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Abstract: Modern sensors deployed in most Industry 4.0 applications are intelligent, meaning that
they present sophisticated behavior, usually due to embedded software, and network connectivity
capabilities. For that reason, the task of calibrating an intelligent sensor currently involves more than
measuring physical quantities. As the behavior of modern sensors depends on embedded software,
comprehensive assessments of such sensors necessarily demands the analysis of their embedded
software. On the other hand, interlaboratory comparisons are comparative analyses of a body of
labs involved in such assessments. While interlaboratory comparison is a well-established practice
in fields related to physical, chemical and biological sciences, it is a recent challenge for software
assessment. Establishing quantitative metrics to compare the performance of software analysis and
testing accredited labs is no trivial task. Software is intangible and its requirements accommodate
some ambiguity, inconsistency or information loss. Besides, software testing and analysis are highly
human-dependent activities. In the present work, we investigate whether performing interlaboratory
comparisons for software assessment by using quantitative performance measurement is feasible.
The proposal was to evaluate the competence in software code analysis activities of each lab by using
two quantitative metrics (code coverage and mutation score). Our results demonstrate the feasibility
of establishing quantitative comparisons among software analysis and testing accredited laboratories.
One of these rounds was registered as formal proficiency testing in the database—the first registered
proficiency testing focused on code analysis.

Keywords: proficiency testing; interlaboratory comparisons; accredited laboratories; software product
evaluation

1. Introduction

Conformity assessment is a fundamental activity for industry and society [1]. Based on
activities such as technical standardization, metrology, testing, calibration, certification and
accreditation—which are jointly known as the national quality infrastructure—it is possible
to provide assurance that products, processes, people and management systems meet
standard technical requirements. In countries where a solid national quality infrastructure
is established, the activities related to conformity assessment are carried out by bodies
that meet requirements described in the ISO/IEC 17000 family of standards. One of
these standards applies, in particular, to calibration and testing laboratories: to have their
calibrations and tests nationally and internationally recognized, these laboratories must
meet the requirements of the current ISO/IEC 17025 and be accredited by an official
national accreditation body [2,3].

One of the key requirements that provide assurance on the calibration and testing
performed by accredited laboratories is that of performance monitoring. In the current
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ISO/IEC 17025:2017 [2], performance monitoring is defined in item 7.7.2, according to
which an accredited laboratory shall “monitor its performance by comparison with results
of other laboratories”. The ISO/IEC 17025:2017 standard also states that performance
monitoring shall include participation in the so-called interlaboratory comparison, which
is a formal procedure to compare the results of two or more laboratories. One approach
for interlaboratory comparison is proficiency testing. For an interlaboratory comparison
to be recognized as a proficiency testing, a series of requirements defined in the current
ISO/IEC 17043 [4] must be met, including the prior publication of all criteria for approval
or disapproval of laboratories. The rationale behind an interlaboratory or proficiency
testing is that, if a laboratory shows inconsistent results when compared to other labs, this
can evidence problems with its testing and calibration methods.

Proficiency testing has been for a long time [5–7] a well-used tool for the evaluation of
accredited laboratories operating in the areas of physics, chemistry and biology. Currently,
Information and Communication Technology (ICT) and Software Engineering (SE) have
evident importance for most industries. As a consequence, practitioners and researchers
have developed a set of technical standards and documents for the most diverse subjects
in these domains [8–10]. Furthermore, many countries have developed several ICT or
software related conformity assessment programs, aiming at certificating people, manage-
ment systems, processes and products according to technical standards and regulations.
However, proficiency testing programs for laboratories operating in the field are not yet
available. There are challenges in developing software proficiency testing, for instance:
(1) software products are not tangible; (2) requirements frequently accommodate some
level of ambiguity, inconsistency or information loss; and (3) no metrics exist to uniquely
characterize and identify them. Thus, even though software verification and validation
activities involve several reasonable objectives, tools and methods, there is still a great
influence of human variables (also known as soft factors) [11–13] in the execution of tests,
including the team members’ prior experience.

In the present work, we evaluate the use of two quantitative metrics in order to make
the objective comparison between the participating laboratories feasible. We propose
metrics based on concepts from SE: code coverage [14] and software mutation [15]. The
proposed approach was evaluated by executing two interlaboratory comparison rounds
with the participation of software analysis and testing accredited laboratories and demon-
strated the feasibility of establishing quantitative comparison among those labs. One of the
executed rounds of interlaboratory comparisons followed all the requirements of ISO/IEC
17025:2017(E) and was registered in the international EPTIS proficiency resting database.

The remainder of the paper is organized as follows. In Section 2, we provide the
basic definition and concepts for this work. In Section 4, we propose a metric based
on code coverage for interlaboratory comparison and describe the implementation of a
proficiency testing round based on code coverage. In Section 5, we propose a metric based
on software mutation for interlaboratory comparison and describe the implementation of
an interlaboratory comparison round based on software mutation. Section 6 contains our
final considerations.

2. Background: Definitions and Concepts
2.1. Quality Infrastructure

Quality infrastructure is a framework comprised of metrology, standardization, verifi-
cation, tests and quality activities and has a fundamental role for national and international
trade because it is based on two types of standards: (1) measurement standards, embody-
ing and communicating units of measure; and (2) standards to describe how to use these
units, how to perform measurements and how to carry out other technical and managerial
tasks. While national standards assure that measurements are comparable and reliable
throughout a country, international standards ensure common measurements across bor-
ders and facilitate international trade. In general, nations having such an infrastructure
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use accreditation and conformity assessment activities to determine whether services and
products meet established quality requirements [1,16–18].

Accreditation is the process by which a country’s official accreditation body formally
recognizes the competence of a conformity assessment body. In the case of testing lab-
oratories involved in conformity assessment activities, the accreditation is a declaration
that the lab fulfills the requirements of ISO/IEC 17025 or national equivalent standard, in
addition to the recognition of the technical capacity to perform a set of tests in the scope
of the activities of the laboratory. Besides, the accreditation process, in conjunction with
international mutual recognition agreements, may give international validity to the tests
carried out by an accredited laboratory among their signatories. Essentially, the role of
accredited laboratories is carrying out tests to demonstrate that a given product meets a set
of requirements normally associated with a regulation or technical standard such as ISO
standards [16,19].

