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Abstract: The automatic segmentation of skin lesions is considered to be a key step in the diagnosis
and treatment of skin lesions, which is essential to improve the survival rate of patients. However,
due to the low contrast, the texture and boundary are difficult to distinguish, which makes the
accurate segmentation of skin lesions challenging. To cope with these challenges, this paper proposes
an attention-guided network with densely connected convolution for skin lesion segmentation,
called CSAG and DCCNet. In the last step of the encoding path, the model uses densely connected
convolution to replace the ordinary convolutional layer. A novel attention-oriented filter module
called Channel Spatial Fast Attention-guided Filter (CSFAG for short) was designed and embedded
in the skip connection of the CSAG and DCCNet. On the ISIC-2017 data set, a large number of
ablation experiments have verified the superiority and robustness of the CSFAG module and Densely
Connected Convolution. The segmentation performance of CSAG and DCCNet is compared with
other latest algorithms, and very competitive results have been achieved in all indicators. The
robustness and cross-data set performance of our method was tested on another publicly available
data set PH2, further verifying the effectiveness of the model.

Keywords: deep convolutional neural network; skin lesion segmentation; attention mechanism;
computer-aided diagnosis

1. Introduction

One third of cancers worldwide are skin cancers [1]. Currently, 2 to 3 million cases of
non-melanoma skin cancer and 132,000 cases of melanoma skin cancer occur globally each
year. It is estimated that in the United States, there were 96,480 new cases and 7230 deaths
from melanoma in 2019. Melanoma accounts for less than 5% of all skin cancers, but 75%
of skin cancer deaths are related to melanoma. Studies have shown that the 5-year survival
rate of patients with advanced malignant melanoma is only 15%, while the final cure rate
of early patients is as high as 95% [2]. Patients with benign melanoma only need to be
found early and removed to prevent the disease from being life-threatening [3]. Therefore,
the diagnosis of benign and malignant melanoma as well as early and late stages can play
an extremely important role in the survival of melanoma patients.

Dermoscopy is an image formed based on the imaging principle of removing the
reflection of the skin surface and visually enhancing the deeper skin [4]. Compared
with visual inspection, dermoscopy can improve the diagnostic accuracy rate by 20% [5].
Skin lesion segmentation is one of the important steps in the computer-aided diagnosis of
various skin diseases. As shown in Figure 1, due to the huge differences in the size, location,
shape and color of the lesions in different patients, and a large number of artifacts, including
inherent skin features (such as hair, blood vessels) and artificial artifacts (such as bubbles,
ruler marks, uneven lighting, incomplete lesion areas, etc.), the automatic segmentation of
lesions in dermoscopic images is very challenging. In addition, the low contrast between
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the lesion and the surrounding texture also hinders the automatic segmentation of the
lesion area.

Figure 1. A typical pictorial presentation of the skin lesion images with different challenging
for segmentation.

With the help of computer-aided diagnosis, segmentation of skin lesion images to
obtain lesion areas helps doctors quickly identify the location of the lesion area, which
can improve the diagnosis rate and enable patients to be treated early. In the early stage,
the skin lesion segmentation image use edge detection, threshold segmentation, active
contour (expectation maximization, level set, clustering, etc.) or region-based (region
growth, iterative stochastic region merging, etc.) hybrid technology [6,7]. Although the
above segmentation algorithm has a certain segmentation effect, it relies too much on
the quality of manual feature selection and introduces prior information. Moreover, it is
difficult for the recognition model based on artificial features to obtain good generalization
ability for skin lesions images with highly changed clinical manifestations.

Recently, supervised methods have achieved promising results in the field of computer
vision, but they rely on annotated training data sets, which require the proficiency of
humans and related background knowledge. In contrast, unsupervised learning makes
data-driven decisions by obtaining insights directly from the data itself. Unsupervised
learning is applied to all aspects of image processing. Ahmed et al. [8] proposed a low-
rank tensor with a sparse mixture of Gaussian (LRTSMoG) decomposition algorithm for
natural crack detection. He proposed algorithm models jointly the LRST pattern by using a
tensor decomposition framework. In particular, the weak natural crack information can
be extracted from strong noise. Gupta et al. [9] investigate the utility of unsupervised
machine learning and data visualisation for tracking changes in user activity over time.
The goal of semi-supervised and unsupervised image segmentation is to greatly reduce
or even eliminate the need for training data, thereby minimizing the burden on clinicians
when training the segmentation model. Li et al. [10] present a novelsemi-supervised
method for skin lesion segmentation, where the network is optimizedby the weighted
combination of a common supervised loss for labeled inputs only anda regularization
loss for both labeled and unlabeled data. Pathan et al. [11] proposed a deep clustering
architecture and formal image analysis for image segmentation. The main idea is based on
an unsupervised learning method, clustering the images of the severity of the disease in
the sample of the subject, and then segmenting the image to highlight and outline the area
of interest. Feyjie et al. [12] proposed a novel small-scale learning framework for semantic
segmentation, in which unlabeled images can be used in each plot.
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Recently, the Deep Convolutional Neural Network (DCNN) model segment skin
lesions into pixel-level classification problems and achieve remarkable success [13–16].
No matter from the deep full convolutional neural network (FCN), which earliest uses in
image segmentation [17], to UNet [18], which extends the architecture of FCN, and various
extension models based on UNet architecture, they all have the contradiction between
semantic information and spatial location information. The feature semantic information
in the deep layers of the network is richer, but through step-by-step pooling, the spatial
resolution of the feature is continuously reduced, and the spatial position information
is continuously lost. If the output is directly upsampled to the original input resolution,
the segmentation result will be rougher [19]. For dermoscopy images, due to its small
grayscale changes and relatively blurred boundaries, the underlying features with rich spa-
tial location information are particularly important for restoring feature spatial resolution.

In recent years, the attention mechanism has been widely used in deep neural networks
and has been widely used in many tasks [20–22]. Most applications in computer vision and
computer graphics involve the concept of image filtering to reduce noise or extract useful
image structure. The guided filter [23] is an edge-preserving image filter, which serves
as a special extension path that transfers the structural information extracted from the
low-level feature map to the high-level feature map. It is effective and efficient in a variety
of computer vision and computer graphics applications, including noise reduction, detail
smoothing/enhancement, HDR compression, image extinction/feathering, haze removal,
and joint upsampling.

In this article, we propose a Channel Spatial Attention-guided network with Densely
Connected Convolutional (CSAG and DCCNet) based on deep CNN. The model is equipped
with a novel and effective Channel Spatial Fast Attention-guided Filter module (CSFAG)
for dermoscopic image segmentation. Compared with the existing attention methods
widely used in CNN, the CSFAG module has three advantages. First, we directly impose
some constraints on the unknown output by considering the guide image and use spatial
attention and channel attention to collect information around the feature map. The calcu-
lated attention weight is applied to the guide feature map, so that the model can further
capture the correlation of dimensional features, focus on the lesion area, and reduce the
influence of noise on the segmentation performance of the model. Secondly, the CSFAG
module supports the fusion of multi-resolution features. This module can recover spatial
information by filtering low-resolution feature maps and high-resolution feature maps,
and merge structural information of various resolution levels to better retain spatial lo-
cation information. Third, adding the CSFAG module we proposed to the network can
greatly improve the performance of lesion segmentation, and the module can be seamlessly
integrated into multiple basic segmentation network architectures, with good robustness.

Our specific work content is as follows:

(1) We have designed a novel Channel Spatial Fast Attention-guided Filter (referred
to as CSFAG). Through a large number of ablation experiments, it is verified that
the CSFAG module is superior to other mainstream attention modules and can be
combined with multiple basic segmentation networks, which can effectively improve
the segmentation performance of the model.

