was the ML3 Theta probe soil
moisture sensor, which was in a brand-new condition at the time.

When powering the ML3, it applies a 100 MHz waveform to an array of stainless-steel
rods, which transmit an electromagnetic field to the soil. Any water content present in
the soil surrounding those rods affects the permittivity εs of the soil (εw of water ≈ 81
and the εs of soil is ≈4). The ML3 derives the effect of the permittivity on the transmitted
electromagnetic field in terms of stable voltage output, which represents a sensitive measure
of SMC levels. The device has a measurement range of 0–100% with a 1% error for SMC
values from 0 to 50% [55].

Since point-based SMC measurements can be described as less accurate depictions of
the variability and distribution of SMC levels, four points of measurement were collected
every 30 m. Subsequently, the mean of those four point-based measurements was assigned
to its corresponding pixel of the earth observation data. The use of 30-m-distances between
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the points of measurements, in particular, had the purpose of matching the spatial reso-
lution of the multispectral components of Landsat-8, which could be considered a good
compromise between the spatial resolutions of thermal bands of Landsat-8 (100 m) and
Sentinel-1 (20.4 × 22.5 m).

The process of SMC measurement took accurate logistical planning and scheduling to
collect such measurement in a timely fashion. Not including the amount of time and effort
necessary for the geo-location of the relevant data samples to be co-registered later with
their corresponding earth observation pixels, about 2 h on average were required to collect
around 100 data samples. Nevertheless, the collected measurements represented a good
dataset for the objectives of this paper.

3.2.2. Profilometer

The surface roughness profile (RMS height and correlation length) of the considered
agricultural fields was also an important input parameter in the fusion block and needed
to be determined. Two types of profilometers were used to collect such information at
different stages of this study.

Initially, a needle profilometer was only used in the Blackwell farms field. To infer
the measurements, the profilometer had to be positioned in the point of interest. Then,
78 needles (1 cm distance from each other) were inserted into this structure, and their height
in the main structure was regulated accordingly to represent the height of the surface at
each point. Once this process was done to all needles, the profilometer was superimposed
on A0 paper where a curve of points representing the soil profile was drawn, as illustrated
in Figure 7a.

Figure 7. The process of surface roughness parameters measurement using a needle profilometer (a) and a laser profilome-
ter (b).

The second device used to measure surface roughness parameters was a laser pro-
filometer (depicted in Figure 7b). The device is composed of a metallic frame with a BOSCH
PLR 15 Laser rangefinder fitted to it. The laser device has a range of 15 m, with a measuring
error of 3 mm [56]. The distance between the equipped laser device and a flat surface was
0.33 m (which is well within its range). The laser pointed down to the soil surface, where
the metallic structure was placed. Afterwards, a measurement was recorded, and the laser
device was incrementally moved along a rail by one centimetre at a time through all 54
possible increments.

Table 6 delineates the measurements of different surface roughness parameters (s and
l) expressed in cm, as collected for each study area. Blackwell farms were found to have a
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shorter correlation length than the other datasets, which could have been caused by the
fact that the fields were recently ploughed at the time of the measurement campaign.

Table 6. The values of the measured surface roughness parameters.

Study Area Profilometer Type s [cm] l [cm]

Blackwell Farms Needle 1.57 1.67
Sidi Rached 1

Laser
2.85 5.08

Sidi Rached 2 1.76 8.66

4. Results and Discussion

The results and analysis of the proposed SMC estimation system are organized into
three different groups corresponding to each of the considered study areas: Blackwell
farms, Sidi Rached 1, and Sidi Rached 2. The analysed estimations were named according
to their input methods, as is visible in Figures 8–10, where the measured SMC (%) is plotted
as a function of estimated SMC (%) and the concerned methods of estimation are:

• TVDI.
• PDI.
• EA-IEM inversion.
• Feature Level Fusion 1 (FLF1) as the output of ANNFLF1.
• Feature Level Fusion 2 (FLF2) as the output of ANNFLF2.
• Feature Level Fusion 3 (FLF3) as the output of ANNFLF3.
• Weight-Based Fusion (WBF) as the output of the fusion centre.

4.1. Blackwell Farms

The first group of results are those pertinent to the Blackwell farms dataset. Figure 8
and Table 7 provide summaries of the results achieved by each estimation method.

Though soil moisture content values in this field were greater than 35% (the minimum
measured SMC was 34.9%), the best estimation using a single method in terms of RMSE
and degree of correlation was achieved via the EA-IEM inversion (RMSE = 1.7% and
R = 0.57), which could be justified by the fact that the field had a non-flat surface and was
mainly characterised by bare soil and sparse vegetation cover, which put the PDI in a
disadvantage due to the nature of the surface topography and limited the performance of
the TVDI because of the absence of the full range of vegetation cover (from bare soil to
full vegetation).