Maintaining a solid national network of accredited laboratories is a challenge. Such
laboratories must combine technical excellence in each of their accredited scopes with
a solid management system that guarantees the quality—and the recognition—of the
results of their tests and calibrations. This combination of technical excellence and quality
assurance is essential for adequately supporting the industry and the mutual recognition
of tests, calibrations and conformity assessment activities among the countries sharing
equivalent levels of technical barriers in certain product certification programs.

2.2. Interlaboratory Comparison

Accredited laboratories must demonstrate their technical excellence to ensure the
validity of the results of their tests and calibrations. Thus, for periodically comparing
the laboratories’ measurements, a well-consolidated practice in empirical science is a
fundamental activity to ensure the aforementioned validity and the confidence within the
national quality infrastructure, so much so that it is emphasized by the ISO/IEC 17025:2017
(E) standard in its article 7.7.2. The importance of interlaboratory comparison led ISO
Conformity Assessment Committee (CASCO) to develop a specific standard for conducting
so-called proficiency testing, ISO/IEC 17043:2010 [4], describing all the requirements
for an interlaboratory comparison to have international recognition—although ISO/IEC
17025:2017 (E) admits that a laboratory monitors its performance through interlaboratory
comparisons distinct from proficiency tests formally defined in ISO/IEC 17043.

While accreditation is accepted as a proof of a laboratory’s competence, proficiency
testing and other interlaboratory comparisons demonstrate the current performance and
quality of test and calibration results of laboratories [20]. Traditionally, researchers and
nations have developed and employed well-studied and grounded methods to undertake
them, for instance, in biology [21], chemistry [22] and physics [23].

2.3. Software Testing and Information Technology Standards

The demand for regulation—and subsequent conformity assessment programs—for
software-controlled devices and components has grown significantly in the last years [24–28].

In general, the methods most commonly used in the software conformity assessment
are similar to those used by the manufacturer itself in software verification and validation
activities [29]. Thus, different software testing techniques, such as inspections, functional
testing, integration testing, system testing, etc. [30], can be used to determine whether
a particular software product meets the established requirements. Software testing can
be seen as a set of activities and actions to plan and provide inputs, focusing on certain
abstraction levels and characteristics of the product and verify whether it responds as
expected. However, both inputs and expected responses need to be defined a priori and
compared to the product’s observed behaviors in reality. When the observed behaviors do
not match the expected responses, product defects and faults have been found. However,
testing a software product is admittedly complex [31].
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ISO/IEC/IEEE 29119 [32] recommends a set of practices for software development
organizations, which synthesized specifications from other previously published standards,
such as IEEE 829, IEEE 1008, BS 7925-1 and BS 7925-2. The new standard met market
demands despite criticisms and contrary movements, because several managers were de-
manding the standardization of testing processes that would guarantee the best functioning
of this sector, but, in relation to the standard, the main concerns of the testing community
were as follows [32]:

• lack of consensus between committee and testing community;
• need for extensive and difficult to implement documentation provided for in

the standard;
• plastering or reversing the testing process by adopting the standard; and
• impact on other areas of the cycle that were not tested.

According to Computer Security Division [26], ISO/IEC 24759 extracts the require-
ments from ISO/IEC 19790, and, to ensure that the requirements are met, it associates
supplier information and laboratory procedures. The CMVP (Cryptographic Module Vali-
dation Program) manages the variations allowed in ISO/IEC 19790 and ISO/IEC 24759
through SP 800-140x documents, provide additional evidence and tests to meet the evidence
of CMVP cryptographic module requirements and provide adjustments recommended by
ISO/IEC to the existing standard in the next revision. SP 800-140A through SP 800-140F pro-
vides additional requirements for supplier evidence, security policy, approved encryption
and key management, authentication and non-invasive physical security requirements.

Another important document is the FIPS 140-3 CMVP management manual, which
deals with programmatic procedures and process requirements. It also has the NVLAP
Handbook 150-17 that identifies the NVLAP requirements specific to the CMVP, such as
requirements in quality systems, personnel, environmental conditions, test and calibration
methods, equipment, test quality assurance and control of reported results. Independent
test laboratories with appropriate NVLAP accreditation manage and carry out the testing
process and create a package with the results of the evaluation, which the CMVP reviews
and then coordinates the resulting comments with the laboratory. After a satisfactory agree-
ment, a validation is issued and added to the database hosted on the CMVP website [26].
Figure 1 illustrates the flow of requirements for the FIPS 140-3 process.

Furthermore, software conformity assessment introduces a series of new challenges
arising from the degree of subjectivity associated with the interpretation of the requirements
of a software product, as well as on the different understandings regarding how software
can be analyzed or tested [19,30]. As a result, several requirements of ISO/IEC 17025
need to be adequately re-interpreted to accommodate the software testing knowledge and
practices in the conformity assessment activities.

Due to the possibility that developers incur biased tests, the conformity of software is
best evidenced when evaluated by an independent third party [32]. Several examples are
successfully described in the literature, such as aviation systems conformity assessment
using the DO-178C standard [33] and software evaluation based on IEC-61508 and IEC-
61511 [34] standards for the functional and instrumental safety of a system. In the scope of
information security, the Common Criteria (standard associated with ISO/IEC 15408 [35])
and FIPS 140-3 [24] are important examples of cases where the third-party evaluation
applies to ensure the product quality and reliability.

In Brazil, for instance, there are the Conformity Assessment Programs (CAPs) regard-
ing the digital time card (timesheet) machine (Portaria MTE/Inmetro 510/2015), the certifi-
cation of products based on the Brazilian public key infrastructure, ICP-Brazil standards
(such as cryptographic modules and smart card readers) and the regulation of software-
controlled measurement instruments [25]. Particularly, software-based/embedded confor-
mity assessment programs in Brazil have increasingly relied on independent evaluations
by software analysis and testing accredited laboratories.
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Figure 1. FIPS 140-3 process flow [26].

