
sensors

Article

LeanNet: An Efficient Convolutional Neural Network for
Digital Number Recognition in Industrial Products

Na Qin, Longkai Liu, Deqing Huang * , Bi Wu and Zonghong Zhang

����������
�������

Citation: Qin, N.; Liu, L.; Huang, D.;

Wu, B.; Zhang, Z. LeanNet: An

Efficient Convolutional Neural

Network for Digital Number

Recognition in Industrial Products.

Sensors 2021, 21, 3620. https://

doi.org/10.3390/s21113620

Academic Editors: Alexandra Psarrou

and Ludovic Macaire

Received: 7 April 2021

Accepted: 19 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

The Institute of Systems Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
qinna@swjtu.cn (N.Q.); m13653974033@163.com (L.L.); auggie1996@my.swjtu.edu.cn (B.W.);
zzh451045814@163.com (Z.Z.)
* Correspondence: elehd@home.swjtu.edu.cn

Abstract: The remarkable success of convolutional neural networks (CNNs) in computer vision tasks
is shown in large-scale datasets and high-performance computing platforms. However, it is infeasible
to deploy large CNNs on resource constrained platforms, such as embedded devices, on account of
the huge overhead. To recognize the label numbers of industrial black material product and deploy
deep CNNs in real-world applications, this research uses an efficient method to simultaneously
(a) reduce the network model size and (b) lower the amount of calculation without compromising
accuracy. More specifically, the method is implemented by pruning channels and corresponding
filters that are identified as having a trivial effect on the output accuracy. In this paper, we prune
VGG-16 to obtain a compact network called LeanNet, which gives a 25× reduction in model size and
a 4.5× reduction in float point operations (FLOPs), while the accuracy on our dataset is close to the
original accuracy by retraining the network. Besides, we also find that LeanNet could achieve better
performance on reductions in model size and computation compared to some lightweight networks
like MobileNet and SqueezeNet, which are widely used in engineering applications. This research
has good application value in the field of industrial production.

Keywords: convolutional neural network; image classification; network pruning; MobileNet;
SqueezeNet

1. Introduction

In recent years, we have witnessed a rapid development of CNNs in various fields
such as image encryption [1], object detection [2], semantic segmentation [3], protein
function prediction [4] and many others. CNNs can achieve a desirable performance
thanks to large-scale datasets, GPUs with efficient parallel computing power and their own
strong fitting capacity. Though large CNNs are very powerful, they consume considerable
storage, computational resources and energy resources. For instance, the VGG-16 [5]
has 138.34 million parameters, takes up more than 500 MB storage space, and requires
15.61 billion FLOPs to classify a single image with a resolution of 224 × 224. This makes it
difficult to deploy CNNs on some devices used in practical engineering projects, such as
embedded devices and mobile devices.

In the face of the actual demand for the application of CNNs in industry, the issue of
difficult deployment of CNNs should be solved urgently. Due to the limited resources of
embedded and mobile devices, the following considerations must be taken into account
while deploying CNNs: (1) Model size: The larger CNNs, have stronger representation
power and contain more parameters. It is because of a large number of parameters that
the neural network can theoretically approximate any complex function with any accuracy.
However, the demand of deploying a 500 MB VGG-16 model on embedded devices is
impractical; (2) Memory footprint: During the inferencing process, the model generates
a large number of calculations, which usually takes up more memory than the model
itself. For example, with the VGG-16 batch size set to one, the forward propagation

Sensors 2021, 21, 3620. https://doi.org/10.3390/s21113620 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8185-9030
https://www.mdpi.com/article/10.3390/s21113620?type=check_update&version=1
https://doi.org/10.3390/s21113620
https://doi.org/10.3390/s21113620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113620
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3620 2 of 16

process will take up about 900 MB, which is unaffordable for some resource-constrained
platforms; (3) Inference speed: Because of the complexity of the model structure and too
much computation, it often takes several seconds to inference high-resolution images, but
the harm caused by high latency in practical applications such as autopilot is hard to accept.

To reduce the huge overhead of deploying CNN models, many studies are performed
to compress the scale of CNNs and speed up the inferencing process. These include network
pruning, weight quantization, low-rank approximation and knowledge of distillation.
The above methods start from the structure of the model and seek an optimal network
structure or replace the floating-point number with a fixed-point number. Because of a large
design space for neural networks, another direction is to design lighter-weight network
structures directly. For example, MobileNet [6] is based on a pipelined architecture that
repeatedly uses depthwise separable convolutions to structure lightweight deep neural
networks (DNNs). SqueezeNet [7] uses a new block named FIRE module to get a small
CNN architecture.

In this study, to check whether the mold of each workpiece works normally and meets
the engineering needs, the label number of each workpiece needs to be identified with
high precision and high speed. To meet the requirement of high accuracy, VGG-16 is
adopted for label number identification, and the channel pruning method is used to prune
VGG-16 to meet the deployment requirement. We refer to the pruned VGG-16 as LeanNet.
Figure 1 shows the whole process of this project. Experiments on our dataset show that it
can achieve a 25× reduction in model-size and 4.5× reduction in FLOPs while regaining
close to the original precision by retraining the networks.