What were also noticeable were that estimations using feature-level fusions consis-
tently outperformed EA-IEM inversion in terms of RMSE and that those methods also had a
stronger correlation. Furthermore, the addition of the synergetic feature TVDI to the feature
vector of EA-IEM inversion in FLF1 caused immediate amelioration to the overall accuracy
of estimation (RMSE = 1.54%) and correlation (R = 0.66). This addition balanced out some
of the inaccuracies that were caused by the high SMC values and surface roughness of
the site. As for FLF2, the elimination of radar and surface roughness features, as well as
the addition of a feature (PDI) insensitive to the narrow range of vegetation cover of the
study area, slightly improved the accuracy and increased the correlation of this estimation
(RMSE = 1.53% and R = 0.67). Moreover, the inclusion of all of the available features in
FLF3 produced the most accurate feature level fusion estimation in terms of RMSE and
correlation (RMSE = 1.37% and R = 0.75), which was quite a discernible improvement.
Finally, the output of WBF produced the best accuracy and the strongest correlation out of
all of the used methods (RMSE = 1.32% and R = 0.77), and the weights achieved for this
study area were:

SMCWBF = 0.08SMCTVDI + 0.26SMCFLF2 + 0.66SMCFLF3 (22)
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Figure 8. Results of each of the used SMC estimation methods in Blackwell farms datasets where: (a). TVDI. (b). PDI. (c).
EA-IEM. (d). FLF1. (e). FLF2. (f). FLF3. (g). WBF.
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Figure 9. SMC maps: (a) produced by the estimation using the weight-based methodology and (b) produced by field
measurements (17 November 2017).

The WBF method disregarded the PDI, EA-IEM inversion, and FLF1 estimations com-
pletely and assigned the largest importance to FLF3 (weight = 0.66), which was reasonable
since it was the most accurate feature level estimation. Then, the second-largest importance
was for FLF2 (weight = 0.26), which was also the second-best estimation in terms of RMSE
values. Finally, some importance was assigned to the TVDI (weight = 0.08).

For this study area, the WBF method produced the best results in terms of RMSE
and R, with FLF3 in a very close second. However, the latter does possess a slightly more
accurate range of values in terms of minimum, maximum, mean, and standard deviation.

Figure 9 depicts SMC maps of the produced SMC estimation through the proposed
system, as well as of field measurements:

By observing Figure 9, it can be concluded that there was a great resemblance be-
tween the estimated SMC map and the measured SMC map, especially at higher values
(SMC > 40%). However, the proposed estimation method produced its poorest perfor-
mance, especially in the 37%–40% interval and, similarly but to a lesser extent, in the
42–44% interval, as visible in Figures 8g and 9a.

4.2. Sidi Rached 1

The second group of results are those corresponding to the Sidi Rached 1 dataset, and
Figure 10 and Table 8 provide summaries of the results achieved by each estimation method.
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Figure 10. Results of each of the used SMC estimation methods in the Sidi Rached 1 dataset where (a). TVDI. (b). PDI. (c).
EA-IEM. (d). FLF1. (e). FLF2. (f). FLF3. (g). WBF.
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Table 7. The results of each of the used estimation methods in the Blackwell farms dataset.

Estimation Methods
Blackwell Farms (n = 110)

Estimated SMC Measured SMC
RMSE (%) Min (%) Max (%) Mean (%) SD (%) Min (%) Max (%) Mean (%) SD (%)

Estimations using a
single method

TVDI 1.82 37.16 43.9 39.91 0.87

34.9 44.9 40.07 2.07

PDI 1.9 34.88 43.2 40.04 0.8
EA-IEM 1.7 36.52 44.21 39.96 1.23

Estimations using feature-level fusion
FLF1 1.54 35.65 44.85 40.18 1.34
FLF2 1.53 35.39 43.36 40.01 1.37
FLF3 1.37 34.88 44.42 40.02 1.69

Estimation using decision level fusion WBF 1.32 35.36 43.62 40.01 1.43

Table 8. The results of each of the used estimation methods in the Sidi Rached 1 dataset.

Estimation Methods
Sidi Rached 1 (n = 114)

Estimated SMC Measured SMC
RMSE (%) Min (%) Max (%) Mean (%) SD (%) Min (%) Max (%) Mean (%) SD (%)

Estimations using a single method
TVDI 4.41 25.16 40.07 31.14 2.52

16.65 40.87 31.4 4.94

PDI 4.4 25.85 36.08 31.25 2.26
EA-IEM 4.1 22.91 41.55 31.12 2.67

Estimations using feature-level fusion
FLF1 3.19 22.05 41.68 31.48 3.84
FLF2 3.89 23.1 39.55 31.67 3.38
FLF3 2.9 20.75 41.32 31.22 3.87

Estimation using decision level fusion WBF 2.7 22.67 40.4 31.35 3.51
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Table 8 showcases higher RMSE values that could be attributed to higher spatial
variability in terms of vegetation cover intensity and soil moisture content. This assumption
was justified by the fact that these agricultural fields had a higher standard deviation in
terms of SMC measurements (SD = 4.94%). The most accurate estimation using a single
method in terms of RMSE and degree of correlation was yet again achieved through the EA-
IEM inversion (RMSE = 4.1% and R = 0.54). The relatively lower performance of the TVDI
could be attributed to the low number of pixels representing bare soil and low vegetation
intensity, as only 24% of all pixels had NDVI values less than 0.3, which consequently led
to a less accurate determination of the dry edge. Meanwhile, the performance of the PDI
could also be considered subjective due to the high number of pixels corresponding to
dense vegetation, the soil line was therefore not accurately depicted when considering that
76% of the pixels had NDVI values of more than 0.3.