(2) Embed the proposed CSFAG module into the jump connection of the M-Net segmen-
tation network to form CSAG and DCCNet. In the last step of the CSAG and DCCNet
encoding path, densely connected convolutions are used to replace ordinary convo-
lutional layers, and through the idea of “collective knowledge”, the gap between
low-level features is bridged and features are effectively aggregated.

(3) On the ISIC-2017 data set, the segmentation performance of CSAG and DCCNet was
compared with other latest algorithms. The six indicators of accuracy, sensitivity,
specificity, Dice coefficient, Jaccard coefficient, and Matthew correlation coefficient
were all achieved very competitive results. CSAG and DCCNet trained in ISIC-2017
was tested on another publicly available data set, PH2, to verify the robustness and
cross-dataset performance of our method.
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The rest of this paper is arranged as follows: related work is introduced in Section 2.
Section 3 introduces the proposed network architecture in detail; experiments and compar-
ison results are explained in Section 4; finally, Section 5 gives our conclusion.

2. Work Organization
2.1. Semantic Segmentation Model

The method based on full convolutional network (FCN) has made great progress in se-
mantic segmentation. The initial popular depth learning method for semantic segmentation
tasks is patch classification, which uses image blocks around the pixel to classify each pixel
independently. J. Long et al. [17] first applied the FCN to the end-to-end training of image
segmentation, which makes the convolutional neural network can perform dense pixel
prediction without a fully connected layer. This method to produce image segmentation
maps of any size. Since then, in the field of semantic segmentation, this model is adopted
by almost all advanced methods. Except for the fully connected layer, another problem
with convolutional neural networks for semantic segmentation is the use of pooling layers.
Although the pooling layer expands the receptive field and aggregates the context, it causes
the loss of location information.

There are two different structures to solve this problem. The first is the encoder-
decoder structure. The encoder gradually reduces the spatial dimension through the
pooling layer, and the decoder gradually repairs the details and spatial dimensions of the
object through methods such as bilinear interpolation. The encoder and the decoder are
usually embedded with a skip connection, which can better help the decoder to repair
the details of the target. U-Net [18] is the most commonly used structure in this method.
Since then, the UNet-based structure has derived multiple segmentation networks, such
as V-Net [24], UNet++ [25], MultiResUNet [26], UNET 3+ [27]. The second method is to
use the atrous convolution structure to remove the pooling layer. On the premise of not
reducing the spatial dimension, the atrous convolutional layer improves the receptive
field index, captures multi-scale context information and maintains the spatial position
relative of the feature map, while the pooing will introduce translation invariance. Classical
semantic segmentation networks from Deeplab series networks [28–30] to PSPNet [31] all
use atrous convolution.

2.2. Attention Mechanism

As we all know, attention plays an important role in human perception [32,33]. The at-
tention mechanism has been widely used in many tasks. Earlier, the Google Deep Mind
team first used the attention mechanism on the RNN model for image description prob-
lems [34]. Subsequently, they proposed a model based on the attention mechanism for the
recognition of multiple objects in the image [35]. Typical attention models on a single im-
age are residual attention network [36] and squeeze-and-excitation Networks (SENet) [37].
The residual attention network includes two attention components, a stacked network
structure composed of multiple attention components, and residual attention learning that
combines the residual structure with the attention mechanism. SENet includes a squeeze
and excitation block to retain the channel attention introduced for each residual block.
PSANet [38] aggregates the contextual information of each location through the predicted
attention map. A2Net [39] propose a dual attention block, which can collect informative
global features from the entire time and space distribution of the image. DANet [40] is
based on the self-attention mechanism to capture rich contextual relevance to solve the
scene segmentation task, while applying spatial and channel attention to collect information
around the feature map. Sanghyun Woo [41] proposed an attention module called CBAM,
which can be embedded into classic deep networks to improve model performance. Huisi
Wu et al. [42] proposed a deep learning model equipped with a new and efficient adaptive
dual attention module (ADAM) to automatically segment skin lesions from dermoscopic
images. Most of the above methods only focus on feature information from the two parts of
spatial and channel. However, in some recent studies, some scholars use both spatial and
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temporal domains for object segmentation with self-attention. Hamad et al. [43] proposed
dilated causal convolution with multi-head self attention for sensor human activity recog-
nition. The multi-headed self-attention is used to enable the model to focus on important
and relevant time steps more than the insignificant time steps from the sequential feature
maps during recognition. Hu et al. [44] proposes a hybrid multi-dimensional features
fusion structure of spatial and temporal segmentation model for automated thermography
defects detection. They design a new attention block to provide spatiotempo-ral attention
to focus on semantically meaningful regionsof the volumetric data and recalibrate the
feature mapsadaptively, based on the weighted channels.

However, all of the above methods only emphasize the local focus of the pixel relation-
ship or the global focus of the entire image. Due to the different shapes, sizes and colors of
lesions; skin types and characteristics; inherent skin characteristics, a single attention mech-
anism or the existing two-dimensional attention module with dimensional integration still
cannot cope with the challenges in skin lesion segmentation. In this work, we combined
image filtering with attention, and designed a Channel and Spatial Fast Attention-guided
Filter (CSFAG) module to preserve the smooth characteristics of the edges of skin lesions
without being subject to gradient inversion The effect of artifacts. The CSFAG module
performs well in terms of quality and efficiency.

2.3. Dermoscopic Image Segmentation

Earlier, Kawahara, etc. proposed a fully convolutional network based on Alex Net
to extract the surface features of melanoma [45]. Subsequently, Long [17] proposed a
fully convolutional neural network FCN, which uses a fully convolutional layer instead
of a fully connected layer to convert the classification convolutional neural network into
a segmentation network. Lequan uses ResNet based on the FCN network structure to
segment the lesion area on the ISIC dermoscopic image data set [46]. UNet, proposed
by Ronneberger et al. [18], is one of the most popular FCN structures for medical image
segmentation. Tschandl P is based on migration learning and uses the LinkNet structure to
use the ResNet classification network pre-trained on the ImageNet data set for the coding
part of the segmentation. It has achieved a significant performance improvement on the
task of segmentation of skin lesions [47]. The DeepLab series of work introduced delitated
convolution to reduce the loss of the resolution of the coding part and increase the receptive
field. Goyal applied DeepLabV3+ to the task of skin lesions segmentatio [48]. In order to
reduce the number of parameters that make the network lightweight, Md. Hasan et al.
uses depthwise separable convolution instead of standard convolution, and projects the
learned distinguishing features onto the pixel space at different stages of the encoder [49].
However, in clinical practice, due to the complexity of the lesion and the significant
increase in the number of dermoscopic images, the lightweight, robustness and ability of
the segmentation model to be combined with multiple basic networks are becoming more
and more important. In our work, our goal is to develop a segmentation model that is easy
to transplant and has good robustness.

3. Proposed CSAG and DCCNet Model

The CSAG and DCCNet proposed in this paper is an end-to-end multi-label deep
network, which consists of multiple novel channel and space fast attention-oriented filter
modules (CSFAG), densely connected convolution, multi-scale input layer, UNet and side
output layers. In the CSFAG module, the guided filter is combined with the attention mod-
ule, and a novel attention-oriented filter is designed and embedded in the skip connection
of CSAG and DCCNet. In the last step of the CSAG and DCCNet coding path, densely
connected convolution is used to replace the ordinary convolutional layer. Using dense
connection convolution in the last step of the encoding path can recover spatial informa-
tion with the help of rich context information, further enriching context information and
reducing the difficulty of training. CSAG and DCCNet uses U-Net as the basic network
structure, and builds an image pyramid input on the left side of the coding layer to achieve
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a multi-scale layer of multi-level receiving field fusion; on the right side of the decoder, it
introduces a side output layer, average all side output maps as the final prediction map.
Simultaneously use the multi-label loss function to update the parameters to train the
model The architecture of this model is shown in Figure 2.
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Figure 2. CSAG and DCCNet model architecture.