(a)

2
2

6
2

8
3

1
1
9

1
6
8

8
5

4
0

64

128

256
512

512 32
32

3
8

pruning channels
VGG-16 LeanNet

Select LeanNet to deploy on

an embedded device

bolck1 size 152x152

bolck2 size 76x76
bolck3 size 38x38
bolck4 size 19x19
bolck5 size 9x9
pooling layer

average pooling layer

VGG-16

LeanNet

MobileNet

SqueezeNet

Evaluate the

performance on

4 models

Comparison of VGG-16 and LeanNet

Label number
Date set acquisition

Workpiece

T
e
stin

g
 resu

lts

Figure 1. Flowchart of the whole project. The above side shows the process from acquiring the data set to evaluate the
model and finally to deploy the model, the below side shows and compares the structure of VGG-16 and LeanNet in detail.
The label number part of the flowchart is a collection of label parts on some industrial electronic equipment parts, from 1 to 8.

Sensors 2021, 21, 3620 3 of 16

We then compare LeanNet with other state-of-the-art models: MobileNet and SqueezeNet.
Experimental results show that LeanNet is significantly better than MobileNet and SqueezeNet.
MobileNet is about as accurate as LeanNet but the model is five times larger. SqueezeNet’s
model is about the same size as LeanNet but has a 3% lower accuracy on the test set.
Overall, the main contributions of the paper are summarized as follows:

• The proposed LeanNet can effectively reduce the parameters and computational com-
plexity, and the accuracy on our dataset is close to the original accuracy by retraining
the network, so it can be deployed on some devices with limited computing resources.

• Experimental results show that LeanNet achieves better performance on reductions in
model size and computation compared to some lightweight networks like MobileNet
and SqueezeNet.

The rest of this paper is organized as follows: Related work is discussed in Section 2.
We will introduce the details of LeanNet in Section 3. The experiments are presented to
compare LeanNet with other lightweight networks in Section 4. In Section 5, we discuss
the results. Finally, the work is concluded in Section 6.

2. Related Work

Low-rank approximation. To reduce the computational cost of DNNs, a low-rank
approximation method is proposed, which represents the weight matrix as a low-rank prod-
uct of two smaller matrices [8–10]. These works have achieved a good effect of acceleration
and compression on DNNs with 1% accuracy drop. However, there are some problems
when this method is applied to compress the structure of DNNs. For example, the low-rank
approximation can only be applied to each layer of the network, and during the fine-tuning,
the structure of each layer of the network is fixed, so the time cost of decomposing and
fine-tuning the model is expensive. With the linear growth of hyperparameters of each
layer in the low-rank approximation method, the search space for the optimal structure
will also grow linearly for very deep DNNs [11,12].

Network pruning. Pruning is a very efficient and intuitive approach to make neural
networks more compact and faster. In the early, [13] introduces Optimal Brain Damage,
it removes neurons those make little or no contribution to the output of a trained network.
Later, Hassibi and Stork propose Optimal Brain Surgeon to remove trivial weights deter-
mined by the second-order derivative information [14]. However, this method is costly for
today‘s DNNs. Han et al. [15,16] reduce redundant parameters to get an irregular sparse
matrix by a three-stage pipeline that contains pruning, quantization, Huffman encoding.
Since parameters are mainly concentrated in the fully connected layer, the author obtains
3× layer-wise speedup. However, in the convolutional layer, no practical speedups are
observed, besides, this method can only achieve acceleration with specific sparse matrix
operation libraries or hardware, thus it seems to be less practical in real-world applications.

Recently, some researchers have overcome this limitation. Ref. [17] presents an
approach that utilizes neuron-level sparsity during network training, hence some neurons
could be removed to get a small network. Ref. [18] proposes the pruning filters method,
they prune filters from CNNs that are identified as having a small effect on the output
accuracy, which yields more compact networks with comparable precision. Ref. [19]
proposes a Structured Sparsity Learning method to regularize the structures (i.e., filters,
channels, filter shapes, and layer depth) of DNNs. Another simple and effective method
of channel pruning was proposed in [20]. They use a trainable parameter γ from batch
normalization (BN) layers as scaling factors and regularize them, and then train the network
and scaling factors at the same time. Finally, they prune channels with small scaling
factors and fine-tune the pruned network to obtain an efficient network. In this research,
this method is leveraged to prune VGG-16. The aforementioned methods are known as
structural pruning, they usually do not need to use specific hardware or software to achieve
inference speedup and memory footprint saving.

Weight quantization: Weight quantization is the process of converting a continuous
weight range into several discrete points so that weights can be represented by fewer bits.

Sensors 2021, 21, 3620 4 of 16

For instance, if original weights can be divided into eight groups by clustering methods,
only three bits are required to represent indexes of these weights, and the storage space
can be greatly reduced by storing index values and corresponding weights. Han et al. [16]
leverage the weight quantization method to compress the model three times. Reference [21]
proposes a method to quantify parameters (represent all parameters with a small number of
parameters) and to estimate the output of convolutional layers and fully connected layers
by inner product operation. Weight quantization can usually be used with other network
compression and acceleration methods, Ref. [22] combines network pruning and weight
quantization in a single learning framework that performs pruning and quantization jointly,
and in parallel with fine-tuning.