It was observable that feature-level fusion estimations also outperformed EA-IEM
inversion in terms of RMSE and strength of correlation in this study area. Indeed, the
inclusion of the TVDI to the feature vector of EA-IEM inversion in FLF1 made a positive
impact on the accuracy of estimation (RMSE = 3.17%), as well as the correlation (R = 0.76).
Additionally, that addition lowered the effect of the dense vegetation cover on the accuracy
of EA-IEM inversion estimation and especially increased the accuracy of estimation for
values ranging from 28% to 33% (as visible in Figure 10d). As for the FLF2 estimation,
dissimilar to the results achieved in the first study area, the exclusion of radar and surface
roughness features did not yield a more accurate estimation (RMSE = 3.89% and R = 0.62),
which could have been due to the same reasons influencing the estimations of the PDI
and the TVDI individually. For FLF3, the inclusion of all of the available features once
again produced the best feature level fusion estimation in terms of accuracy and correlation
(RMSE = 2.9% and R = 0.81).

Finally, the estimation produced by WBF was characterised by the best accuracy and
the strongest correlation out of all of the considered estimation methods (RMSE = 2.7% and
R = 0.84), and the weights achieved for this study area were:

SMCWBF = 0.36SMCFLF1 + 0.08SMCFLF2 + 0.56SMCFLF3 (23)

The WBF method completely dismissed the TVDI, the PDI, and EA-IEM inversion
estimations. Indeed, it seemed to assign weights according to the accuracy of each es-
timation, with the largest weight assigned to the most accurate feature-level estimation
FLF3 (weight = 0.56), the second-largest weight to estimation FLF1 (weight = 0.36), and the
smallest weight to FLF2 (weight = 0.08).

Additionally, for this study area, the WBF method produced the best results in terms
of RMSE and R, as well as the range of values in terms of minimum, maximum, mean,
and standard deviation. Furthermore, the correlation of WBF estimation in Sidi Rached
1 (R = 0.84) was stronger than that of the Blackwell farms counterpart (R = 0.77), which
could be attributed to the shorter time gap between different satellite acquisitions in this
area compared to the Blackwell farms dataset.

Figure 11 depicts SMC maps of the produced SMC estimation through the proposed
system, as well as of field measurements.

Figure 11 once again exhibits a large agreement between the SMC estimation with the
proposed method and the measured SMC map. The highest degree of similarities could be
observed at 30–40% interval. However, in this study area, the system did seem to struggle
with lower SMC values, especially values of less than 22%, as visible in Figures 10g and 11a.
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Figure 11. SMC maps: (a) produced by the estimation using the weight-based methodology and (b) produced by field
measurements (7 April 2018).

4.3. Sidi Rached 2

The third group of results are those relative to the Sidi Rached 2 dataset, for which
the smallest number of in situ SMC measurements (n = 36) was available. Figure 12 and
Table 9 offer detailed descriptions of the results achieved by each estimation method.

The most accurate estimation using a single method in terms of RMSE and degree of
correlation was obtained through the TVDI method this time (RMSE = 2.32% and R = 0.69).
This result could have been influenced by the presence of a full range of vegetation cover
intensity, manifested in 41% of the overall pixels with NDVI values below 0.3. The per-
formance of the PDI was slightly poorer, which was coherent with the presence of pixels
corresponding to dense vegetation that, in turn, may have had an adverse impact on the
determination of the soil line. Another viable reason for the TVDI and the PDI outper-
forming EA-IEM inversion could have been that the time of ground truth collection (from
09:00 a.m. to 10:30 a.m.) was relatively closer to the Landsat-8 acquisition time (10:25 a.m.)
than to the Sentinel-1 (05:45 a.m.).

Table 9. The results of each of the used estimation methods in the Sidi Rached 2 dataset.

Estimation Methods
Sidi Rached 2 (n = 36)

Estimated SMC Measured SMC
RMSE (%) Min (%) Max (%) Mean (%) SD (%) Min (%) Max (%) Mean (%) SD (%)

Estimations using a
single method

TVDI 2.32 26.09 39.32 33.73 2.34

26.1 39.15 33.75 3.2

PDI 2.44 36.83 38.57 33.69 2.53
EA-IEM 2.74 29.78 35.9 33.92 1.69

Estimations using
feature-level fusion

FLF1 1.97 27.26 43.19 33.58 2.87
FLF2 1.98 26.09 38.51 33.56 2.77
FLF3 1.34 25.14 38.62 33.46 3.05

Estimation using
decision level fusion WBF 1.23 26.93 38.27 33.51 2.72
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Figure 12. Results of each of the used SMC estimation methods in the Sidi Rached 2 dataset where: (a). TVDI. (b). PDI.
(c). EA-IEM. (d). FLF1. (e). FLF2. (f). FLF3. (g). WBF.
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The feature-level fusion-based estimations also outperformed the TVDI estimation
in terms of RMSE and degree of correlation in this study area. FLF1 and FLF2 performed
almost identically by exhibiting the same degree of correlation (R = 0.79), with an insignif-
icant difference in RMSE values (1.97% and 1.98%, respectively). Regarding FLF3, the
inclusion of all the available features generated the best feature level fusion estimation in
terms of accuracy and correlation (RMSE = 1.34% and R = 0.91) for this dataset as well.