3.1. CSFAG Module

The concept of image filtering is widely used in computer vision and computer
graphics. Simple linear translation invariant (LTI) filters, such as Gaussian filters, Laplacian
filters and Sobel filters, are widely used for image blur/sharpening, edge detection and
feature extraction. The kernel of the LTI filter is spatially invariant and has no relation to
the image content. Considering the above reasons, we hope to merge other information
from the given guide image during the image filtering process so that the image filter can
establish a connection with the structural information in the dermoscopic image, in order to
better improve the feature extraction ability of the model. We consider using guided images
to directly impose some constraints on the output, and use spatial attention and channel
attention to collect information around the feature map. Therefore, this article is inspired
by the above-mentioned methods and designs a channel and space fast attention-oriented
filter (CSFAG) module. The module is mainly composed of two parts, the fast guide filter
and the attention module. The model architecture of this module is shown in Figure 3.
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Figure 3. CSFAG model architecture.
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The input of the CSFAG module includes the guided feature map G and the filtered
feature map F, and the output is a high-resolution feature map O. First, we use bilinear
interpolation to scale the guiding feature map G to generate a low-resolution feature
map Gl .Gl and filtered feature map F through attention module to generate attention
feature map A. We minimize the reconstruction error [50] between Gl and F to obtain the
coefficients Wl and Bl of the CSFAG module. By bilinearly up-sampling Wl and Bl , we
obtain the coefficients Wh and Bh which match the guiding feature map G. Finally, the
output O of the CSFAG module is obtained through linear transformation.

Specifically, the channel and space fast attention-oriented filter constructs a local
square window ωk with a radius of r and a pixel k as the center to realize a local linear
model. Assuming that Gli is the pixel of Gl , the output Oki of ωk is obtained by linear
transformation:

Oki
= WkGli + Bk, ∀i ∈ ωk (1)

In order to determine the coefficients Wk and Bk, it is necessary to minimize the
reconstruction error between the outputs Oki and the filtered feature Fi of all pixels in the
window ωk, as shown in Equation (2), where λ is a regularization parameter which controls
the smoothness. Ai is the attention weight at position i, obtained by the attention module:

min
W,Bk

E(Wk, Bk) = ∑
i∈θk

(
A2

i (WkGl + Bk)
2 + λW2

k

)
(2)

Wk =

1
|ω| ∑i∈ωk GliFi−µk F̄k

σ2
k + λ

(3)

Bk = F̄k −Wkµk (4)

In Equations (3) and (4), µk and σk are the mean and variance of G in the window
ωk,|ω| is the number of pixels in ωk, and Fk =

1
|ω| ∑i∈ω is the average of F in ωk.

After calculating the coefficients Wk and Bk in the window ωk, we get the output Oki
corresponding to each window. Average Oki obtained from different windows to generate
Oi which is equal to the average coefficient of all windows overlapping with i. As shown
in Equation (5),

Oi =
1

Nk
∑

k∈Ωi

WkGi +
1

NK
∑

k∈Ωi

Bk = Wl ∗ Gl + Bl (5)

where Ωi is the set of all windows including position i, and * is element-wise multiplication.
After up-sampling Wl and Bl to obtain Wh and Bl respectively, the final output is calculated
as O = Wh ∗ G + Bh.

The calculation process of the CSFAG module is described in detail in Algorithm 1.
In order to further demonstrate that the CSFAG module can help the model gener-

ate clearer boundaries, highlight the lesion area and reduce background influence, We
randomly selected a melanoma dermoscopy image in the test set of the ISIC2017 data set
for visual analysis. We select the CSFAG module on the jump connection in the fourth
layer of the CSAG and DCCNet model as the test module. For showing the role of the
CSFAG module more clearly, we perform three convolution operations on the input of the
CSFAG module, the output of the intermediate attention module and the final output of
the CSFAG module to reduce the dimensionality. Then use bilinear interpolation to restore
the feature size to 256× 256. We have drawn a CAM heat map to more clearly show the
changes produced by the CSFAG feature map. As shown in Figure 4, we can clearly see
from the CAM heat map, after the attention module in the CSFAG module, the features
are more focused on the lesion area. In particular, the final output results generated after
the fast guide filter, the model further aggregates the characteristics of the space and the
channel, enhances the discriminative ability of the network, and makes the network good
use of the given characteristics.
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Algorithm 1 Channel Spatial Fast Attention-guided Filter

Input: the guided feature map G and the filtered feature map F, parameters are r and λ
Output: high-resolution feature map O

1: Gl= fsubsample(G)
2: FCA= fChannelAttention(F),FSA= fSpatialAttention(FCA)

GCA= fChannelAttention(Gl),GSA= fSpatialAttention(GCA)
3: A0= FSA+GSA,A1=FRelu(A0),A2=Fconvolution(A1),A=Fsigmod(A2)
4: ωk = a local square window with a radius of r and a pixel k as the ccenter
5: µk =

1
N ∑N

i=0 Gl , ∀i ∈ ωk
6: σ2

k = 1
N ∑N

i=0(i− µ)2Gl , ∀i ∈ ωk

7: F̄k =
1
|ω| ∑N

i=0 F, ∀i ∈ ωk

8: Wk =
1
|ω| ∑i∈ωk Gli Fi−µk F̄k

σ2
k +λ

9: minWk,Bk E(Wk, Bk) = ∑i∈ωk

(
A2

i (WkGl + Bi)
2 + λW2

k

)
10: Oki

= WkGli + Bk, ∀i ∈ ωk

11: Wl =
1

Nk
∑k∈Ωi Wk,Bl =

1
Nk

∑k∈Ωi Bk
12: Oi = Wl ∗ Gl + Bl , ∀i ∈ G
13: Wh= fupsample(Wl),Bh= fupsample(Bl)
14: O = Wh ∗ G + Bh
15: return O

Figure 4. Visual display of CSFAG module input and output (A dermoscopy image of melanoma is a case, the red line is
ground truth).

Channel and Spatial Attention Learning

The attention mechanism on the channel has been proposed in Hu et al.’s SENet [37],
and it has been verified that it can improve network performance. The channel atten-
tion module and the spatial attention module [41] are shown in Figure 5. The Channel
Attention Module compresses the feature map in the spatial dimension to obtain a one-
dimensional vector before performing operations. As shown in Figure 5a, the input feature
map FC ∈ RC×H×W is passed through global max pooling and global average pooling
based on width and height respectively, and then passed through a multilayer perceptron
(MLP). The MLP output feature maps FC

Avg ∈ RC×1×1 and FC
Max ∈ RC×1×1 are summed

element-by-element, so that channel attention maps Xc can be generated, as shown in
Equation (6). After the sigmoid activation operation, the final channel attention feature
map d is generated, as shown in Equation (7). The channel attention featuremap and input
featuremap are subjected to elementwise multiplication operations to generate the input
features required by the spatial attention module.

Xc = FC
Avg ⊕ FC

Max , Xc ∈ RC×1×1 (6)
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where ⊕ represents addition element by element.

Ac =
c⋃

i=0

1
1 + exp(−Xi,1,1)

, Ac ∈ RC×1×1 (7)

where C is the number of channels, Xi,1,1 is the element with coordinate (i, 1, 1), and
⋃

is
element-by-element contacting.

C

Avg
F

CX

11C

WHC

CF

C

MaxF

S

Avg
F

S

Max
F

SX SA

WHCWHC

CA
11C

11C

11C

11C

1×H×W

1×H×W

1×H×W
2×H×W

Figure 5. Attention module; (a) channel attention submodule; (b) spatial attention submodule.

The Spatial Attention Module compresses the channel, and performs average pooling
and maximum pooling in the channel dimensions. As shown in Figure 5b, the feature
map Ac ∈ RC×H×W output by the channel attention module is used as the input feature
map of this module. First, the average pooling and maximum pooling operations along
the channel axis are used to obtain two two-dimensional feature maps FS

Avg and FS
Max (the

specific process is shown in Equations (9) and (10)), and then concat the two results based
on the channel. The feature map of the merged 2 channels is subjected to a convolution
operation to reduce the dimension to 1 channel to generate a spatial attention map Xs,
as shown in Equation (8), where W and b represent MLP weight and MLP biase respectively.
Cat(.) means concatenate. Conv(.) means convolution operation.