The extreme way of weight quantization is network binarization. Reference [23]
proposes using 0 and 1 to represent the weight and activation value. In this method, they
achieve a 32 times reduction in model size and seven times faster on GPU at run-time.
Nevertheless, the method of weight quantization depends on specific hardware and the
accuracy of the quantized network will decrease a lot, especially in the case of very few
clustering categories.

Knowledge distillation. Knowledge distillation [24,25] is widely used in model
compression and transfer learning. The complex network with strong learning ability
distills the “knowledge” represented by the characteristics and transfers it to the network
with a small number of parameters and weak learning ability. Ref. [26] explores that
knowledge distillation can be integrated into one of the pruning methodologies, namely
pruning filters [18], as the compression technique, to enhance the accuracy of the pruned
model.

Efficient architectures. Another valid direction is to design efficient network architec-
tures. SqueezeNet [7] substitute 1 × 1 filters for 3 × 3 convolutional filters, decrease the
number of input channels corresponding to 3 × 3 filters, and downsample late in the net-
work so that convolutional layers have large activation maps. Additionally, they use model
compression techniques [16] to compress SqueezeNet to less than 0.5 MB. MobileNet [6]
uses depth-wise separable convolutions to structure lightweight DNNs. Through the
adoption of depth-wise convolution, the following results can be achieved: (1) Reduce the
number of parameters; (2) Improve the operation speed. ShuffleNet [27] shuffles channels
orderly to form a new set of feature maps, which solves the problem of “poor information
circulation” caused by group convolution. Reference [28] proposes a shallow network
training strategy to reduce the network’s parameters and computational complexity, fur-
thermore, it also utilizes FireModule and factorization technique to further decrease the
parameter and improve the feature extraction capability respectively. These lightweight
networks are widely used in real-world applications.

3. Pruning Network

As shown in Figure 2, let ni denote the number of input channels for the ith convo-
lutional layer, hi and wi are the height and width of feature maps respectively, and ni+1
means the number of total filters for the i+1th convolutional layer. The convolutional layer
convolves the input feature maps Fi through n+1 filters to obtain the output feature maps
Fi+1, which are used as input channels for the next convolutional layer. Each 3D filter is
composed of n 2D kernels of size k×k , and all filters of ith convolutional layer constitute
a kernel matrix. In the convolution process, i+1 filters generate n+1 channels, when a
channel in i+1th convolutional layer is pruned away, a filter in the previous layer will be
correspondingly removed and, in addition, the convolution kernel corresponding to the
already pruned channel in all filters of the next layer will also be removed. In the case of
normal, the number of operations of ith convolutional layer is nini+1k2hi+1wi+1, while a
channel is pruned away, nik2hi+1wi+1 and ni+2k2hi+1wi+1 operations will be reduced in
the ith convolutional layer and i+1th convolutional layer respectively. If m channels are
pruned in i+1th convolutional layer, it will reduce 2m/ni+1 of the computation cost totally.

Sensors 2021, 21, 3620 5 of 16

F
i 1

F
i+ 2

F
i+

i
n

i
n

1i
n
+1i

n
+ 2i

n
+

1i
n
+

i
n

1i
n
+

2i
n
+

1i
n
+

2i
n
+

Conv kernels

Kernel matrix

i
w

i
h

Figure 2. Pruning a channel results in the removal of both the corresponding filter in the previous layer and related
convolution kernels in the next layer.

3.1. Determining the Sparse Level

In this part, we mainly discuss why we chose the channel pruning method. There are
two different pruning methods, one is structured pruning, another is unstructured pruning.
Structured pruning usually refers to channel-level, filter-level and layer-level pruning,
while unstructured pruning usually prunes weights in the kernel matrix. Unstructured
pruning does not remove the unimportant weights, but sets them to zero, so as mentioned
above, unstructured pruning relies on specific hardware or software to accelerate the
inferencing process and compress the model. Therefore, the structured pruning method is
usually chosen to compress the model and do fast inference in engineering. Also, layer-level
pruning is significant for deep networks, while for shallow networks, this method may
seriously affect the test accuracy. In our experiment, the channel pruning [20] approach is
chosen to prune VGG-16.

3.2. Determining Which Channel Should Be Pruned

During the training of the neural network, the data distribution of each layer is likely
to be changed after matrix multiplication and nonlinear transformation, with the multi-
layer operation of DNNs, the data distribution changes more. As a result, more and more
data distributed in the region where the derivative value of the activation function is zero
so that the weight cannot be updated and the gradient vanishes. Ref. [29] has proposed
Batch Normalization (BN), by reducing internal covariate shift, it can not only avoid the
disappearance of the gradient, accelerate the convergence speed, but also alleviate the
over-fitting phenomenon to a certain extent. Therefore, it is very common to add BN layers
to a neural network. The BN algorithm process during the training of the neural network
is given below:

• For the fully connected network, the mean value µβ and standard variance σβ of the
output data of neurons in the upper layer are calculated first.

• Normalizing them to obtain the following Formula (1).

x̂i =
xi + µβ√

σ2
β + ε

, (1)

where xi is the output data of the previous layer, and ε is a small value added to avoid
the denominator being zero.

• Finally, the data obtained through the above normalization processing are recon-
structed to get the following Formula (2):

yi = γx̂i + β, (2)

where γ and β are trainable parameters.