Finally, the WBF estimation once more produced the best accuracy and the strongest
correlation out of all of the considered methods (RMSE = 1.27% and R = 0.93), and the
weights obtained for this study area were:

SMCWBF = 0.04SMCTVDI + 0.14 SMCPDI + 0.08SMCFLF1 + 0.02SMCFLF2 + 0.72SMCFLF3 (24)

The WBF method completely ignored the contribution of the EA-IEM inversion esti-
mation, and, this time, it generated an interesting configuration of weights by assigning
the largest significance to the most accurate feature level estimation FLF3 (weight = 0.72),
the second-largest weight to PDI estimation (weight = 0.14), and then smaller weights to
the FLF1 estimation (weight = 0.08), the TVDI estimation (weight = 0.04), and the FLF2
estimation (weight = 0.02). Eventually, in Sidi Rached 2, the WBF method produced the
most accurate results in terms of RMSE and R, as well as the closest to the measured
SMC in terms of the range of the values of minimum, maximum, and mean. The strong
correlation of WBF estimation in this study area (R = 0.93) supported the assumption that
the correlation could be ascribed to the length of the temporal gap between the times
of acquisitions.

Figure 13 depicts SMC maps of the produced SMC estimation through the proposed
system, as well as of field measurements:

Figure 13. SMC maps: (a) produced by the estimation using the weight-based methodology and (b)
produced by field measurements (9 May 2018).

Figure 13 validates the findings of the previously detailed study areas. The product of
the proposed SMC system in this study area was almost identical to the measured SMC
map. However, this degree of similarity could very well have been due to the low number
of data samples.

4.4. Remarks and Discussions

The results of the proposed approach were in good agreement with the findings
of [9,50]. The inversion of the EA-IEM produced the lowest RMSE out of all estimations
using an individual method in Blackwell farms and Sidi Rached 1, while the TVDI produced
the most accurate one in Sidi Rached 2. This result is logical for the Blackwell farms
dataset, but it is not the case for Sidi Rached 1 since it was characterised by an intense
vegetation cover. This could be explained by the absence of the full range of vegetation
cover for Sidi Rached 1, especially if one examines the performance of the TVDI in the
Sidi Rached 2 dataset. Out of all estimations produced by feature level fusions, FLF3
generated the most accurate estimation across all datasets. This seemed to validate the
assumption that maximising the dimensionality of the features space increased the accuracy
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of estimation. Indeed, regarding FLF1 and FLF2 estimations, they performed almost
identically in Blackwell farms and Sidi Rached 2, while FLF1 did outperform FLF2 in Sidi
Rached 1, which supported the assumption that the absence of a full range of vegetation
cover had a negative impact on the accuracy of SMC estimation through the TVDI. Finally,
the proposed fusion centre systematically and consistently improved the accuracy of SMC
estimation manifested in lower RMSE values in the orders of at least 0.38%, 1.4%, and 1.09%
for Blackwell farms, Sidi Rached 1, and Sidi Rached 2 datasets, respectively, which were
good improvements on the accuracy of estimation obtained by a single method. However,
more investigations are necessary to understand the meaning of weight assignments.

The performance of the proposed SMC estimation system was sensitive to the vegeta-
tion cover intensity, whether be it its degree or its distribution. Furthermore, the proposed
system produced its optimal performance in bare soil or low vegetation cover (Blackwell
farms). It also produced a good performance in datasets with a full range of vegetation
cover intensity from bare soil to dense vegetation, as in the case of Sidi Rached 2, but its
performance was relatively poorer in fully vegetated areas (Sidi Rached 1). This could have
been due to the fact that the TVDI was the only feature that accounted for the degree of
vegetation intensity implicitly through NDVI. However, even the TVDI had its issues—
though the stomatal aperture increased with the increase of temperature, it decreased or
even came close to avoiding dehydration when temperatures surpassed a certain threshold,
which may have generated dry/wet boundaries inconsistent with the theoretical edges of
LST/NDVI feature space [57]. Another TVDI-related issue is that a full range of vegetation
is a key requirement for the objective determinations of its dry and wet edges, which
was not the case in any of the considered study areas. A possible solution for this is the
consideration of parabolic dry and wet edges instead of classical oblique lines [57]. Another
solution could be the consideration of theoretical methods to determine the dry/wet edges.
These methods consist of theoretical calculations that include physical processes, which
means that the determination of the boundaries is calculated via an energy balance equa-
tion of the land surface instead of the used linear fitting, which would lead to more general
boundaries [58]. Regarding IEM, it was quite sensitive to vegetation cover. Exponential or
Gaussian correlation lengths have been suggested in the literature, as also reported in this
paper, as models to adopt in cases of low or high roughness. Fewer experiments regarding
which correlation function to adopt in case of inhomogeneity and areas presenting a variety
of surface roughnesses are available. Forcing one function or another to the entire area
is the simplistic approach that is often used, but, with the increased spatial resolution of
spaceborne sensors, it will become possible to apply different functions within the same
area. In the case of homogeneity, i.e., in presence of soil surfaces with comparable surface
conditions, we already know from [59] that experimental measurements of backscattering
coefficients are much closer to the predictions of the IEM for a surface with an exponential
correlation than a Gaussian correlation.