Xs = Conv(Cat(FS
Avg; FMax )W + b, Xs ∈ R1×H×W) (8)

FS
Avg(x, y) =

1
C

c

∑
i=1

Xi,x,y, FS
Avg ∈ R1×H×W (9)

FS
Max(x, y) = Maxi=0

(
Xi,x,y

)
, FS

Max ∈ R1 ×H×W (10)

Then generate spatial attention feature AS through sigmoid, as shown in Equation (11),
and finally multiply the feature and the input feature of the module to obtain the final
generated feature.

AS =
H⋃
m

w⋃
n

1
1 + exp(−Xsm,n)

, As ∈ R1×H×W (11)

where m, n represent mth position and nth position respectively.
⋃

represents the contact
element by element.

3.2. Densely Connected Convolution Module

The densely connected convolution module [51] is composed of multiple dense blocks,
and each dense block performs two convolution operations. The structure of densely
connected convolution is shown in Figure 6. The distinctive feature of the densely con-
nected convolution module is that the input of each block is the concatenation of all feature
maps generated by all previous blocks, and each layer performs a series of continuous
transformations. The idea of densely connected convolution has some advantages over
conventional convolution. First, it helps the network learn diversified functional char-
acteristics, rather than redundant functions. In addition, this idea allows information to
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flow through the network and reuse functions to increase the representativeness of the
network. Dense connectivity ensures the maximum information path between layers by
connecting all layers. The output features of all convolutional layers in the dense block are
connected in series along the channel axis. Let Xi−1 and Xi be the input and output of the
i-th tightly connected dense block, respectively. The output Xi of the i-th dense block Fi can
be obtained in the following manner.

Xi = Fi([Xi−1, Xi−2, . . . , X0]) (12)

where [.] represents the element series along the channel axis, and the input X0 is the initial
element f1. Because the input of the convolutional layer is repeatedly cascaded, the number
of channels used for the input of the next convolutional layer increases with the growth
rate n.

Figure 6. Densely connected convolution module.

4. Results and Discussion
4.1. Data Set and Processing
4.1.1. Data Set

The data used in this article were from the ISIC2017 [52] challenge data set released
by the International Skin Imaging Collaboration (ISIC) and the PH2 [53] data set provided
by the Pedro Hispano Dermatology Department of the Hospital and the Tecnico Lisboa
University of Porto Research Group in Matosinhos, Portugal. The ISIC2017 data set
provided 2750 dermoscopic images in RBG format, of which 2000 images were used in the
training phase, 600 images were used in the Test Phase, and 150 images were used in the
Validation Phase. The PH2 data set contained 200 8-bit RGB dermatoscope images with a
fixed size of 768× 560 pixels. All images provided lesion boundaries given by professional
clinicians. Table 1 summarizes the distribution of the two data sets.

Table 1. The distribution of The ISIC Challenge 2017 data set and PH2 datasets.

Dataset
ISIC 2017 PH2

Me SK Ne Total Me SK Ne Total

Training data 404 296 1450 2150 - - - -
Test data 117 90 393 600 40 - 160 200

Ne, Me and SK stand for Benign Nevus, Melanoma or Seborrheic Keratosis, respectively.

4.1.2. Processing

We combined 150 test data and 2000 training data as training data for the network.
In order to train our proposed network structure more conveniently, we scaled the width
of images of different sizes to 256 px according to the aspect ratio, and then filled the black
borders on the top and bottom of the image to increase the height to 256 px. In order to
better allow the network to learn the brightness, tone, and vividness of the dermatoscope
image, we converted the image in RGB format to HSV format. As shown in Figure 7,
the color components of R, G, and B in the RGB image were all related to the amount of
light irradiated to the object. Therefore, the image description based on these components
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made it difficult to distinguish the object. Unlike RGB, HSV separates brightness or image
intensity from chromaticity or color information and is more stable to changes in external
lighting. HSV images can detect objects with specific colors and reduce the influence of
light intensity from the outside. Therefore, we used HSV images as an effective supplement
to training data to train the segmentation network. At the same time, the two formats
of images were rotated horizontally, vertically, horizontally and vertically to expand the
number of training images, and finally 17,200 training images were generated.
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Figure 7. Visual description of the input dermoscopy image in different color spaces.

4.2. Experimental Setup
4.2.1. Evaluation Metrics

We used Sensitivity (SEN), Specificity (SPE), Accuracy (ACC), Jaccard (JAC), Dice
Coefficient (DIC) and Matthew Correlation Coefficient (MCC) to more accurately judge the
segmentation performance of CSAG and DCCNet proposed in this paper. Among them,
SEN, SPE, and ACC are common statistical measures used to judge the performance
of binary classification. JAC and DIC are used to evaluate the similarity between the
segmentation results and ground truth. MCC is the correlation coefficient between the
prediction result and ground truth. The above evaluation indicators are directly calculated
from the confusion matrix. The calculation method of these six evaluation indicators refers
to Equations (13)–(18), where TP represents the correct segmentation of skin lesion pixels,
and FN is the wrong segmentation of skin lesion pixels. If the segmentation of non-lesion
pixels is correctly classified as non-lesion, it is regarded as TN. Otherwise, they are FP.

Sensitivity =
TP

TP + FN
(13)

Speci f icity =
TN

FP + TN
(14)

Accuracy =
TP + TN

TP + FN + TN + FP
(15)

JAC =
TP

TP + FN + FP
(16)

DIC =
2× TP

2× TP + FP + FN
(17)

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(18)

4.2.2. Implementation Details

All experiments in this article were run on Ubuntu 16.04 system, performed on a work-
station equipped with Intel(R) Xeon(R) Gold 5218 CPU 2.30 GHz, NVIDIA Quadro RTX
6000 (24 G). Use Python 3.6 and Pytorch 1.0.0 deep learning framework for programming.
CSAG and DCCNet used stochastic gradient descent with momentum, the momentum
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parameter was 0.9, the weight decay coefficient was 5 × 10−4, the initial learning rate
was 0.1, the exponential decay was 10% every 50 epochs, and the mini-batch size was
16. We used the Softmax function for final classification. The radius r of the local square
window constructed in the CSFAG module was 4, and the regularization parameter λ was
set to 0.001.

4.3. Ablation Analysis
4.3.1. Discussion on the Number of Densely Connected Blocks at the Bottom

In the last step of the CSAG and DCCNet encoding path proposed in this article,
densely connected convolution was used to replace the ordinary convolutional layer.
However, setting several densely connected blocks could achieve the best segmentation
results, which is a problem worth discussing. Therefore, this article used 600 dermoscopy
images on the ISIC-2017 data set for testing, and the distribution of the 600 test images
is shown in Table 2. We used the control variable method. In the skip connection part
of CSAG and DCCNet, the CSFAG module was still embedded, and only the number of
dense connection blocks D used in the last step of the encoding path changed. We set
D = 1, 2, 3, and 4 respectively. When D = 1, there was no densely connected convolution
block in this layer, which was similar to the last coding layer of the standard U-Net.

Table 2. Determination of the numberD of densely connected blocks on the ISIC-2017 data set. Bold
data indicates that the value is the maximum value in this indicator.

Method
Overall

ACC SEN SPE DIC JAC MCC

D = 1 95.04 87.58 96.40 84.96 75.30 81.49
D = 2 95.21 87.51 96.99 85.90 77.91 82.51
D = 3 95.94 87.03 99.35 86.97 78.85 83.93
D = 4 95.61 86.50 97.46 86.35 77.89 83.50

The specific experimental results are shown in Table 2. When the number of densely
connected blocks was set to 3, the best results were achieved on ACC, SPE, DIC, JAC,
and MCC. When D = 4, all indicators fell. In subsequent experiments, three densely
connected blocks were set.