Sensors 2021, 21, 3620 6 of 16

For convolutional neural networks, each channel can be regarded as a neuron by using
the strategy of weight sharing, so only two parameters γ and β need to be saved for each
channel. Ignoring the influence of β, it can be considered that the larger γ is, the larger
the output value yi of the reconstructed data will be. Therefore, γ can be chosen as the
scaling factor, and sparse regularization be made on it, and then those channels with small
scaling factors can be removed to obtain a compact network. The loss function needs to be
optimized in the training process is definite by:

L = ∑
(x,y)

l(R(x, W), y) + λ ∑
γ∈Γ

.γ2 (3)

The above Formula (3) has two parts, the first sum-term corresponds to the normal
training loss of a CNN, where x and y are the input value and real label of the sample in the
dataset respectively, W is the weight matrix, and R is the activation function. The second
sum-term is ridge regression for γ. λ is an adjustable parameter used to balance these two
terms. The larger the λ is, the greater the penalty for γ will be and the closer γ will be to
zero, which is more conducive to the compression model. In our experiment, λ was set
to 10−4.

By continuously optimizing the aforementioned loss function, scaling factors of differ-
ent channels at each layer can be obtained, and then the channel can be pruned with a small
scaling factor from a well-trained model for computational efficiency while minimizing the
precision drop. In this process, the corresponding filters of the previous layer and kernels
of filters for the next layer are also removed (see Figure 3).

1.147

i-th

 conv-layer
j=(i+1)-th

conv-layer

Original network

Pruned network

Scaling

factors

iginal network

pruning

Ci,1

Ci,n

Scaling

factors

1.147

0.0030 003

0.013

Origigininalal netwo

0.013

1.195

Ci,n-1

Ci,2

Cj,1

Cj,n

j=(i+1)-th

conv-layer

i-th

 conv-layer

Ci,n

Ci,1

Cj,1

Cj,n

fafactorss

1.147

1.195

Figure 3. We use the trainable parameter γ in the batch normalization layer as the scaling factor
and each channel corresponds to a scaling factor. After sparse these scaling factors, the channels
with small scaling factors are taken as trivial channels and removed. After pruning, we can obtain a
slim network.

Sensors 2021, 21, 3620 7 of 16

3.3. Determining the Pruning Ratio and Method

After conducting L2-norm for γ, most scaling factors are near zero after training
the network. To determine the pruning ratio, there are two approaches: (a) A global
threshold can be selected, which is determined by the percentage of channels that need
pruning in the total number of channels. In the whole network, channels corresponding
to scaling factors less than this threshold will be removed; (b) A pruning ratio is set for
each layer to determine the threshold. Although the problem of measuring the capacity
and redundancy of each layer of neural networks has not been solved, this method is
more reasonable than selecting the global threshold, because the redundancy of each
convolutional layer is different. If only one global threshold is selected, more channels in
the deeper convolutional layer are likely to be pruned due to the deeper layer contains
more channels. In our experiment, we empirically determine the number of filters to be
pruned for each layer based on their sensitivity to pruning [18]. By removing channels
with scaling factors lower than the threshold, a more compact network could be obtained,
which has fewer parameters and footprint memory, as well as less computation. Similarly,
there are two common strategies for pruning: (a) One-shot Pruning; (b) Iterative Pruning.
For a certain target pruning ratio, One-shot Pruning based on the magnitude of scaling
factors, prune the channel with a small scaling factor at once and then retrain the network
to regain comparable accuracy. Iterative Pruning will be carried out in multiple stages.
Firstly, the network will be sparse, part of the channel will be pruned, and then the network
will be sparse again, and the cycle will be repeated until the target value is reached (see
Figure 4). For deep networks, like resnet50 or resnet110, it can be extremely time-consuming
to prune channels and retrain DNNs repeatedly. In this study, the One-shot Pruning method
is utilized to prune VGG-16, because it is unacceptable to sacrifice time cost to achieve a
higher speedup ratio and compression ratio.

Original

network

Training the

network to

sparse the model

Prune channels

Retraining the

nework

se the m

training

Compact

network

ainininingng t

Time

Target

 pruning ratio

o

Pruning ratio

Figure 4. Left: Flowchart of different pruning methods, the dotted-line represents iterative pruning.
Right: The blue line represents the One-shot Pruning method and the yellow line represents the
Iterative Pruning method.

Sensors 2021, 21, 3620 8 of 16

4. Experiments
4.1. Dataset

LN. To test and train neural networks, the data collected from the industrial working
field is leveraged as a dataset and called LN. As shown in Figure 5, there are number
labels on some industrial electronic equipment parts, from 1 to 8, respectively representing
the corresponding mold number of different workpieces. In the process of checking the
working state of the mold, we can determine whether the workpiece mold is working
normally according to the number of times that the number label on some faulty workpiece
appears, when the number of times the label on the faulted workpiece appears more,
it indicates that the corresponding mold may work abnormally. To obtain the data set, the
method of object detection was adopted to locate the workpiece label number and then
used image segmentation to capture the label image [30]. A standard data augmentation
scheme (rotation, resize, brightness, contrast vary randomly and random injection noise)
is adopted. We can obtain a dataset consists of number label images with a resolution
152 × 152. The train and test sets contain 50,000 and 10,000 images respectively.