2.4. Software Analysis and Testing Accredited Laboratories

The term software analysis and testing accredited laboratory refers to a laboratory that
demonstrated adequate levels of competence to be accredited in one or more software re-
lated scopes. These scopes are the combination among types of software-based/embedded
products to be assessed (e.g., smart meters, smart card readers and temperature, pressure
and humidity sensors) and the software verification or validation activities used to assess
them (inspection, testing techniques, etc., also referred to as tests in traditional metrol-
ogy). Each scope defines the required competences in performing a set of tests. For the
sake of simplicity, terms such as software analysis and testing accredited laboratory, software
accredited laboratory, software code analysis accredited testing laboratory, etc. are considered
interchangeable throughout this manuscript.

2.5. Software Metrics and Techniques Applied to Interlaboratory Comparisons

In comparison to traditional areas of metrology, establishing metrics to compare the
proficiency of laboratories involved in the assessment of software products is not a trivial
task. As we show in Section 3.3, to the best of our knowledge, there is no formal method
for conducting proficiency testing of laboratories accredited in scopes related to software
conformity assessment.

In the United States, the NIST (National Institute of Standards and Technology) [27]
manages the NVLAP (National Voluntary Laboratory Accreditation Program), which,
through LAPs (Laboratory Accreditation Programs), establishes, develops and implements
actions to accredit laboratories. Two LAPs relate to our theme, namely the Common
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Criteria Testing LAP and the Cryptographic and Security Testing LAP, but neither reports
proficiency testing programs for accredited laboratories to date. In France, the ANSSI
(Autorité Nationale en Matière de Sécurité et de défense des Systèmes d’Information) [28],
which licenses external laboratories, validating their skills in technical security analysis for
assessing the conformity of IT products, also does not conduct formal proficiency testing
programs in order to monitor licensed laboratories. This scenario reinforces the relevance of
the development of methods for prociciency testing for software analysis accredited labs.

The lack of solutions in the field of conformity assessment for “measuring” perfor-
mance of labs’ evaluation team motivated the search for such metrics in SE. In the present
study, two concepts were investigated with the goal of establishing metrics for proficiency
testing: code coverage and software mutation.

2.5.1. Code Coverage

Code coverage is a metric used in software test analysis to identify the number of
lines of source code that have been tested [14]. The use of code coverage in our study is
slightly distinct from how it has been seen in software engineering—when test cases and,
in general, unit tests [36] are used to minimize errors and risks involved with the software
development process [37].

Precisely, the proposed use of code coverage in our study is to present a pre-defined
code coverage to a laboratory’s evaluation team and to challenge its members to find similar
or equivalent test cases able to achieve that coverage. In other words, given a software
source code and a set of lines covered by a reference unit test cases of the provider of
proficiency testing round, the participant should try to cover the same set of lines, without
knowing the reference and with a deadline for analyzing and delivering its results.

Thus, we considered code coverage is a promising concept for the comparison be-
tween laboratories and establishing a similarity measure between the effectiveness of the
participant and the provider’s reference.

2.5.2. Software Mutation

Software mutation is the introduction of minor changes to a program in order to
investigate the effect in the behavior of software, generate variations that allow identifying
the absence of inputs and, consequently, points of failure that the developed test cases
could or should reveal. Variations in the original code are called mutants, and each mutant
contains only one change from the original code. The modification is generated from
a predefined set of mutation operators [15]. As the mutations involve specific changes
in a single statement of software source code, in general, they imply a slightly different
overall behavior of the software, which starts to present different responses for some sets
of entries—naturally, those entries that will “excite” the modified statement.

We claim that the ability of a laboratory team to determine inputs that differenti-
ate mutant software from the original is evidence of proficiency in code analysis, i.e.,
understanding part of software code to produce test cases able to excite the inserted defect.

In the present work, we use the so-called mutation score—which is the measure of
the ratio between the total number of mutants killed (with the test cases developed by the
laboratories) and the total number of mutants generated—as a metric for the comparison
between laboratories.

2.5.3. Theoretical Evaluation

Researchers proposing a new metric have the burden of proof to demonstrate that
the metric is acceptable in its intended use. For almost half century, SE researchers have
debated what would constitute a “valid” metric, i.e., a metric validated by a multifaceted,
scientific and objective process. However, there must be a formal system of rules for
ensuring such a process. SE community has not yet reached a consensus on this system of
rules [38]. However, many studies have tried to ground their metric evaluations based on
the Weyuker’s properties [39] (see, e.g., [40–45]).
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Nevertheless, we could not directly use these properties to establish a point of view
because they refer to complexity metrics, a product attribute. Such a fact could be a threat
to internal validity of our study, since no evaluation would guarantee the metrics measure
the attribute they purport to measure. In our case, the attribute we expect both metrics
measure is the effectiveness of the participant in producing adequate test inputs with
respect to specific goals or challenges.

In our preliminary investigations, we found Weyuker’s other work, which is well-
known in the software testing technical literature [46], comprising a general axiomatic
theory having 11 other properties in order to provide a set of adequacy criteria for evaluat-
ing software test measurements. The properties defined by Weyuker [46] are among those
to which a “valid” measurement should adhere, according to Meneely et al. [38].

Fortunately, Weyuker [46] presented the theoretical evaluation related to both software
test measurements in our study. Thus, we are not proposing to evaluate the previously
mentioned metrics. Instead, we are providing a simple indication of an evaluation already
performed by a specialist. According to the author, code coverage satisfies five and software
mutation satisfies eight of properties defined by Weyuker [46] (11 in total). This indicates
that software mutation measurements theoretically tend to be more successful than code
coverage measurements regardless of the use, since they are directly or intuitively related
to the attribute it aims to measure.

However, code coverage demands less effort than software mutation in terms of
learning curve, instrumentation, etc. Thus, to evaluate code coverage measurement in the
context of software conformity, an interlaboratory comparison would still make sense, at
least as a way to evaluate and produce indicative evidence.

3. Research Method
3.1. Research Questions

In our first ad-hoc investigations, we were not able to identify well-reported and
structured proficiency testing methods in the context of ICT or software products. It
motivated us to propose initial open questions and, consequently, a research method for
developing proficiency testing methods for software conformity assessment. Thus, with
the purpose to minimally demonstrate our point of view, we summarize simple research
questions, as follows:

RQ1. What is the available evidence about proficiency testing and interlaboratory comparisons in
the technical literature in the last five years?

RQ1.a. What part of the found evidence refers to ICT and software products’ conformity assessment
and what part to sensor-based products’ conformity assessment?