4.3.2. Structure Ablation

The CSAG and DCCNet proposed in this paper uses U-Net as the basic network
structure, and builds an image pyramid input on the left side of the coding layer to achieve
a multi-scale layer of multi-level receiving field fusion; on the right side of the decoder,
introduces a side output layer, average all side output maps as the final prediction map.
This structure also constitutes M-Net [54]. In addition, the use of densely connected con-
volution and CSFAG module are also key factors for the CSAG and DCCNet model to
show excellent performance in skin lesion segmentation. In this regard, we designed a
set of ablation experiments, taking the UNet network structure as the baseline model,
and adding image pyramid input, side output layers and multi-label loss functions to this
basic structure to verify that these methods can improve the segmentation of dermoscopic
images. In the last step of the MNet encoding path, densely connected convolutions are
used instead of ordinary convolutional layers. We named them M-Net+Dense Convolu-
tions. The CSFAG module is embedded on the MNet skip connection, and we named it
M-Net+CSFAG. Experiments have further proved that these two methods are effective.
The specific segmentation performance indicators are shown in Tables 3 and 4. The data
in all tables were tested using different models on the 600 test set images in the ISIC2017
data set, calculating the various indicators of each test image, and averaging the various
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indicators of the 600 test images. The results obtained for Nevus cases, Melanoma cases,
SK cases, and overall were all strictly trained for 200 epochs.

Table 3. ISIC-2017 data set, performance comparison of U-Net, M-Net, M-Net+DC (Dense Convolutions), M-Net+CSFAG
and CSAG and DCCNet (ours) in sensitivity, specificity and accuracy. Bold data indicates that the value is the maximum
value in this indicator.

Method Params
Nevus Cases Melanoma Cases SK Cases Overall

SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC

U-Net 8.6M 81.80 97.53 93.83 70.31 98.08 89.62 57.84 98.34 89.07 74.53 97.59 92.32
M-Net 10.92M 85.96 97.31 96.05 78.60 97.58 92.17 72.60 98.32 91.69 83.22 98.32 94.58
M-Net+DC 13.79M 87.63 97.98 96.13 79.62 97.97 93.34 68.80 99.60 92.89 84.46 99.15 95.10
M-Net+CSFAG 24.89M 89.92 97.63 96.82 79.40 97.20 93.24 69.94 98.02 93.39 86.54 97.41 95.85
Ours 28.74M 89.85 99.43 97.46 80.23 99.51 94.70 80.24 99.70 94.99 87.03 99.35 95.94

Table 4. On the ISIC-2017 data set, performance comparison of U-Net, M-Net, M-Net+DC (Dense Convolutions), M-
Net+CSFAG and CSAG and DCCNet (ours) in Jaccard coefficient, Dice coefficient and Matthew correlation coefficient. Bold
data indicates that the value is the maximum value in this indicator.

Method Params
Nevus Cases Melanoma Cases SK Cases Overall

DIC JAC MCC DIC JAC MCC DIC JAC MCC DIC JAC MCC

U-Net 8.6M 78.71 64.89 75.12 73.16 57.68 66.73 64.39 47.49 58.55 74.32 59.13 69.64
M-Net 10.92M 86.89 77.34 84.80 81.72 69.20 78.36 74.32 59.13 71.56 83.68 74.08 81.30
M-Net+DC 13.79M 87.14 78.16 85.56 83.31 72.13 77.11 78.19 62.80 73.85 84.74 76.65 81.78
M-Net+CSFAG 24.89M 88.46 79.31 86.68 83.70 72.71 79.83 79.16 65.51 75.20 85.63 76.86 83.20
Ours 28.74M 90.65 82.90 89.19 84.24 73.68 78.10 82.14 72.78 77.56 86.97 78.85 83.93

From the results in Tables 3 and 4, we can see that whether it was in Benign Nevus,
Melanoma and Seborrheic Keratosis lesions, MNet achieved greater improvement in
various indicators compared with UNet, which verified Pyramid input, side output and
multi-label loss function methods were helpful to improve the performance of dermoscopy
image segmentation. From the results of M-Net+Dense Convolutions and M-Net+CSFAG,
compared with MNet, the four key indicators of ACC, DIC, MCC, and JAC all achieved
certain improvements. This further proves that these two methods are effective. We
applied Dense Convolutions and CSFAG to MNet together to design the CSAG and
DCCNet proposed in this article. From the specific segmentation results, especially in the
segmentation of melanoma lesions and seborrheic keratosis, very competitive results could
be obtained.

As presented in Figure 8, we visually display the segmentation results of UNet, MNet,
M-Net+Dense Convolutions, M-Net+CSFAG, and CSAG and DCCNet proposed in this
section. For Figure 8f, we zoomed in on the lesion area on the image to visually show
the comparison between the five models verified in the structure ablation experiment and
the ground truth segmentation results. It can be clearly seen in the figure that, compared
with UNet, the segmentation result of MNet had clearer edges and more concentrated
recognition of the lesion area. For M-Net+Dense Convolutions, M-Net+CSFAG and ours,
compared with MNet, the segmentation results on moles and melanoma lesions had little
difference. We believe that for dermoscopic images of moles and melanoma lesions, due
to the large difference in the front background and the relatively concentrated lesion area,
a simpler model could obtain better segmentation results. However, for the small difference
between the front background and the blurred boundary of the lesion area, similar to the
dermoscopic image of the last two rows in Figure 8, it was difficult to obtain a more ideal
segmentation result using a more basic segmentation network structure such as UNet or
MNet. Therefore, CSAG and DCCNet was designed in this paper. From the segmentation
results of the last two rows in Figure 8, CSAG and DCCNet could identify larger lesion
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areas for images with small differences in the front background and blurred boundaries of
the lesion area, the segmentation result obtained was closer to the ground truth.

a b c d d d e f

Figure 8. Visualized results of structural ablation experiments. The first two lines are Benign Nevus,
the middle two lines are Melanoma lesions, and the last two lines are Seborrheic Keratosis lesions.
(a) Original image; (b) the ground truth; (c) U-Net; (d) 1. M-Net; (d) 2. M-Net+Dense Convolu-
tions; (d) 3. M-Net+ CSFAG; (e) CSAG and DCCNet model; (f) ground truth (red) and U-Net+
(purple), MNet (green), M-Net+Dense Convolutions (yellow), M-Net+CSFAG (black) and ours (blue)
segmentation results comparison chart. All pictures are preprocessed.

4.3.3. Attention Module Ablation

The Channel Spatial Fast Attention-guided Filter (CSFAG) module designed in this
paper is the main reason for the improvement of segmentation performance. In order
to verify the effectiveness of the CSFAG module and verify that it had better feature
aggregation performance than other attention modules, we designed a set of ablation
experiments. We use M-Net+Dense Convolutions in the structural ablation part as the
Baseline, and only changed the attention module embedded in the jump connection to
verify the advanced nature of the CSFAG module proposed in this article. Three classic,
lightweight, and general attention modules were selected for comparison with the CSFAG
module. The first was the Squeeze-and-Excitation module in SE-Net [37]. The SE module
performs attention or gating operations on the channel dimension to drive the model to
pay more attention to the channel features with the most information, while suppressing
those unimportant channel features. The second attention module is the Feature Pyramid
Attention (FPA) module proposed by Li and Xiong et al. [55]. This module performs
attention operations on pixels, adopts the idea of global pooling of PSPnet [31], and adds
the result of pooling to the result of convolution with attention. The last attention module is
the CBAM module proposed by Sanghyun Woo [41]. This module combines the attention
mechanism of spatial and channel, and learned how to effectively emphasize or compress
and extract intermediate features, so that the model pays more attention to the target
object itself.