(a)

(b)

Figure 5. The number label on the workpiece and its location. (a) The industrial electronic equip-
ment parts and the captured digital number. (b) The Digital number on some industrial electronic
equipment parts, from 1 to 8, respectively representing the corresponding mold number of differ-
ent workpieces.

Sensors 2021, 21, 3620 9 of 16

CIFAR-10. In order to test whether the proposed method can get consistent results
on other datasets, we conducted relevant experiments on CIFAR-10.CIFAR-10 is drawn
from 10 classes. The train and test sets contain 50,000 and 10,000 images respectively.
We recorded the best results during the training and fine-tuning process. A standard
data augmentation strategy is used, including shifting and mirroring. The input data is
normalized using channel means and standard deviations.

MNIST. MNIST is a handwritten digit dataset containing 60,000 training images and
10,000 testing images. To compare the performance of LeanNet to the other networks, the
experimental result is also recorded.

4.2. Network Models

VGGNet. VGGNet is a deep convolutional neural network developed by Oxford
University’s visual geometry group and researchers at Google Deepmind [5]. VGGNet
explores the relationship between the depth of a convolutional neural network and its
performance. Multiple types of deep convolutional neural networks (VGG-13, VGG-
16, VGG-19) can be obtained by stacking the convolutional layers and the maximum
pooling layers. Because of the strong extensibility of VGGNet, and the generalization
of migrating to other image data is excellent, it is widely used to extract image features
and do image classification tasks. Since the resolution of the image we obtained was
152 × 152, the structure of VGGNet should be adjusted accordingly. To reduce the number
of parameters in the fully connected layer, the fully connected layer is replaced with the
global average pooling layer [31].

MobileNet. MobileNet was proposed by Google in 2016 [6], and its idea is mainly
derived from Xception [32]. In order to reduce a large amount of computation with slightly
reduced precision, it uses a depthwise separable convolution module, which contains depth-
wise and point-wise convolution. The computation required for a normal convolution
operation is: MF ·MF ·K ·N ·MK ·MK, where MF ·MF and MK ·MK means the feature map
size and kernel size respectively, K means the number of channels and N means the number
of filters. The computation for depth-wise convolution is: MF ·MF · K ·MK ·MK, and for
point-wise convolution is: MF · MF · K · N. By using depthwise separable convolution
module, it get a reduction in computation of:

MF ·MF · K ·MK ·MK + MF ·MF · K · N
MF ·MF · K · N ·MK ·MK

=
1
N

+
1

MK ·MK
.

According to the kernel size, depthwise separable convolution would save about
MK ·MK times less computation than standard convolutions. MobileNet also has several
different types of structures, and in the comparison experiment, MobileNet-V1 is chosen.

SqueezeNet. [7] proposes SqueezeNet in 2016. It is composed of several FireModule,
which consists of the Squeeze module and the Expand module. The squeeze module
uses 1 × 1 convolution kernels for feature dimension reduction and Expand module uses
the combination of 1 × 1 and 3 × 3 convolution kernels for feature dimension raising.
SqueezeNet can significantly reduce network parameters, achieves Alex-level accuracy with
50× fewer parameters. We also compared SqueezNet with LeanNet in our experiments.

4.3. Implementation Details

For normal training, we train all three networks normally from scratch as the baseline.
We use the Mini-batch Gradient Descent as the optimizer. The batch size of VGGNet,
SqueezeNet, and MobileNet is set as 32, 64, and 64 respectively. The initial learning rate is
set as 0.1, 0.01, and 0.01 for VGGNet, SqueezeNet, and MobileNet respectively, too small a
learning rate will result in the weight not being updated and the loss value will not decrease.
The learning rate decreased by 10 times every 50 epochs as epoch increased. In addition,
we use exponential moving average to enhance the generalization ability of the model,

Sensors 2021, 21, 3620 10 of 16

the weight decay and Nesterov momentum are set by 10−4 and 0.9 respectively. We train
160 epochs for the three different networks. During the sparsity process of VGGNet, the
hyperparameter λ, which balances the loss value and sparsity ratio, is set by 10−4. All other
parameters are kept the same as in normal training. In the pruning process, the method to
determine the number of channels to be pruned for each layer proposed by [18] is adopted.
After pruning channels, new kernel matrices are copied to each layer of the new model,
and a compact network was obtained. We can retrain the network that uses the same
optimization setting as in normal training to compensate for the decreased accuracy due to
pruning. The code is available at https://github.com/liulonghoi/networkcompression.git,
(accessed on 28 April 2021).

4.4. Results

In a convolutional neural network, usually with the increase of network layers, the
number of filters contained in the convolutional layer will increase, and the number
of channels will also increase, but the size of the feature map will decrease. Different
filters represent descriptions of images from different angles and each channel represents
different features of the original data. However, some channels do not learn effective
feature information during network training, and their values are usually very small, that
is, their scaling factors are very small. As shown in Figure 6, eight channels of the first
convolutional layer are randomly selected, some channels can reflect the contour, edge and
chromatic features of the original image, while some channels are very similar to the input
image of the previous layer, indicating that no significant features have been learned. We
now evaluate the performance of the proposed LeanNet on our dataset from three aspects.