Besides the performance issues described above, the authors of this study are con-
scious of the small number of the available data samples for ANN training, which could
very well have caused overfitting issues. Overfitting could limit the constraints of ap-
plicability of the proposed SMC estimation system. Overfitting could potentially lead
the proposed system to become specialised for areas with similar characteristics to those
of the study areas in terms of SMC distribution, vegetation cover intensity, and vegeta-
tion cover distribution, as well as soil composition and surface roughness parameters.
However, this could be corrected by the consideration of data from the International Soil
Moisture Network [60] or data from the cosmic-ray soil moisture monitoring network
(Cosmos-UK) [61]. Additionally, there is always the possibility of undertaking additional
field campaigns for the collection of additional ground truth measurements. Considering
new and upcoming constellations of satellite data, the temporal resolution of the consid-
ered satellite data acquisition is another area of certain future improvement. A promising
example is a Landsat-9 mission (which is scheduled to be launched in September 2021),
which predominantly replicates its predecessor Landsat-8 in terms of onboard sensors [62].



Sensors 2021, 21, 3457 29 of 32

Landsat-9 in conjunction with Landsat-8 will offer a revisit frequency of eight days [63].
Consequently, the improved temporal coverage of multispectral and thermal infrared data
will increase the accuracy and correlation of the collected measurements with the earth
observation data.

5. Conclusions

The results of a novel SMC estimation system were evaluated and analysed according
to each study area. The proposed system produced its lowest RMSE values in the Sidi
Rached 2 dataset (1.27%), followed by the Blackwell farms dataset (1.34%) and, finally,
by the Sidi Rached 1 dataset (2.7%). Based on the analysed areas, it is safe to conclude
that the proposed system was more accurate than any of the estimations produced by a
single method. It is also safe to conclude that the system performed best in presence of a
full range of vegetation cover. Notwithstanding these promising results, there were some
other concerns relating to the performance of the proposed system. The small number
of collected SMC measurements could have very possibly caused overfitting. Another
concern is the temporal gap between the acquisition times of the considered satellites,
which may have adversely impacted the correlation of EO-data to SMC levels. The revisit
time of the satellites could be also considered as an additional limitation, especially in the
case of Landsat-8 (16 days), which is particularly important if SMC level monitoring is
relevant to agricultural practices. The impact of the latter limitation could be diminished by
the inclusion of additional satellites such as Sentinel-2 and the likely addition of Landsat-9
data after its launch. Finally, further research is required to address the performance issues
of the system in the absence of a full range of vegetation cover.

Author Contributions: Conceptualisation, O.Y.; methodology, O.Y. and R.G.; software, O.Y.; vali-
dation, O.Y.; formal analysis, O.Y., R.G. and P.I.; investigation, O.Y.; resources, R.G.; data curation,
O.Y.; writing—original draft preparation, O.Y.; writing—review and editing, O.Y., R.G. and P.I.;
visualisation, O.Y.; supervision, R.G. and P.I.; project administration, R.G.; funding acquisition, R.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Sentinel-1 SAR product presented in this study is openly avail-
able at the Copernicus Open Access Hub. The Landsat-8 product is openly available at https:
//earthexplorer.usgs.gov/ (accessed on 15 May 2021).

Acknowledgments: The authors of this paper would like to thank the University of Surrey for sharing
the ground truth measurement of SMC and surface roughness heights. Thanks are also merited
to NASA and the Geological Survey (USGS) for providing Landsat-8 data and ESA for providing
Sentinel-1 data. The authors also thank the anonymous reviewers for their respective constructive
comments and feedback which contributed to ameliorating the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baghdadi, N.; Gaultier, S.; King, C. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data

using neural networks. Can. J. Remote Sens. 2002, 28, 701–711. [CrossRef]
2. Frei, M.; Henkel, J. Influence of physical surface characteristics on SAR backscatter. In Proceedings of the SPIE 4545, Remote

Sensing for Environmental Monitoring, GIS Applications, and Geology, Pasadena, CA, USA, 23 January 2002. [CrossRef]
3. Hajnsek, I.; Papathanassiou, K. Rough Surface Scattering Models. ESA Earth Online. 2005. Available online: https://earth.esa.

int/documents/653194/656796/Rough_Surface_Scattering_Models.pdf (accessed on 7 June 2020).
4. Bryant, R.; Moran, M.S.; Thoma, D.P.; Collins, C.D.H.; Skirvin, S.; Rahman, M.; Slocum, K.; Starks, P.; Bosch, D.; Gonzalez-Dugo,

M.P. Measuring Surface Roughness Height to Parameterize Radar Backscatter Models for Retrieval of Surface Soil Moisture. IEEE
Geosci. Remote Sens. Lett. 2007, 4, 137–141. [CrossRef]

5. Verhoest, N.E.; Lievens, H.; Wagner, W.; Álvarez-Mozos, J.; Moran, M.S.; Mattia, F. On the soil roughness parameterization
problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors 2008, 8, 4213–4248. [CrossRef]

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://doi.org/10.5589/m02-066
http://doi.org/10.1117/12.453678
https://earth.esa.int/documents/653194/656796/Rough_Surface_Scattering_Models.pdf
https://earth.esa.int/documents/653194/656796/Rough_Surface_Scattering_Models.pdf
http://doi.org/10.1109/LGRS.2006.887146
http://doi.org/10.3390/s8074213