Tables 5 and 6 show the segmentation performance of the model formed by the
combination of SE Block, FPA, CBAM and Baseline and CSAG and DCCNet (ours) on three
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skin lesions. From the perspective of various indicators, the segmentation performance of
the network structure with the added attention module was greatly improved compared
with the baseline. For CSAG and DCCNet, especially in the three key indicators of DIC,
JAC, and MCC, CSAG and DCCNet has achieved good results. We think the reasons why
CSAG and DCCNet could obtain higher results are considered as follows. SE Block only
studied the channel attention mechanism of feature maps, and ignored the information in
the spatial dimension. Although the FPA module used the pyramid structure to expand
the range of the receptive field, it lost the pixel-level positioning information, which had a
greater impact on the dermoscopic image segmentation. CBAM could learn what to pay
attention to and where to pay attention in the channel and spatial dimensions, but it is
difficult to integrate the structural information contained in low-resolution feature maps
and high-resolution feature maps, and retains less edge information. In addition, for the
parameters of each model, SE Block only paid attention to the characteristics at the channel
level, making the model parameters smaller. The FPA module uses 5× 5 and 7× 7 large
convolution kernels, resulting in a large amount of model parameters. CBAM applies
attention to both channel and spatial dimensions at the same time. Compared with SE
Block, the amount of CBAM module parameters also increased. However, the CSFAG
module proposed in this paper used the CBAM module as the attention module and
combined the guide filter, so the parameter amount was slightly higher than the CBAM
module parameter amount.

Table 5. Performance evaluation of sensitivity, specificity, and accuracy performance of different attention modules and
CSFAG modules on the ISIC-2017 data set using baseline as the basic structure. Bold data indicates that the value is the
maximum value in this indicator.

Method Params
Nevus Cases Melanoma Cases SK Cases Overall

SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC

SE Block+Baseline 26.62M 90.25 97.05 96.89 78.77 98.68 93.41 78.23 98.04 94.01 85.91 97.97 95.44
FPA+Baseline 32.08M 88.26 98.67 96.21 76.12 98.22 93.57 77.20 98.12 93.45 82.29 98.15 95.35
CBAM+Baseline 27.40M 89.01 98.25 97.06 76.05 97.75 93.59 81.69 96.68 94.16 82.76 97.70 95.99
Baseline 13.79M 87.63 97.98 96.13 79.62 97.97 93.34 68.80 99.60 92.89 84.46 99.15 95.10
Ours 28.74M 89.85 99.43 97.46 80.23 99.51 94.70 80.24 99.70 94.99 87.03 99.35 95.94

Table 6. Performance evaluation of Jaccard coefficient, Dice coefficient and Matthew correlation coefficient of different
attention modules and CSFAG modules on the ISIC-2017 data set using baseline as the basic structure. Bold data indicates
that the value is the maximum value in this indicator.

Method Params
Nevus Cases Melanoma Cases SK Cases Overall

DIC JAC MCC DIC JAC MCC DIC JAC MCC DIC JAC MCC

SE Block+Baseline 26.62M 87.61 78.47 86.13 84.15 73.52 78.79 81.76 72.10 80.91 85.89 78.48 82.63
FPA+Baseline 32.08M 87.36 77.89 85.90 83.99 73.64 77.20 81.36 70.34 76.83 85.09 77.05 82.89
CBAM+Baseline 27.40M 88.55 79.45 86.74 84.92 72.91 77.90 82.47 71.17 78.98 85.16 77.15 82.38
Baseline 13.79M 87.14 78.16 85.56 83.31 72.13 77.11 78.19 62.80 73.85 84.74 76.65 81.78
Ours 28.74M 90.65 82.90 89.19 84.24 73.68 78.10 82.14 72.78 77.56 86.97 78.85 83.93

For the problems of the above several attention modules, in order to further improve
the segmentation performance of the model, we designed the CSFAG module. In Figure 9,
we show the segmentation results of the four network structures for ablation experiments
in this section. From Figure 9, we found that compared to the other three attention modules,
the segmentation results obtained by CSAG and DCCNet (ours) were closer to ground
truth. Especially for dermoscopic images with relatively blurry lesions, CSAG and DCCNet
(ours) could segment larger lesions and get better segmentation results. In order to compare
the segmentation results intuitively, we marked the segmented edge contours with lines
of different colors and superimposed them on the original image, and enlarged the lesion
area, as shown in Figure 9g. Obviously, the blue line representing CSAG and DCCNet
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(ours) was closer to the red line representing ground truth than the other three modules,
which proves that the CSFAG module could achieve better segmentation performance on
the baseline model.

a b dc e f g

Figure 9. Visualization results of the attention module ablation. The first two lines are Benign Nevus,
the middle two lines are Melanoma lesions, and the last two lines are Seborrheic Keratosis lesions.
(a) Original skin lesion image; (b) Ground truth corresponding to the lesion; (c) SE Block+Baseline
model lesion segmentation results; (d) FPA+Baseline model lesion segmentation results;
(e) CBAM+Baseline model lesion segmentation Results; (f) CSAG and DCCNet (ours) model lesion
segmentation results; (g) ground truth (red) and SEnet+Baseline (purple), FPA+Baseline (green),
CBAM+Baseline (yellow) and ours (blue) segmentation Results comparison chart. All pictures
are preprocessed.

In order to further illustrate the superiority of the CSFAG module, we drew the
ROC curve and PR curve on the baseline-based SE block, FPA, CBAM model and CSAG
and DCCNet (ours) respectively on overall, Nevus cases, Melanoma cases, and SK cases.
The ROC curve gave information between false positive pixels and true positive pixels
in the form of scores based on the threshold change on the probability map. When the
ratio between the positive sample and the negative sample was large, the PR curve could
better reflect the true performance of the classification. The difference from the upper left
convex of the ROC curve was that the PR curve had an upper right convex effect. As shown
in Figure 10, the areas of our ROC curve and PR curve were larger than other attention
modules. This further showed that the CSFAG module had better performance than other
attention modules, and better segmentation of background information and skin lesion
area information.



Sensors 2021, 21, 3462 17 of 26

Figure 10. Visualized results of ROC curve and PR curve.

4.3.4. Robustness Test of CSFAG Module

In order to verify that the CSFAG module proposed in this paper had good ro-
bustness and prove that it can be combined with multiple basic segmentation networks,
we designed this set of experiments. We used U-Net [18], SegNet [56] and M-Net [54]
three basic segmentation networks as the backbone network, embed the CSFAG mod-
ule into the skip connection, named U-Net+CSFAG, SegNet+CSFAG and M-Net+CSFAG.
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Tables 7 and 8 summarize the comparison of the segmentation performance of the three
basic architectures and the new model combined with the CSFAG module and the proposed
CSAG and DCCNet (ours). From Tables 7 and 8, we can see that although the new network
formed after adding the CSFAG module had a large increase in the amount of model
parameters, the new network was higher than the basic network in six indicators, which
showed that the CSFAG module could significantly improve the segmentation performance
of the network and is easy to transplant, and has good robustness.

The results of UNet and SegNet in Tables 7 and 8 were slightly lower than those of
Al-Masni et al. [57] in Tables 9 and 10. We considered the differences caused by different
parameter settings and training methods.Al-Masni et al. used the weight parameters of the
model trained on VGG-16 on the ImageNet dataset as the initial weight of SegNet, and only
fine-tuned the weight of the segmentation network. They used Theano and Keras for
programming, select the AdamOptimizer optimization algorithm, set the batch to 20, and
used NVIDIA GeForce GTX 1080 (16 G) GPU for training. However, when we reproduced
U-Net and SegNet, we set random initial weights, performed on a workstation equipped
with Intel(R) Xeon(R) Gold 5218 CPU 2.30 GHz, NVIDIA Quadro RTX 6000 (24 G). We
used Python 3.6 and Pytorch 1.0.0 deep learning framework for programming. Using the
stochastic gradient descent method with momentum, the momentum parameter was 0.9,
and the weight attenuation coefficient was 5 × 10−4.