Figure 6. Visualization of 8 channels randomly selected in the first convolutional layer of VGG-16
trained on our dataset. Different channels reflect different information about the input data.

Accuracy. As shown in Figure 7, the accuracy and loss value curves of different
network structures in the training process are recorded. The loss value of different network
structures oscillate violently at the beginning but eventually converge to the optimal
solution. The accuracy of LeanNet is close to the original VGGNet, which proves the
redundancy of DNNs. Even if some layers of channels are pruned off by 70%, LeanNet can
still achieve the original accuracy through retraining. This process is similar to the biological
phenomenon in the mammalian brain, where the number of synapses peaks in early
childhood, followed by gradual pruning during its development, but still performances
well. As shown in Table 1, in the experiment on the CIFAR-10 dataset, LeanNet reduced
the accuracy rate by 1.48% compared to VGG16, but the size of the model was reduced
by 26 times. On MNIST dataset, similar conclusions can be drawn that when LeanNet
differs from VGG-16 in accuracy by 0.12%, FLOP decreases by 80%, and the real inference
time also decreases by nearly 20% under GPU condition and 80% under CPU condition.

https://github.com/liulonghoi/networkcompression.git

Sensors 2021, 21, 3620 11 of 16

Judging from the different degrees of decrease in the inference time in the CPU/GPU
environment, it can be seen that the important factors affecting the inference speed in
the GPU environment are model loading and data IO, rather than the actual recognition
consumption of the model.

Figure 7. Curves of training loss and test accuracy for different networks.

Compression ratio. As shown in Table 1, the number of parameters contained in different
networks and the size of model generated under the Pytorch framework are recorded.
When 80% channels are pruned, the parameter saving for LeanNet is more than 20×,
LeanNet also has an advantage in model size over the other two lightweight networks.

Table 1. Overall result. The best test accuracy for different networks on three datasets is reported. The last column shows
inference time which is tested on one GTX 2080Ti GPU or Intel i5-4210u CPU with batch size 32 respectively, the testing
sample set contains 10,000 images totally.

Dataset Model Accuracy (%) FLOP (Giga) Parameters (M) Model Size (MB) Inference Time (s)

LN

VGG-16 98.37 7.02 14.72 117.2 7.56/633.85
LeanNet 97.17 1.59 0.55 4.5 5.36/120.58

SqueezeNet 94.37 3.96 0.73 5.9 6.19/453.97
MobileNet 99.05 0.29 3.22 25.9 5.15/112.01

CIFAR-10

VGG-16 93.43 0.31 14.72 117.2 4.75/387.25
LeanNet 91.95 0.05 0.55 4.5 2.95/65.27

SqueezeNet 92.97 0.13 0.73 5.9 3.24/238.59
MobileNet 91.85 0.01 3.22 25.9 2.79/63.34

MNIST

VGG-16 99.65 0.21 14.72 117.2 3.07/264.35
LeanNet 99.53 0.04 0.55 4.5 2.47/55.27

SqueezeNet 99.57 0.09 0.73 5.9 2.26/165.65
MobileNet 99.45 0.01 3.22 25.9 2.68/61.37

FLOPs reduction and actual running speed. Since the computation is mainly concen-
trated in the convolutional layer, the channel pruning method is effective for increasing
the inference speed. As can be seen in Table 1, the inference speed of each model is re-
ported, which is tested by Pytorch. LeanNet has a significant improvement in inference
speed on GPU(2080Ti) compared with VGG-16, but will slow down when applied on CPU.
Compared to the reduction in FLOPs, MobileNet does not perform well on the GPU for
inference speed actually, it may be that cuDNN does not support depth-wise convolu-

Sensors 2021, 21, 3620 12 of 16

tion well. SqueezeNet achieves comparable speed-up as LeanNet on GPU with fewer
parameters. However, LeanNet costs less inference times under CPU conditions, mean-
while it adopts a special structure that needs to be designed manually. For the network
pruning method, it only needs to prune the network required for a specific task, which is
relatively flexible.

To highlight LeanNet’s efficiency, the resource savings for different networks are
plotted in Figure 8. Based on the tradeoff among the three aspects of network perfor-
mance mentioned above, it can be considered that LeanNet achieves the most impressive
performance in the actual project.

100

80

60

40

20

0

FLOPs Parameters

100% 100%

22.6%

4.1%

56.4%

3.7%

21.9%

5.0%

Figure 8. Comparison of parameters and computation under different networks.

5. Discussion

Considering the influence of hyperparameter λ and the pruning ratio for each layer
on the experimental results. In this section, We will analyze their effects in more detail.

Effect of Pruning Ratio. According to [18], for CNNs, such as VGGNet or ResNets,
that layers in the same stage(with the same channel size) have a simliar sensitivity to
pruning, and moreover, deeper layers are more sensitive to pruning than layers in the
earlier stages of the network. Therefore, we can define pi as the pruning ratio for layers in
the i th stage, and prune VGG16’s layers with p1 = 40%, p2 = 50%, p3 = 60%, and p4 = 70%.
The results are summarized in Figures 9 and 10.