Sensors 2021, 21, 3457 30 of 32

6. Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. Neural Netw. Percept. 1992, 65–93. [CrossRef]
7. Baghdadi, N.; Cresson, R.; El Hajj, M.; Ludwig, R.; La Jeunesse, I.; Baghdadi, N.; Cresson, R.; El Hajj, M.; Ludwig, R.; La Jeunesse,

I. Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrol.
Earth Syst. Sci. 2012, 16, 1607–1621. [CrossRef]

8. Baghdadi, N.; El Hajj, M.; Choker, M.; Zribi, M.; Bazzi, H.; Vaudour, E.; Gilliot, J.-M.; Ebengo, D.M. Potential of Sentinel-1 Images
for Estimating the Soil Roughness over Bare Agricultural Soils. Water 2018, 10, 131. [CrossRef]

9. Yahia, O.; Guida, R.; Iervolino, P. Sentinel-1 and landsat-8 feature level fusion for soil moisture content estimation. In Proceedings
of the 12th European Conference on Synthetic Aperture Radar (EUSAR 2018), Aachen, Germany, 4–7 June 2018.

10. Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric
sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

11. Daliakopoulos, I.N.; Coulibaly, P.; Tsanis, I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309,
229–240. [CrossRef]

12. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE
Geosci. Remote Sens. Mag. 2013, 1, 6–43. [CrossRef]

13. Thoma, D.; Moran, M.; Bryant, R.; Rahman, M.; Collins, C.H.; Keefer, T.; Noriega, R.; Osman, I.; Skrivin, S.; Tischler, M.; et al.
Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils. Remote
Sens. Environ. 2008, 112, 403–414. [CrossRef]

14. Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J.
Remote Sens. 2006, 27, 3831–3852. [CrossRef]

15. Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J.
Hydrol. 2013, 476, 460–489. [CrossRef]

16. Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens.
Environ. 2003, 84, 42–52. [CrossRef]

17. Baghdadi, N.; Chaaya, J.A.; Zribi, M. Semiempirical Calibration of the Integral Equation Model for SAR Data in C-Band and
Cross Polarization Using Radar Images and Field Measurements. IEEE Geosci. Remote Sens. Lett. 2010, 8, 14–18. [CrossRef]

18. Cenci, L.; Pulvirenti, L.; Boni, G.; Pierdicca, N. Defining a Trade-off Between Spatial and Temporal Resolution of a Geosynchronous
SAR Mission for Soil Moisture Monitoring. Remote Sens. 2018, 10, 1950. [CrossRef]

19. Bindlish, R.; Barros, A.P. Multifrequency soil moisture inversion from SAR measurements with the use of IEM. Remote Sens.
Environ. 2000, 71, 67–88. [CrossRef]

20. Baghdadi, N.; Holah, N.; Zribi, M. Calibration of the integral equation model for SAR data in C-band and HH and VV
polarizations. Int. J. Remote Sens. 2006, 27, 805–816. [CrossRef]

21. Song, K.; Zhou, X.; Fan, Y. Empirically Adopted IEM for Retrieval of Soil Moisture From Radar Backscattering Coefficients. IEEE
Trans. Geosci. Remote Sens. 2009, 47, 1662–1672. [CrossRef]

22. Oh, Y.; Kay, Y.C. Condition for precise measurement of soil surface roughness. IEEE Trans. Geosci. Remote Sens. 1998, 36, 691–695.
[CrossRef]

23. Fung, A.; Li, Z.; Chen, K. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30,
356–369. [CrossRef]

24. Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.-K. Microwave Dielectric Behavior of Wet Soil-Part 1:
Empirical Models and Experimental Observations. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 25–34. [CrossRef]

25. Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum,
6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [CrossRef]

26. Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Earth Sci. 2007, 52, 1045–1052. [CrossRef]
27. Yang, Y.; Guan, H.; Long, D.; Liu, B.; Qin, G.; Qin, J.; Batelaan, O. Estimation of surface soil moisture from thermal infrared remote

sensing using an improved trapezoid method. Remote Sens. 2015, 7, 8250–8270. [CrossRef]
28. Gao, Z.; Xu, X.; Wang, J.; Yang, H.; Huang, W.; Feng, H. A method of estimating soil moisture based on the linear decomposition

of mixture pixels. Math. Comput. Model. 2013, 58, 606–613. [CrossRef]
29. Shahabfar, A.; Eitzinger, J. Agricultural drought monitoring in semi-arid and arid areas using MODIS data. J. Agric. Sci. 2011, 149,

403–414. [CrossRef]
30. Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z.-L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method.

ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [CrossRef]
31. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment

of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [CrossRef]
32. Yang, X.; Wu, J.J.; Shi, P.J.; Yan, F. Modified triangle method to estimate soil moisture status with MODerate resolution Imaging

Spectroradiometer (MODIS) products. Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 555–560.
33. Lambin, E.F.; Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J.