RQ2. Is it feasible to perform software product-related proficiency testing rounds by using quantita-
tive performance measurement?

3.2. Overview

The research method used in our study aims at: (1) acquiring and organizing an
initial set of evidence on recent proficient testing methods; (2) if possible, identifying
which evidence is related to sensor/ICT/software-based products; (3) capturing insights
that could be reused or adapted in the context of software conformity assessment; and
(4) organizing a set of steps that may permit performing some rounds of interlaboratory
comparisons. Figure 2 illustrates the flow of the research method.
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Figure 2. Research method.

It is an iterative method and consists of six empirically performed steps, as follows:

1. Perform a Review: In this step, our goal is minimally to identify the most recent and
available evidence regarding proficiency testing methods and which elements of them
could contribute in developing a proficiency testing method in the context of software
conformity assessment.

2. Define Hypotheses: Here, the purpose is to find or develop the theoretical and practi-
cal elements that could support defining some hypotheses to evaluate and determine
which conditions make performing proficiency testing rounds in the context of soft-
ware conformity assessment feasible.

3. Plan a Round: Based on the found elements and defined hypotheses in the previously
performed step, a plan is designed and elaborated taking into account all requirements
for performing an interlaboratory comparison or proficiency testing round according
to the current version of ISO/IEC 17043.

4. Run a Round Trial: In this step, we expect to obtain the first indications of the round’s
feasibility based on the planning. In general, students and collaborators not allocated
in an accredited lab are recruited as participants in this step. If there are practical
problems identified during the trial execution, they are analyzed and the adjustments
are properly reported in the plan. Otherwise, the plan is considered ready and the
round can be performed in the next step.

5. Perform the Round: The round’s plan is presented to the laboratories, and they are
invited to act as participant of the round. Afterward, the round is performed and the
participants’ data are collected.

6. Analyze Data and Publish Results: In this step, we analyze laboratories’ data, compute
their performance and publish the results. In addition, we perform a post-mortem
analysis aiming to synthesize lessons learned, identify new issues or questions and
evaluate the theoretical and practical elements that could be removed or adapted and
the new ones that must be investigated and incorporated. Thus, new hypotheses are
stated and tested in the next iterations.

Currently, only two iterations (rounds) have been successfully performed at the
writing of this manuscript. The main results of the two interactions of the research method
(the review and the performed rounds) are presented in the following sections.

3.3. Literature Review
3.3.1. Context

To support the existence of an open question on which we are basing this research
work, we describe below the results of a rapid review. Similar to systematic reviews, a
rapid review has its origins in medicine, it should be repeated and replicable and its
results should be traceable. Instead, rapid reviews are a form of knowledge synthesis in
which components of the systematic review process are simplified or omitted to produce
information in a timely manner [47]. Tricco et al. [48] highlighted that there is no pre-
established format for performing rapid reviews—even in medicine—and they have been
also successfully exploited in computer science [49,50]. (In the future, we intend to plan
and design a systematic review protocol to better understand and map the gap between
research and practice regarding proficiency testing programme for ICT and software
product conformity assessment; however, the results of such systematic review would be
out of the scope of the present paper.)
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3.3.2. Search Strategy

Scopus database is the initial and unique information source to perform the search,
because there is an intersection and, consequently, a lot of duplicate returned articles,
when compared to other databases, such as IEEE Xplore, Engineering Village, ACM Digital
Library, etc. [51].

Our search strategy is only to search in the title and abstract of papers written in
English for the chosen search engine. In addition, the search string was formulated
by combining well-known terms with the desired interval based on publication year of
returned articles, as can be seen below:

TITLE-ABS-KEY ( (“proficiency testing” OR “interlaboratory comparison”) )
AND ( LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-
TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR,
2017) OR LIMIT-TO (PUBYEAR, 2016) ) AND ( LIMIT-TO (LANGUAGE, “En-
glish”))

Note that we did not impose limits to returned papers on criteria based on terms
discriminating any application area or domain, with the purpose of verifying whether
there are ongoing or similar studies with respect to ICT or software conformity assessment
reported incorrectly or inappropriately in an unknown or restricted forum. The work of
Machado et al. [19] was used as the control study, i.e., it should also be found and included
in subsequent review trials.

3.3.3. Study Selection Procedure and Criteria

Our review’s selection procedure was divided into three phases: (1) performing the
search in databases; (2) excluding articles based on the title and abstract; and (3) including
articles based on the full reading. The criteria we used to judge the articles returned by the
search engine and therefore decide on their pertinence and inclusion were as follows:

• Obtain the returned scientific publications searched in peer-reviewed journals and
conferences available on the web through search engine, as evidence of proficiency
testing in the last five years.

• Use Scopus’ pre-defined search filters to select for reading of title and abstract of the
studies labeled as computer science or engineering, as the most probable subject areas
to find ongoing or similar studies related to proficiency testing for sensor-, ICT- or
software-based products’ conformity assessment.

• Select for full reading the papers that discuss ongoing or evaluated methods for per-
forming proficiency testing for sensor-, ICT- or software-based products’
conformity assessment.

3.3.4. Performing the Searches

The search was performed on 10 February 2021, and the total number of returned
entries was 1310. Based on the selection procedure and criteria, all of these entries were se-
lected. Table 1 shows that most of them refer to medicine, biochemistry, genetics, molecular
biology and engineering (note that there are articles labeled in more than one area).
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Table 1. Returned articles grouped by subject area according to Scopus .

Subject Area Number of Studies (Non-Exclusive)

Medicine 481
Biochemistry, Genetics and Molecular Biology 282

Engineering 264
Chemistry 260

Physics and Astronomy 225
Environmental Science 163

Agricultural and Biological Sciences 135
Chemical Engineering 109

Earth and Planetary Sciences 96
Immunology and Microbiology 92

Health Professions 82
Pharmacology, Toxicology and Pharmaceutics 60

Social Sciences 59
Materials Science 55
Computer Science 51

Energy 36
Mathematics 28

Multidisciplinary 19

3.3.5. Data Extraction and Review Results

According to our second selection criterion, the total number of articles selected for
reading of title and abstract was 282. Surprisingly, computer science was able to return
52 papers. After reading the title and abstract of computer science-labeled articles, we
found most of them refers to: (1) proficiency testing and interlaboratory comparison for
electromagnetic compatibility measurements (14 articles); or (2) the use of algorithms and
computer methods to support analyses of comparisons results (11 articles). When looking
at engineering-labeled articles, we found 23 additional articles related to electromagnetic
compatibility. Among these 282 articles, only six articles mentioned the word “sensor” in
the title or abstract (four articles, a book and a conference proceedings’ report).