From Figure 9, it can be concluded that after the network training is over, the deeper
layer is, the channel’s scaling factor of the layer is smaller. This also proves that the deeper
layer is more sensitive to pruning. In this case, if a global pruning rate is set, it will
eventually cause more channels in the deeper layer of the network to be pruned, and the
deep semantic information extracted by the convolutional neural network will be discarded,
which does not meet our expectations. Similarly, it can be seen from Figure 10, in the same
layer, the scaling factors of different channels show a gradual decrease as the number of
training epochs increases. The scaling factor of some channels will quickly decay to zero,
and some others will drop to a certain extent from the initial scaling factor, but will not be
forced to be near zero, so they will be retained.

Sensors 2021, 21, 3620 13 of 16

0 50 100 150 200 250 300 350 400 450 500

Channel

0

0.2

0.4

0.6

0.8

1

1.2

S
c
a

lin
g

 f
a

c
to

r
v
a

lu
e

Conv3-64-1

Conv3-128-1

Conv3-256-1

Conv3-512-1

Figure 9. Distributions of scaling factors under different convolutional layers.

0 10 20 30 40 50 60 70 80 90 100

Epoch

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
c
a
lin

g
 f
a
c
to

r
v
a
lu

e

Conv3-64-1-1

Conv3-64-1-64

Conv3-128-1-64

Conv3-128-1-128

Conv3-256-1-128

Conv3-256-1-256

Conv3-512-1-256

Conv3-512-1-512

Figure 10. The scaling factor of different channels under different convolutional layers changes
dynamically with the increase of the epoch of training rounds. The deeper layer is, the faster the
channel’s scaling factor of this layer will to be near zero.

Effect of λ. Considering the influence of hyperparameter λ on network pruning, We
further visualize the distribution of different λ values of the scaling factors in the overall
network in Figure 11. For this experiment, we use a VGG16 trained on the CIFAR-10
dataset. It can be found that with the increase of λ, more and more scaling factors are
concentrated near 0. When λ = 0, that is, there is no sparsity regularization, and the
distribution is relatively flat. When λ = 0.001, almost all scaling factors fall into a small area
close to 0. The process of sparsity regularization can be regarded as a channel selection
happening in a layer of CNNs, that is, the scaling factor of those futile channels is forced
to be near zero. Therefore, in the process of network sparsity, λ needs to be set to an
appropriate value, otherwise, when λ is too large, under a certain threshold, more channels
will inevitably be pruned, which brings some difficulty to the fine-tuning of the network in
the following process.

Sensors 2021, 21, 3620 14 of 16

Sensors 2021, 1, 0 14 of 16

will inevitably be pruned, which brings some difficulty to the fine-tuning of the network in
the following process.

Scaling factor value

Co
un

t

λ =0.001
λ =0.0001
λ =0.00001
λ =0

Figure 11. The distribution of scaling factors in four groups of VGG16 under different sparsity
regularization (controlled by the parameter λ). As λ increases, the scaling factor becomes sparse.

6. Conclusions
In this paper, we prune VGG-16 via the channel pruning method, so as to tackle

the problem that DNNs are difficult to deploy on some resource-constrained platforms.
It directly leverages the scaling factor γ in BN layers as an agent for channel selection, and
some negligible channels can be automatically identified in the training process and then
pruned. The efficiency of LeanNet is evaluated on our dataset, LeanNet can simultaneously
reduce the model size and computation with small overhead, and does not rely on specific
hardware or libraries. Compared to other lightweight networks, LeanNet also achieves the
most excellent performance in some real-world application scenarios.

Future work will include exploring the influence of the pruning ratio of each layer
on the performance of the model, aiming to design the pruning ratio of each layer more
rationally. Moreover, the study should consider how to avoid reducing the recognition
accuracy while compressing the model.

Author Contributions: Conceptualization, N.Q. and L.L.; methodology, N.Q. and L.L.;
resources, D.H.; experiment, N.Q.; writing—original draft preparation, N.Q.; writing—review
and editing, D.H., L.L. and B.W.; visualization, Z.Z.; supervision, D.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Sichuan Science and Technology Program (2019YJ0210,
2019YFG0345) and open projects of Shandong Key Laboratory of Big-data Driven Safety Control
Technology for Complex Systems.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: (MNIST) http://yann.lecun.com/exdb/mnist/, (CIFAR-10) https://www.cs.toronto.
edu/~kriz/cifar.html.

Acknowledgments: This work was supported by Sichuan Science and Technology Program (Grant
Nos.2019YJ0210, 2019YFG0345).The experiments were performed at the Institute of Systems Science
and Technology of Southwest Jiaotong University. It is gratefully acknowledged for the persons’ help
of laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 11. The distribution of scaling factors in four groups of VGG16 under different sparsity
regularization (controlled by the parameter λ). As λ increases, the scaling factor becomes sparse.

6. Conclusions

In this paper, we prune VGG-16 via the channel pruning method, so as to tackle
the problem that DNNs are difficult to deploy on some resource-constrained platforms.
It directly leverages the scaling factor γ in BN layers as an agent for channel selection, and
some negligible channels can be automatically identified in the training process and then
pruned. The efficiency of LeanNet is evaluated on our dataset, LeanNet can simultaneously
reduce the model size and computation with small overhead, and does not rely on specific
hardware or libraries. Compared to other lightweight networks, LeanNet also achieves the
most excellent performance in some real-world application scenarios.