Remote Sens. 1996, 17, 463–487. [CrossRef]
34. Wang, C.; Chen, J.; Chen, X.; Chen, J. Identification of Concealed Faults in a Grassland Area in Inner Mongolia, China, Using the

Temperature Vegetation Dryness Index. J. Earth Sci. 2018, 30, 853–860. [CrossRef]

http://doi.org/10.1016/B978-0-12-741252-8.50010-8
http://doi.org/10.5194/hess-16-1607-2012
http://doi.org/10.3390/w10020131
http://doi.org/10.1016/S1352-2310(97)00447-0
http://doi.org/10.1016/j.jhydrol.2004.12.001
http://doi.org/10.1109/MGRS.2013.2248301
http://doi.org/10.1016/j.rse.2007.06.021
http://doi.org/10.1080/01431160600658123
http://doi.org/10.1016/j.jhydrol.2012.10.044
http://doi.org/10.1016/S0034-4257(02)00069-X
http://doi.org/10.1109/LGRS.2010.2050054
http://doi.org/10.3390/rs10121950
http://doi.org/10.1016/S0034-4257(99)00065-6
http://doi.org/10.1080/01431160500212278
http://doi.org/10.1109/TGRS.2008.2009061
http://doi.org/10.1109/36.662751
http://doi.org/10.1109/36.134085
http://doi.org/10.1109/TGRS.1985.289497
http://doi.org/10.1109/36.581987
http://doi.org/10.1007/s00254-006-0544-2
http://doi.org/10.3390/rs70708250
http://doi.org/10.1016/j.mcm.2011.10.054
http://doi.org/10.1017/S0021859610001309
http://doi.org/10.1016/j.isprsjprs.2007.03.002
http://doi.org/10.1016/S0034-4257(01)00274-7
http://doi.org/10.1080/01431169608949021
http://doi.org/10.1007/s12583-017-0980-9


Sensors 2021, 21, 3457 31 of 32

35. Gao, Z.; Gao, W.; Chang, N.-B. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI)
for drought assessment with the aid of LANDSAT TM/ETM+ images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 495–503. [CrossRef]

36. Petropoulos, G.; Carlson, T.; Wooster, M.; Islam, S. A review of Ts/VI remote sensing based methods for the retrieval of land
surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. Earth Environ. 2009, 33, 224–250. [CrossRef]

37. Abbott, M.; Bathurst, J.; Cunge, J.; O’Connell, P.; Rasmussen, J. An introduction to the European Hydrological System—Systeme
Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 61–77.
[CrossRef]

38. Zhu, W.; Jia, S.; Lv, A. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous
soil moisture monitoring. Remote Sens. Environ. 2017, 200, 1–17. [CrossRef]

39. Chen, S.; Wen, Z.; Jiang, H.; Zhao, Q.; Zhang, X.; Chen, Y. Temperature vegetation dryness index estimation of soil moisture
under different tree species. Sustainability 2015, 7, 11401–11417. [CrossRef]

40. Cho, J.; Lee, Y.-W.; Lee, H.-S. Assessment of the relationship between thermal-infrared-based temperature−vegetation dryness
index and microwave satellite-derived soil moisture. Remote Sens. Lett. 2014, 5, 627–636. [CrossRef]

41. Sentinel Application Platform. Available online: https://step.esa.int/main/toolboxes/snap/ (accessed on 11 October 2019).
42. Ross, A.; Govindarajan, R. Feature level fusion using hand and face biometrics. In Proceedings of the SPIE Conference on

Biometric Technology for Human Identification II, Orlando, FL, USA, 28 March 2005. [CrossRef]
43. Alexakis, D.D.; Mexis, F.-D.K.; Vozinaki, A.-E.K.; Daliakopoulos, I.N.; Tsanis, I.K. Soil Moisture Content Estimation Based on

Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach. Sensors 2017, 17, 1455. [CrossRef]
44. Kurucu, Y.; Sanli, F.B.; Esetlili, M.T.; Bolca, M.; Goksel, C. Contribution of SAR images to determination of surface moisture on the

Menemen Plain, Turkey. Int. J. Remote Sens. 2009, 30, 1805–1817. [CrossRef]
45. Bai, L.; Long, D.; Yan, L. Estimation of Surface Soil Moisture With Downscaled Land Surface Temperatures Using a Data Fusion

Approach for Heterogeneous Agricultural Land. Water Resour. Res. 2019, 55, 1105–1128. [CrossRef]
46. Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L. Estimating surface soil moisture from satellite observations using a generalized

regression neural network trained on sparse ground-based measurements in the continental U.S. J. Hydrol. 2020, 580, 124351.
[CrossRef]

47. Van der Schalie, R.; De Jeu, R.; Parinussa, R.; Rodríguez-Fernández, N.; Kerr, Y.; Al-Yaari, A.; Wigneron, J.P.; Drusch, M. The effect
of three different data fusion approaches on the quality of soil moisture retrievals from multiple passive microwave sensors.
Remote Sens. 2018, 10, 107. [CrossRef]

48. Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion
over the Korean peninsula. Agric. For. Meteorol. 2017, 237, 257–269. [CrossRef]

49. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.
[CrossRef]

50. Hachani, A.; Ouessar, M.; Paloscia, S.; Santi, E.; Pettinato, S. Soil moisture retrieval from Sentinel-1 acquisitions in an arid
environment in Tunisia: Application of Artificial Neural Networks techniques. Int. J. Remote Sens. 2019, 40, 9159–9180. [CrossRef]

51. Yahia, O.; Guida, R.; Iervolino, P. Weights Based Decision Level Data Fusion of Landsat-8 and Sentinel-L for Soil Moisture Content
Estimation. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia,
Spain, 22–27 July 2018; pp. 8078–8081.