Unsurprisingly, only one was selected for full reading and included, in the protocol’s
results, the control one—the first position paper regarding the subject of our research group
in Brazil—preventing a more detailed analysis due to lack of data.

3.3.6. Threats to Validity of Review and Preliminary Results

The main threats to the validity of this review are the researcher bias in selecting
and including articles to the review’s results and the fact we limited the databases and
period during performing the search. The research bias was minimized by strictly using
the Scopus’s schema for the classification of articles in subject areas and by including
for reading of title and abstract all returned articles. Furthermore, the search string did
not include restrictive terms, such as software, system, information technology, sensors,
etc., which makes the search broader. The limitations on choosing the database and
time interval are notably a threat to the result’s generalization, and, consequently, we
cannot argue that indeed there is no proficiency testing method-related ICT and software
conformity assessment. However, this review shows even more traditional knowledge
domains are currently investigating and developing new methods for proficiency testing
and interlaboratory comparisons, aiming to address their open issues. Thus, we consider
this review plays its role in this work. It provides some evidence and supports our belief
that, if such methods exist, they are not adequately reported and easily available in the
technical literature.

During the reading of title and abstracts phase, some works had our attention and
deserved a full reading, because they point out or address issues or scenarios that could be
appropriately matched to ICT or software proficiency testing methods by analogy.
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For instance, Kotyczka-Moranska et al. [52] reported proficiency testing to determine
gypsum oxide parameters in Poland. They highlighted there are difficulties in the selection
of suitable indicators and criteria to evaluate the findings when the number of participants
is small. They also claimed the performance evaluation criteria were determined from the
participants’ results due to the impossibility of using a valid procedure according to more
conventional procedures. Zavadil [53] showed that proficiency tests according to ISO 17043,
for non-destructive tests laboratories, are effective to select competent laboratories and
relevant to evaluate the continuous improvement environment of laboratories according to
ISO 9001.

Furthermore, de Medeiros Albano and Ten Caten [54] analyzed the relationship
among proficiency testing, validation methods and estimation of measurement uncertainty.
They carried out qualitative research involving experts from five countries and concluded
the tests contribute effectively to the reliability of the results and are directly related to
validation methods and the uncertainty measurement in order to increase the laboratory’s
competitiveness. In turn, Fant et al. [55] explored the proficiency testing of programming
skills in computer science and electrical engineering courses. Although this work is related
to computer science, it has a different goal, that is, to grade the students’ proficiency in
their academic skills.

In [56], the researchers evaluated the capacities of pressure calibration laboratories
by using a mobile measurement method. They emphasized that the results reported by
testing laboratories were comparable, even though the measurements are often obtained
using different methods.

According to Miller et al. [57], proficiency testing programs for patient care assess-
ment are part of a rare category due to some restrictions: lack of reference measurement
procedures, absence of certified reference materials, inability to prepare switchable samples,
etc. In addition, Miller [58] discussed the problem of the dichotomy between using switch-
able samples and defined values in accordance with a reference measurement and using
consensus approaches to standardize or harmonize the results of measurement procedures
among the participants. Based on our briefly acquired experience, proficiency testing for
ICT and software conformity program faces the same restrictions and problem.

Regarding the results of the research on sensors, in the book “Descriptive Analysis
in Sensory Evaluation” [59], the authors stated that the performance checks on the per-
formance of any sensory panel is critical. They highlighted the importance of proficiency
testing in the evaluation process in several panels of sensory profiles, where the results
of a common sample set and the output of each panel are compared with an expected
output to validate performance, an action similar to the one we perform in our first round
of interlaboratory comparison. The IEEE International Symposium on Electromagnetic
Compatibility and Signal/Power Integrity 2020 conference proceedings [60] contains 137
articles and the topics discussed that most closely match our research include: experimental
evaluation of spatial resolution for optical electric field sensors with dipole element and
a schematic of proficiency testing of disturbance conducted at the mains terminals at 150
kHz and 30 MHz using multi-items.

In other articles found, Bair [61] commented that the traceability of gas flow in the
range of 0.1–1 sccm (standard cubic centimeters per minute) is based on the extrapolation
of the use of laminar flow elements below 1 sccm, and this part of the range has never
been fully verified through interlaboratory comparisons, proficiency tests or other means
of measurement assurance. Measurements needed to be made in absolute mode and
the internal piston position sensor supplied with the piston gauge were not sufficiently
accurate; thus, to support this range of gas flow within the scope of accreditation from
Fluke Calibrations, a method needs to be developed to gain the necessary confidence for
accreditation, a situation similar to what we try to do in our work for establishing a method
for evaluating software products.

In [62], the authors reported their investigations of new sensors, new calibration
facilities, investigation of the characteristics of the sensor, etc. This study developed and
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carried out interlaboratory comparisons during such investigations. As a consequence, the
final report of the comparison was submitted to the World Meteorological Organization
(WMO) and published as a report in the field of temperature, humidity and pressure
on Instruments and Observation Methods Programme (WMO-IOM). According to the
authors, the protocol will also be extended to other regions, and the results of all potential
comparisons can be associated with the results in the European region, allowing the
comparability of meteorological laboratories from different regions.

In [63], the authors proposed an interval data fusion procedure that can be widely
applied in interlaboratory comparisons, prediction of fundamental constants, conformity
tests, improving the accuracy of multi-sensor readings, etc. Their numerical experimental
investigations show that using the proposed merger guarantees greater precision and
robustness of the results of the interval data fusion procedure.

Finally, Sauerwald et al. [64] presented a gas sensor system for the detection of benzene,
using Metal Oxide Semiconductor gas Sensors (MOS) and Temperature Cycled Operation
(TCO). The system was equipped with three gas sensors, an advanced temperature control
and electronic reading for the extraction of resources from the TCO signals. The system
can be successfully calibrated in different laboratories and test conditions, indicating that
the very different methods of generating benzene produce similar levels of test gas. The
results demonstrate the need to define common test standards for trace gas sensor systems
and the high potential of these systems for the quantitative detection of even small levels
of pollutants such as benzene.