Table 7. The performance comparison of sensitivity, specificity and accuracy of the three basic architecture networks and
their new network structure with the CSAG and DCCNet (ours) model on the ISIC-2017 data set. Bold data indicates that
the value is the maximum value in this indicator.

Method Params
Nevus Cases Melanoma Cases SK Cases Overall

SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC

UNet 8.60M 81.80 97.53 93.83 70.31 98.08 89.62 57.84 98.34 89.07 74.53 97.59 92.32
UNet+CSFAG 23.15M 87.35 99.31 96.00 73.89 97.68 90.16 82.98 98.87 91.49 85.67 98.45 94.34
SegNet 28.08M 82.83 98.65 95.60 73.24 99.02 91.69 65.62 98.98 92.64 80.19 99.00 95.46
SegNet+CSFAG 42.78M 85.51 98.99 96.31 74.47 99.14 93.29 82.69 98.10 91.82 82.41 98.99 95.34
M-Net 10.92M 85.96 97.31 96.05 78.60 97.58 92.17 72.60 98.32 91.69 83.22 98.32 94.58
M-Net+CSFAG 24.89M 88.82 97.63 96.82 79.40 97.20 93.24 69.94 98.02 93.39 86.54 97.41 95.85
Ours 28.74M 89.85 99.43 97.46 80.23 99.51 94.70 80.24 99.70 94.99 87.03 99.35 95.94

Table 8. The performance comparison of Jaccard coefficient, Dice coefficient and Matthew correlation coefficient of the three
basic architecture networks and their new network structure with the CSAG and DCCNet (ours) model on the ISIC-2017
data set. Bold data indicates that the value is the maximum value in this indicator.

Method Params
Nevus Cases Melanoma Cases SK Cases Overall

DIC JAC MCC DIC JAC MCC DIC JAC MCC DIC JAC MCC

UNet 8.60M 78.71 64.89 75.12 73.16 57.68 66.73 64.39 47.49 58.55 74.32 59.13 69.64
UNet+CSFAG 23.15M 86.28 75.87 83.88 76.75 62.27 71.30 72.46 56.82 67.14 81.08 68.18 77.77
SegNet 28.08M 83.66 71.91 81.28 77.84 63.73 73.28 73.67 58.31 70.15 83.07 71.05 80.70
SegNet+CSFAG 42.78M 86.43 76.10 84.41 82.04 69.55 78.58 75.35 60.45 70.80 85.06 74.00 82.36
M-Net 10.92M 86.89 77.34 84.80 81.72 69.20 78.36 74.32 59.13 71.56 83.68 74.08 81.30
M-Net+CSFAG 24.89M 88.46 79.31 86.68 83.70 72.71 79.83 79.16 65.51 75.20 85.63 76.86 83.20
Ours 28.74M 90.65 82.90 89.19 84.24 73.68 78.10 82.14 72.78 77.56 86.97 78.85 83.93

As shown in Figure 11, in order to visually display the improvement of segmentation
performance brought by the CSFAG module, we visually display the segmentation results
of U-Net, SegNet, M-Net and the new attention-guided network they generate and CSAG
and DCCNet. For (c3), (d3), (e3) in Figure 11, we use the red line to represent the ground
truth, and the blue line to represent the segmentation result of ours. We zoomed in on
the lesion area on the picture to visualize the comparison between the three models of the
CSFAG module and the ground truth segmentation results. (c3) shows the comparison
of U-Net and U-Net+CSFAG segmentation results. (d3) shows the comparison of SegNet
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and SegNet+CSFAG segmentation results. (e3) shows the comparison of M-Net and M-
Net+CSFAG segmentation results Contrast. It can be clearly seen in the figure that the three
backbone networks were compared with the new attention-guided filter network. The new
attention-guided filter network could significantly improve the segmentation performance
and make the segmentation boundary more accurate. Especially in the dermoscopic image
segmentation with small difference between the front and background, the network after
adding the CSFAG module could distinguish larger lesion areas. It can be seen that
adding the CSFAG module that we proposed to the network could greatly improve the
performance of lesion segmentation. The module could be seamlessly integrated into
multiple basic segmentation network architectures, and had good robustness.

a b c c c d d d e e e f

Figure 11. Visualization results of the robustness test of the CSAG module on the ISIC 2017 data set. The first two lines
are Benign Nevus, the middle two lines are Melanoma lesions, and the last two lines are Seborrheic Keratosis lesions.
(a) Original image; (b) the ground truth; (c) 1. U-Net; (c) 2. U-Net+CSFAG; (c) 3. Comparison of segmentation results ground
truth (red), U-Net (purple), U-Net+CSFAG (green) and ours (blue); (d) 1. SegNet; (d) 2. SegNet+CSFAG; (d) 3. Comparison
of segmentation results of ground truth (red) and SegNet (white), SegNet+CSFAG (black) and ours (blue) (e) 1. M-Net;
(e) 2. M-Net+CSFAG; (e) 3. Comparison of segmentation results of ground truth (red) and M-Net (yellow), M-Net+CSFAG
(pink) and ours (blue) (f) CSAG and DCCNet (ours) model. All pictures are preprocessed.

4.3.5. Comparing with Existing Technology by Lesion Type

Tables 9 and 10 compare the CSAG and DCCNet proposed in this paper with the latest
methods proposed by Al-Masni et al. [57] and Goyal et al. [58]. From the results shown in
Tables 9 and 10, compared with other models, CSAG and DCCNet achieved higher results in
all indicators in the segmentation of three different types of skin lesions, especially in ACC,
The four key indicators of DIC, JAC and MCC achieved the very competitive results. This
proves that our proposed CSAG and DCCNet could produce more accurate segmentation
boundaries, especially in the segmentation of melanoma lesions and seborrheic keratosis
images. Therefore, we believe that the CSAG and DCCNet proposed in this paper was an
effective supplement to the dermoscopic image segmentation method.
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Table 9. Performance evaluation of sensitivity, specificity, and accuracy performance of different attention modules and
CSFAG modules on the ISIC-2017 data set using baseline as the basic structure. Bold data indicates that the value is the
maximum value in this indicator.

Method
Nevus Cases Melanoma Cases SK Cases Overall

SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC

U-Net [57] 76.76 97.26 92.89 58.71 96.81 84.98 43.81 97.64 84.83 67.15 97.24 90.14
FCN-AlexNet [58] 82.44 97.58 94.84 72.35 96.23 87.82 71.70 97.92 89.35 78.86 97.37 92.65
FCN-32s [58] 83.67 96.69 94.59 74.36 96.32 88.94 75.80 96.41 89.45 80.67 96.72 92.72
FCN-16s [58] 84.23 96.91 94.67 75.14 96.27 89.94 75.48 96.25 88.83 81.14 96.68 92.74
FCN-8s [58] 83.91 97.22 94.55 78.37 95.96 89.63 69.85 96.57 87.40 80.72 96.87 92.52
DeepLabV3+[58] 88.54 97.21 95.67 77.71 96.37 89.65 74.59 98.55 90.06 84.34 97.25 93.66
Mask-RCNN [58] 87.25 96.38 95.32 78.63 95.63 89.31 82.41 94.88 90.85 84.84 96.01 93.48
SegNet [57] 85.19 96.30 93.93 73.78 94.26 87.90 70.58 92.50 87.29 80.05 95.37 91.76
FrCN [57] 88.95 97.44 95.62 78.91 96.04 90.78 82.37 94.08 91.29 85.40 96.69 94.03
Ensemble-A [58] 92.08 95.37 95.59 84.62 94.20 90.85 87.49 94.41 91.72 89.93 95.00 94.04
Ours 89.85 99.43 97.46 80.23 99.51 94.70 80.24 99.70 94.99 87.03 99.35 95.94

Table 10. Performance evaluation of Jaccard coefficient, Dice coefficient and Matthew correlation coefficient of different
modules and CSFAG modules on the ISIC-2017 data set. Bold data indicates that the value is the maximum value in this
indicator.