52. Huang, S.; Ding, J.; Zou, J.; Liu, B.; Zhang, J.; Chen, W. Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation
Coverage. Sensors 2019, 19, 589. [CrossRef] [PubMed]

53. Chen, J.; Wang, C.; Jiang, H.; Mao, L.; Yu, Z. Estimating soil moisture using Temperature–Vegetation Dryness Index (TVDI) in the
Huang-huai-hai (HHH) plain. Int. J. Remote Sens. 2011, 32, 1165–1177. [CrossRef]

54. Roy, D.P.; Wulder, M.; Loveland, T.R.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R.; et al.
Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [CrossRef]

55. ML3 ThetaProbe User Manual. Available online: https://www.delta-t.co.uk/wp-content/uploads/2017/02/ML3-user-manual-
version-2.1.pdf (accessed on 11 October 2019).

56. BOSCH PLR 15 Laser Rangefinder. Available online: https://www.tooled-up.com/artwork/ProdPDF/0603672000.pdf (accessed
on 11 October 2019).

57. Yang, R.-W.; Wang, H.; Hu, J.-M.; Cao, J.; Yang, Y. An improved temperature vegetation dryness index (iTVDI) and its applicability
to drought monitoring. J. Mt. Sci. 2017, 14, 2284–2294. [CrossRef]

58. Sun, H.; Wang, Y.; Liu, W.; Yuan, S.; Nie, R. Comparison of Three Theoretical Methods for Determining Dry and Wet Edges of the
LST/FVC Space: Revisit of Method Physics. Remote Sens. 2017, 9, 528. [CrossRef]

59. Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; The University of Michigan Press: Ann Arbor, MI,
USA, 2014.

60. Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; Van Oeve-
len, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements.
Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [CrossRef]

61. Evans, J.G.; Ward, H.C.; Blake, J.R.; Hewitt, E.J.; Morrison, R.; Fry, M.; Ball, L.A.; Doughty, L.C.; Libre, J.W.; Hitt, O.E.; et al. Soil
water content in southern England derived from a cosmic-ray soil moisture observing system—COSMOS-UK. Hydrol. Process.
2016, 30, 4987–4999. [CrossRef]

http://doi.org/10.1016/j.jag.2010.10.005
http://doi.org/10.1177/0309133309338997
http://doi.org/10.1016/0022-1694(86)90115-0
http://doi.org/10.1016/j.rse.2017.07.032
http://doi.org/10.3390/su70911401
http://doi.org/10.1080/2150704X.2014.950760
https://step.esa.int/main/toolboxes/snap/
http://doi.org/10.1117/12.606093
http://doi.org/10.3390/s17061455
http://doi.org/10.1080/01431160802639764
http://doi.org/10.1029/2018WR024162
http://doi.org/10.1016/j.jhydrol.2019.124351
http://doi.org/10.3390/rs10010107
http://doi.org/10.1016/j.agrformet.2017.02.022
http://doi.org/10.1137/0111030
http://doi.org/10.1080/01431161.2019.1629503
http://doi.org/10.3390/s19030589
http://www.ncbi.nlm.nih.gov/pubmed/30704120
http://doi.org/10.1080/01431160903527421
http://doi.org/10.1016/j.rse.2014.02.001
https://www.delta-t.co.uk/wp-content/uploads/2017/02/ML3-user-manual-version-2.1.pdf
https://www.delta-t.co.uk/wp-content/uploads/2017/02/ML3-user-manual-version-2.1.pdf
https://www.tooled-up.com/artwork/ProdPDF/0603672000.pdf
http://doi.org/10.1007/s11629-016-4262-2
http://doi.org/10.3390/rs9060528
http://doi.org/10.5194/hess-15-1675-2011
http://doi.org/10.1002/hyp.10929


Sensors 2021, 21, 3457 32 of 32

62. Markham, B.L.; Jenstrom, D.; Masek, J.G.; Dabney, P.; Pedelty, J.A.; Barsi, J.A.; Montanaro, M. Landsat 9: Status and plans. In
Proceedings of the SPIE 9972, Earth Observing Systems XXI, 99720G, San Diego, CA, USA, 19 September 2016. [CrossRef]

63. Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open
science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [CrossRef]

http://doi.org/10.1117/12.2238658
http://doi.org/10.1016/j.rse.2020.111968

	Introduction 
	Methodology 
	The Considered Integral Equation Model 
	The Updated Version of the IEM 
	Perpendicular Drought Index 
	Temperature Vegetation Dryness Index 
	SMC Estimation Scheme Fusion 
	Pre-Processing 
	PDI and TVDI Determinations 
	Feature Level Fusion 
	Fusion Centre 


	Study Area 
	Earth Observation Data 
	Sentinel-1 
	Landsat-8 

	Ground Truth Measurements 
	ML3 Theta Soil Moisture Probe 
	Profilometer 


	Results and Discussion 
	Blackwell Farms 
	Sidi Rached 1 
	Sidi Rached 2 
	Remarks and Discussions 

	Conclusions 
	References