As we can see, there are some concepts, goals or tools that could be directly absorbed
or adapted, and some similarities and analogies could be done to sensor- or software-based
product conformity assessment. Nevertheless, new issues need to be identified and ade-
quately addressed. In our opinion, the main issue is to determine how to quantitatively
measure the accredited labs’ performance. It implies identifying or defining measures
directly or indirectly related to the observed phenomena, and which can be easily com-
prehended and shared by different stakeholders (governments, regulators, technology
producers and third-party evaluators).

4. First Round: Software Analysis Interlaboratory Comparison via Code Coverage
4.1. Rationale

As discussed above, one of the biggest challenges in establishing a model for com-
paring software testing laboratories is the difficulty in establishing quantitative measures
due to the degree of subjectivity associated with the interpretation of the requirements of a
software product. Thus, the first round of interlaboratory comparisons was based on code
coverage measurement as the main element of objective comparison of the results obtained
by each laboratory. Besides, each laboratory had the opportunity to evaluate its methods
and procedures and verify the harmony with the performance of other laboratories [19].

Code coverage is a metric used to identify the quantity or set of “elements” of a
software code that was tested by a given test case suite. These elements are, for example,
lines of code, instructions, blocks of code, functions and procedures and can consider both
source code and executable code [36,65]. Throughout this article, we consider the code
coverage based on lines of software source code, which is a metric traditionally used to
assess the test cases effectiveness [14].

Test cases contain a set of input values, pre-execution conditions, expected results
and post-execution conditions developed for a specific objective and condition [36,65]. In
the case of evaluating the quality of a software test case (or test suite), the classic use of
code coverage is based on the premise that, the greater is the coverage of a test suite, the
better is its quality—since this means that most of the software has been run (and therefore
tested) [66]. In this round, however, the main competence to be assessed is not the ability
to test a large portion of software, but the (much more abstract) ability to understand the
software. This is because evaluating software code requires a certain level of understanding
in order to identify non-conformities (defects) that often manifest in, for instance, malicious
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behaviors and undeclared functionalities. Non-conformities are unlikely to be identified
through exhaustive or brute force techniques, but rather through a careful analysis of the
characteristics and subtleties of each type of software. Thus, we adapted the code coverage
metric and used it based on the following premise:

Given a piece of software and a set of its lines of code, to develop a test case that covers exactly that
set of lines demands understanding about the software in question.

Indeed, since “understanding” is not a directly quantifiable concept, we do not intend
to measure the “level of understanding”. On the other side, it seems reasonable to assume
(on the contrapositive) that the lack of understanding of the software makes it impossible
to determine a test case that returns a given coverage.

For the establishment of comparison metrics, however, we need to establish a formal
hypothesis. Thus, we consider that not only developing test cases reaching a given coverage
indicates a level of understanding regarding how to interpret a source code, but that:

Hypothesis 1. The closer a developed test case is to a given “target” code coverage, the higher is
the understanding of its meaning and, consequently, how to test the software code.

At this point, we define more precisely the concept of “software understanding” and,
consequently, the meaning of the comparison based on code coverage.

We define the concept of “software understanding” as a partial order. This approach
is consistent with the observation that it is not always possible to compare the “under-
standings” of two software analysts. In general, two people or laboratories may have
incomparable understandings, for example, because they have specialized on different
aspects of software. On the other hand, one subject having greater understanding than the
other seems reasonable in certain circumstances, i.e., the possibility of determining that an
entity may achieve “greater understanding” than the other is a premise for the laboratory
comparison we propose in this round.

When defining a metric for comparison between two code coverages, two require-
ments must be met: (1) their similarity should increase when their intersection is larger,
and (2) their similarity should decrease when their symmetric difference is larger. A simple
metric with these properties is the Jaccard Index, defined by J(A, B) = A ∩ A/A ∪ B. The
Jaccard Index can be rewritten as J(A, B) = A ∩ B/(A ∩ B + A \ B + B \ A), which makes
it clear that the index is only 1 if A = B, being null if the intersection is null.

The Jaccard Index is a metric consistent with our definition of software code under-
standing in the following way. Consider a target coverage C in software with set S of
lines and two analyst coverages C1 and C2. Suppose (C1 ∩ C) ⊃ (C2 ∩ C), meaning that
C1 correctly covers all the lines of C that are covered by C2 (and possibly more lines). In
addition, suppose (C1 ∩ (S \ C)) ⊂ (C2 ∩ (S \ C)), meaning that C2 incorrectly covers all
the lines of S \ C that are covered by C1 (and possibly more lines). This is a clear scenario
where C1 evidences better software understanding than C2—and the reader will be able
to check that J(C1) ≥ J(C2), because of the assumptions regarding C1 and C2 and the
definition of J(·).

One should note that the above metric is just one possible reference. Used in isolation,
and with only a reference coverage, it is possible to inaccurately infer the difference among
the levels of understanding of analyzers (laboratories). The scenario is analogous to a
test that seeks to assess knowledge about a very wide field through a small number of
questions. However, the idea is that, when testing a large amount of reference coverage,
an increasingly accurate estimate of individual understanding levels is achieved and,
consequently, more easily discriminated against.

4.2. Interlaboratory Comparison Execution

Based on the principle that code coverage provides a quantitative objective for inter-
laboratory comparison, we organized an interlaboratory comparison round attending all
the requirements of ISO/IEC 17025:2017(E). Henceforth characterized as the Proficiency
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Testing Round, we describe in the following all aspects of the Proficiency Testing Round
that needed to be defined prior to the execution of the round:

• Metric : As discussed above, we used code coverage to compare laboratories. We
presented software together with a code coverage (arising from a real test case that
was not informed to the labs) and challenged the labs to design test cases that achieve
a code coverage as close as possible to the original one. To measure the distance
between to coverages A and B, we used the Jaccard Index (A ∩ B)/(A ∪ B).

• Testing Item: The testing item was informed prior to the release of the code coverage
challenges, so that the laboratories could have time to become familiar with the item.
The chosen software was the available open source software Alliance Peer-to-Peer
communication software Version 1.0.6 (build 1281) (http://alliancep2p.sourceforge.
net/, accessed on 24 May 2021.).