Method
Nevus Cases Melanoma Cases SK Cases Overall

DIC JAC MCC DIC JAC MCC DIC JAC MCC DIC JAC MCC

U-Net [57] 82.16 69.71 78.05 70.82 54.83 63.71 57.88 40.73 63.89 76.27 61.64 71.23
FCN-AlexNet [58] 85.61 77.01 82.91 75.94 64.32 70.35 75.09 63.76 71.51 82.15 72.55 78.75
FCN-32s [58] 85.08 76.39 82.29 78.39 67.23 72.70 76.18 64.78 72.10 82.44 72.86 78.89
FCN-16s [58] 85.60 77.39 82.92 79.22 68.41 73.26 75.23 64.11 71.42 82.80 73.65 79.31
FCN-8s [58] 84.33 76.07 81.73 80.08 69.58 74.39 68.01 56.54 65.14 81.06 71.87 77.81
DeepLabV3+[58] 88.29 81.09 85.90 80.86 71.30 76.01 77.05 67.55 74.62 85.16 77.15 82.28
Mask-RCNN [58] 88.83 80.91 85.38 80.28 70.69 74.95 80.48 70.74 76.31 85.58 77.39 81.99
SegNet [57] 85.69 74.97 81.84 79.11 65.45 71.03 72.54 56.91 64.32 82.09 69.63 76.79
FrCN [57] 89.68 81.28 86.90 84.02 72.44 77.90 81.83 69.25 76.11 87.08 77.11 83.22
Ensemble-A [58] 89.28 82.11 86.33 83.54 74.53 78.08 82.53 73.45 78.61 87.14 79.34 83.57
Ours 90.65 82.90 89.19 84.24 73.68 78.10 82.14 72.78 77.56 86.97 78.85 83.93

Since there are few papers on calculating segmentation performance according to the
types of skin lesions, there is a lack of comparable data. Most studies do not divide the
test set according to the type of lesion, but evaluate the segmentation performance of all
dermoscopic images in the test set together. In order to further compare with existing
dermoscopic image segmentation methods, we have compiled the results in Table 11.
From the results shown in Table 11, CSAG and DCCNet achieved high results in the two
indicators of ACC and SPE, and also achieved more competitive results in the two key
indicators of DIC and JAC. This further proved that the CSAG and DCCNet proposed in
this paper was an effective supplement to the existing dermoscopic image segmentation
methods.
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Table 11. Performance evaluation of accuracy, Dice coefficient, Jaccard coefficient, sensitivity, speci-
ficity, and performance of different modules and CSFAG modules on the ISIC-2017 data set. Bold
data indicates that the value is the maximum value in this indicator.

Model Year ACC DIC JAC SEN SPE

CDNN [59] 2017 0.934 0.849 0.765 0.825 0.975
SLSDeep [60] 2018 0.936 0.878 0.782 0.816 0.983

Jahanifar M et al. [61] 2018 0.930 0.839 0.749 0.810 0.981
Bi L et al. [62] 2019 0.862 0.857 0.777 0.967 0.941

Att-DenseUnet [63] 2019 0.9329 0.8786 0.8035 0.8734 0.9314
DAGAN [64] 2020 0.935 0.859 0.771 0.835 0.976

CSARM-CNN [65] 2020 0.958 0.846 0.733 0.802 0.994
DSC [66] 2020 0.938 0.862 0.783 0.870 0.964

Ours 0.959 0.869 0.788 0.870 0.993

4.3.6. Results on the PH2 Data Set

We used the independent dermoscopic image data set PH2 to verify the cross-data
performance of our proposed network. We used the model trained on the ISIC2017 dataset
to test the segmentation performance on the PH2 dataset. As shown in Tables 12 and 13,
in the segmentation of Benign Nevus and melanoma, our proposed model obtained com-
petitive results. This showed that our proposed model had good robustness and cross-data
performance. Figure 12 shows the CSAG and DCCNet segmentation results. The first two
columns are moles and the last two columns are melanomas.

a

b

c

d

Figure 12. Visualization results for the PH2 data set. (a) Original skin lesion image; (b) ground truth corresponding to
the lesion. (c) CSARM-CNN model lesion segmentation results; (d) ground truth (red) and segmentation results (blue)
comparison chart.
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Table 12. Performance evaluation of sensitivity, specificity, and accuracy performance of different
attention modules and CSFAG modules on the ISIC-2017 data set using baseline as the basic structure.
Bold data indicates that the value is the maximum value in this indicator.

Method
Nevus Cases Melanoma Cases Overall

SEN SPE ACC SEN SPE ACC SEN SPE ACC

FCN [47] 95.35 94.09 94.44 90.30 94.02 92.82 90.30 94.02 92.82
SegNet [47] 91.57 96.57 95.19 75.50 96.83 86.04 86.53 96.61 93.36
U-Net [47] 86.68 97.63 94.60 70.58 98.47 84.36 81.63 97.76 92.55
FrCn [47] 94.48 95.46 95.20 91.57 96.55 94.64 93.72 95.65 95.08
Ours 93.30 98.19 97.35 85.34 95.72 91.00 89.75 97.73 95.90

Table 13. Performance evaluation of Jaccard coefficient, Dice coefficient and Matthew correlation
coefficient of different attention modules and CSFAG modules on the ISIC-2017 data set using baseline
as the basic structure. Bold data indicates that the value is the maximum value in this indicator.

Method
Nevus Cases Melanoma Cases Overall

DIC JAC MCC DIC JAC MCC DIC JAC MCC

FCN [47] 90.46 82.59 86.78 89.03 80.22 83.71 89.03 80.22 83.71
SegNet [47] 91.32 84.03 87.99 84.55 73.23 73.89 89.36 80.77 84.64
U-Net [47] 89.88 81.63 86.32 82.04 69.55 71.73 87.61 77.95 82.78
FrCn [47] 91.38 84.13 88.15 92.92 86.77 88.62 91.77 84.79 88.30
Ours 92.37 85.83 90.78 89.61 83.87 85.02 90.97 83.44 88.34

5. Conclusions

In this article, we propose and implement a novel and robust skin lesion segmentation
depth model called CSAG and DCCNet. In the last step of the encoding path, the model
uses densely connected convolution instead of ordinary convolutional layers. In order to
achieve better information fusion, highlight the foreground and reduce the impact of the
background, we designed a novel attention-guided filter module, Channel Spatial Fast
Attention-guided Filter (CSFAG for short), and embedded it in the CSAG and DCCNet
segmentation network Jumping connection. Secondly, the model uses U-Net as the basic
network structure, and builds an image pyramid input layer on the left side of the coding
layer; on the right side of the decoder, introduces a side output layer, and averages all side
output images as the final prediction image. In order to verify its effect, we evaluated the
model using two publicly available datasets (ISIC-2017 Challenge and PH2 dataset). The re-
sults show that both densely connected convolution and CSFAG modules can improve the
segmentation performance of the network, and the combination of them to form CSAG
and DCCNet is better than some of the latest algorithms for skin lesion segmentation.
Through a large number of ablation experiments, we have verified that the CSFAG module
is superior to other mainstream attention modules and can be combined with multiple
basic segmentation networks, effectively improving the segmentation performance of the
model. CSAG and DCCNet trained on ISIC-2017 data set was tested on another publicly
available data set PH2 data set to verify the robustness and cross-data set performance of
our method. In the future, we believe that more interference in dermoscopic images is a
key factor affecting segmentation performance, data purification on it is a very effective
work. We look forward to the combination of the new dermoscopic image preprocessing
method and the proposed model to get a better segmentation model, and apply the model
to other medical images to prove the robustness of the method.
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