Future work will include exploring the influence of the pruning ratio of each layer
on the performance of the model, aiming to design the pruning ratio of each layer more
rationally. Moreover, the study should consider how to avoid reducing the recognition
accuracy while compressing the model.

Author Contributions: Conceptualization, N.Q. and L.L.; methodology, N.Q. and L.L.; resources,
D.H.; experiment, N.Q.; writing—original draft preparation, N.Q.; writing—review and editing,
D.H., L.L. and B.W.; visualization, Z.Z.; supervision, D.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by Sichuan Science and Technology Program (2019YJ0210,
2019YFG0345) and open projects of Shandong Key Laboratory of Big-data Driven Safety Control
Technology for Complex Systems.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: (MNIST) http://yann.lecun.com/exdb/mnist/, (CIFAR-10) https://www.cs.toronto.
edu/~kriz/cifar.html.

Acknowledgments: This work was supported by Sichuan Science and Technology Program (Grant
Nos.2019YJ0210, 2019YFG0345).The experiments were performed at the Institute of Systems Science
and Technology of Southwest Jiaotong University. It is gratefully acknowledged for the persons’ help
of laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Sensors 2021, 21, 3620 15 of 16

References
1. Chowdhary, C.L.; Patel, P.V.; Kathrotia, K.J.; Attique, M.; Perumal, K.; Ijaz, M.F. Analytical study of hybrid techniques for image

encryption and decryption. Sensors 2020, 20, 5162. [CrossRef] [PubMed]
2. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

3. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

4. Le, N.Q.K. Fertility-GRU: Identifying fertility-related proteins by incorporating deep-gated recurrent units and original position-
specific scoring matrix profiles. J. Proteome Res. 2019, 18, 3503–3511. [CrossRef] [PubMed]

5. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
6. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
7. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
8. Peng, Y.; Ganesh, A.; Wright, J.; Xu, W.; Ma, Y. RASL: Robust alignment by sparse and low-rank decomposition for linearly

correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2233–2246. [CrossRef] [PubMed]
9. Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank

matrices via convex optimization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC,
Canada, 7–10 December 2009; pp. 2080–2088.

10. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up convolutional neural networks with low rank expansions. arXiv 2014,
arXiv:1405.3866.

11. Denton, E.L.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for efficient
evaluation. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December
2014; pp. 1269–1277.

12. Tai, C.; Xiao, T.; Zhang, Y.; Wang, X. Convolutional neural networks with low-rank regularization. arXiv 2015, arXiv:1511.06067.
13. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal brain damage. In Proceedings of the Advances in Neural Information Processing

Systems, Denver, CO, USA, 26–29 November 1990; pp. 598–605.
14. Hassibi, B.; Stork, D.G. Second order derivatives for network pruning: Optimal brain surgeon. In Proceedings of the Advances in

Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1993; pp. 164–171.
15. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the

Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 1135–1143.
16. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
17. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is more: Towards compact cnns. In Proceedings of the European Conference on Computer

Vision, Amsterdam, The Netherlands, 8–10 October 2016; pp. 662–677.
18. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
19. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. In Proceedings of the Advances

in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2074–2082.
20. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.
21. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4820–4828.
22. Tung, F.; Mori, G. Clip-q: Deep network compression learning by in-parallel pruning-quantization. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7873–7882.
23. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with

weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.
24. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
25. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets. arXiv 2014,

arXiv:1412.6550.
26. Prakosa, S.W.; Leu, J.S.; Chen, Z.H. Improving the accuracy of pruned network using knowledge distillation. Pattern Anal. Appl.

2020, 24, 819–830. [CrossRef]
27. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

28. Yuan, C.; Wu, Y.; Qin, X.; Qiao, S.; Pan, Y.; Huang, P.; Liu, D.; Han, N. An effective image classification method for shallow
densely connected convolution networks through squeezing and splitting techniques. Appl. Intell. 2019, 49, 3570–3586. [CrossRef]

29. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,
arXiv:1502.03167.

http://doi.org/10.3390/s20185162
http://www.ncbi.nlm.nih.gov/pubmed/32927714
http://dx.doi.org/10.1021/acs.jproteome.9b00411
http://www.ncbi.nlm.nih.gov/pubmed/31362508
http://dx.doi.org/10.1109/TPAMI.2011.282
http://www.ncbi.nlm.nih.gov/pubmed/22213763
http://dx.doi.org/10.1007/s10044-020-00940-2
http://dx.doi.org/10.1007/s10489-019-01468-7

Sensors 2021, 21, 3620 16 of 16

30. Yang, Y.; Qin, N.; Huang, D.; Shah, A. Label number Recognition Based on Convolutional Neural Networks in industrial products.
IFAC-PapersOnLine 2019, 52, 207–212. [CrossRef]

31. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
32. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

http://dx.doi.org/10.1016/j.ifacol.2019.12.409

	Introduction
	Related Work
	Pruning Network
	Determining the Sparse Level
	Determining Which Channel Should Be Pruned
	Determining the Pruning Ratio and Method

	Experiments
	Dataset
	Network Models
	Implementation Details
	Results

	Discussion
	Conclusions
	References