• Code Coverage Tool: The tool required to trace software execution and register code
coverage were also informed prior to the release of the code coverage challenges. We
used EclEmma JaCoCo 3.1.2 Plugin for Eclipse Java Platform [67].

• Delivery Mechanisms: A relevant—and new—property of the round is that, unlike
“classic” proficiency testing that requires the physical transportation of a reference
testing item/specimen, our round could benefit from Internet communication for
transmission of the test item. Thus, we developed a virtual machine with the complete
environment and tools needed to perform the software tests. To avoid problems due
to the transmission of a large virtual machine, an encrypted packet was released
one week before the beginning of the tests, so that, on the first day of the tests, the
only thing needed was to release a decryption key on the website of the Proficiency
Testing Round.

• Approval Criteria: To approve a lab in the challenge, its Jaccard Index of similarity
should be larger than the mean Jaccard Index (among all participants) minus three
times the standard deviation.

• Data Integrity: To assure the integrity and authenticity of data, all the communication
between our organizing team and the laboratories were digitally signed with private
keys corresponding to public keys that were securely exchanged before beginning
the Proficiency Testing Round (in a registration stage). The chosen algorithms were
SHA256+RSA2048.

• Cronogram: The Proficiency testing was a five-month process that started on 16 June
2019 with the elaboration of the work plan and finished in 20 December 2019 with the
release of certificates of participation for the labs. The execution of the tests by the
labs started at 10 a.m. (UTC-3) on 23 September 2019 and the deadline for return of
the test reports by the labs was 4 p.m. (UTC-3) on 27 September 2019.

It is important to emphasize that all the above criteria were released to the labs on 27
August 2019, prior to the execution of the proficiency testing.

The resources needed to carry out the tests of this first round of EP were made available
through a virtual scenario. Hence, the National Research and Education Network (RNP)
(https://www.rnp.br/, accessed on 22 May 2021.) was used, which is an environment for
the safe transmission of data. Afterward, a digital test package was created according to
the OpenPGP standard, using a private key (IPriv) generated specifically for the round.

The so-called Proficiency Test Package is a Virtual Machine (VM) that has the tools and
files for the execution of the tests by the labs—all properly installed and configured (the
package is available for download at https://doi.org/10.5281/zenodo.4781618, accessed
on 24 May 2021). The virtual machine (a file with extension .ova) had to be run on a
host with Oracle VirtualBox software version 6.0.8 installed. It was developed to facilitate
participants’ access to these files and tools and the settings needed to run the tests. The
package was prepared and delivered ready to use, together with operating instructions.
The list below describes the content of the virtual machine and released to labs:

• JaCoCo 0.8.3. Java library for code coverage. More details about the library and how
it was used in this research are presented below.

http://alliancep2p.sourceforge.net/
http://alliancep2p.sourceforge.net/
https://www.rnp.br/
https://doi.org/10.5281/zenodo.4781618
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• Reference reports. These are the JaCoCo reports, in xml format, issued from the
execution of the tests prepared by our organizing team.

• EP item. It consists of the source code and a functional version of Alliance P2P—
Version 1.0.6 (build 1281).

• Auxiliary tools/files. The auxiliary tools or files available to facilitate analysis reports:

1. Eclipse IDE 2019-03 (4.11.0). It is a platform with features and tools to streamline
the software testing development process (it can be downloaded at: https://www.
eclipse.org/downloads/packages/release/2019-03/r, accessed on 24 May 2021).

2. EclEmma JaCoCo 3.1.2. Plugin based on the JaCoCo code coverage library for
the Eclipse platform.

3. Java-8-Openjdk-amd64. It is a development kit for Java platform systems, the
software programming language used in this round.

4. Junit 5. It is a framework used to facilitate the creation of unit tests in Java.
5. comparaRelatorios.py. It is a script developed in Python programming language,

which automatically compares the lines covered, not covered and covered in-
correctly, in the report of the appraised with the reference report. It was made
available to the participants of the round to facilitate the identification of diver-
gent and convergent lines.

6. zeresima.xml. It is a JaCoCo report, in xml format, formed by zeroed lines,
simulating a unit test that does not cover any line. When used with the script
comparaRelatorios.py, zerezima.xml is compared to a reference report, pointing
out the diverging lines, that is, the lines that are not zeroed and that, obviously,
were executed by the reference test case. Note that the VM for the Proficiency
Testing Round can be downloaded from the linked Virtual Machine and all the
additional details of the round can be obtained in Proficiency Testing Round
(in Portuguese).

4.2.1. Code Coverage Library—JaCoCo

A Java tool, JaCoCo records the coverage of a test in reports, which can be issued
in HTML, XML and CSV format files. The report in xml format indicates the number of
lines and branches covered and non-covered of each test case in textual format and is the
extension adopted in the Proficiency Testing Round. Figure 3 exemplifies an excerpt from
the xml report of the test coverage of the Hash.java class. In this image, it is possible to
analyze the section of lines 23–60, where the instructions covered by the HashTest.java test
case are highlighted in yellow.

Figure 3. Sample from JaCoCo report.

In the XML report, the <line> tags, within the <source file> tags, present information
about the instructions and branches covered and not covered for each line of code. Branches

https://www.eclipse.org/downloads/packages/release/2019-03/r
https://www.eclipse.org/downloads/packages/release/2019-03/r
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are structures of code conditions, where the previous action determines which decision
the software will execute. A branch is lost when only part of the condition is satisfied.
The attributes of the <line> tag are: line number (nr), missing instructions (mi), covered
instructions (ci), missed branches (mb) and covered branches (cb).

4.2.2. Unit Tests—JUnit

The choice of using the Jacoco library in this round led us to use the JUnit framework
in the creation and execution of unit tests. In this round, the JUnit 5 version was used and
supported by Eclipse IDE 2019-03. Thus, it was enough to configure the framework in the
Eclipse project, as can be seen in Figure 4.

Figure 4. Adding JUnit to Eclipse.

During the planning and design, eight test cases were elaborated, of which seven were
used for the evaluation of the round. The test case not used, named HashTest.java, was
sent to the laboratories within the digital package and described in the proficiency testing
manual. Its purpose is to exemplify how the participants should perform the test of this
scheme. Each test case was concerned with testing a class of the Java source code for the
item. Thus, the criteria for choosing these classes started from the following premises:

• The classes should belong to different packages of the Core subsystem of the item,
avoiding the test cases needed cover graphical user interface (GUI) functionalities.

• The classes should allow tests of different levels of difficulty.
• The classes should test decision structures and cover false and true conditions.

4.2.3. Software Alliance P2P

The software adopted as an item for the first round was Alliance P2P, an open source
technology (open source) designed to share files and establish communication between
close people. In JAVA programming language, Alliance is composed of two independent
subsystems: (1) UI, responsible for the GUI; and (2) Core, responsible for the internal part
of the system. The Core subsystem is divided into three packages:

• Comm contains the classes responsible for the ow of network data.
• Node contains classes with information from actors (users who share files).
• File contains classes for managing shared files.

Each of these packages should be linked to at least one test case. Figure 5 illustrates
an overview of the Alliance P2P architecture.
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Figure 5. Alliance P2P architecture overview.

4.3. Evaluation Criteria

Since the objective in this round was to find test cases that covered exactly the same
lines of code covered by the reference tests, we needed to propose an evaluation mechanism.
Thus, the participant’s performance would be better when its test cases’ results were more
similar to the reference tests. Then, for a given test case based on code coverage, T is
called the total set of lines of the evaluated software, SR is the set of lines covered by the
reference tests and SL is the set of lines covered by the tests performed by the participant.
As a similarity metric used to measure the performance of each participant, the Jaccard
Index [68] was adopted, defined below:

J(SR, SL) =
SR ∩ SL
SR ∪ SL

(1)

The determination of the consensus value of this interlaboratory comparison was
based on the average of the J(SR, SL) indices obtained by each of the participants. Thus,
the value J is given by:

J = Σlabs
i=1

J(SR, Si
L)

labs
(2)

where labs is the number of participants. The interpretation of the performance of the ith
laboratory in relation to the other participants was associated with the comparison of its
Jaccard Index, with the standard deviation, given by:

σ =

√
Σlabs

i=1
(J − J(SR, Si

L))
2

labs
(3)

The result of the evaluation of the index of the ith participant (Ji) was given by the
following criteria:

• Ji ≥ J − σ indicates “satisfactory” performance and does not generate a signal.
• J− σ > Ji ≥ J− 3σ indicates “questionable” performance and generates a warning signal.
• Ji < J − 3σ indicates “unsatisfactory” performance and generates an action signal.
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The results of the Ji indices were rounded to two decimal places, following
rounding criteria.

4.4. Participant Performance and Round’s Results

The Proficiency Testing Round included the participation of five accredited labora-
tories and one academic laboratory, all of which reported the adequacy of the proposed
procedures: all labs could easily download the test item, perform their tests and return the
corresponding reports.

Table 2 shows the results of each participant [69], measured by the Jaccard Index. As
can be seen, all participants obtained maximum value, with index Ji = 1. Such result
implies that all participants were able to solve the challenge related to this round of the
proficiency testing, and consequently implemented test cases that cover exactly the set of
lines of the provider’s reference.

Table 2. Results of the first round.

Participant Code Jaccard Index

01 1.00
05 1.00
07 1.00
12 1.00
14 1.00
18 1.00

As a consequence of each laboratory having achieved the Jaccard Index of 1, the
standard deviation was zero. Therefore, the application of the established criteria indicates
that all participants had a satisfactory result.

Even though the the above result prevented a further comparison among the partic-
ipant laboratories, such result was in a way foreseen. On the one hand, as we restricted
participation to “high profile laboratories” in the Proficiency Testing Round (accredited labs
and academic labs), the expected results were indeed high Jaccard Indices. It demonstrates
that all participants have the minimum competence expected to perform tasks essential in
software conformity assessment. On the other hand, since the results of this first Proficiency
Testing Round would impact the accreditation of labs, we opted to develop relatively easy
challenges. Given we focused on the feasibility of the round, the round’s result indicates
that the next ones should propose more challenging test scenarios, in order to better explore
the participants’ technical competence.

As a result of following all the requirements of ISO/IEC 17025:2017(E), the Proficiency
Testing Round was registered in the EPTIS database, as shown in Figure 6.

Figure 6. Registration of the proficiency testing in the EPTIS database.
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The full details of the registration of the Proficiency Testing Round can be obtained on
the corresponding EPTIS webpage (https://www.eptis.bam.de/eptis/WebSearch/view/
640748, accessed on 22 May 2021).

5. Second Round: Interlaboratory Comparison Using Software Mutation Metrics
5.1. Rationale

Despite the encouraging results of the Proficiency Testing Round carried out in 2019
with respect to the feasibility of the proposed method, the fact that all laboratories obtained
the same Jaccard Index 1 prevented the realization of a detailed statistical comparison
among them. As discussed above, we avoided higher difficulty challenges to reduce the
risk of laboratories failing. After the conclusion of the first Proficiency Testing Round, we
decided to plan a new round, exploring different tools and methods.

Following the strategy of looking at SE discipline, we investigated whether the concept
of software mutation could be explored in order to use other metrics. Recall that, given
the code of software S, a mutant S′ of S is slightly distinct software where just a statement
of code or instructions are modified, and an input I kills the mutant S′ if S and S′ present
distinct behavior when presented to input I.

In addition, it is interesting to mention that the mutation testing technique is closely
related to the code coverage technique. Note that, given S software and S′ mutant, for a
given test to be able to “kill” the S′ mutant, this test must necessarily cover at least the
statement that distinguishes S from S′. However, it is not enough that such a statement is
covered: the change could generate different behaviors between the original line and the
modified statement. Thus, in some way, mutation testing presents a possibly even stronger
method to assess software analysis and test effectiveness.

Thus, we define the mutation score si ∈ [0.1] of laboratory i by the following equation:

si =
M
T

(4)

where M is the number of killed mutants and T is the total number of generated mutants.
(Note that the traditionally employed approach would be to subtract from T the number
of “equivalent” mutants, i.e., the generated mutants that present the same behavior as the
original software. However, detecting such mutants is hard, and, for the purposes of the
present research, it is more important to have a reference for comparing laboratories.) It
makes the hypothesis of this round simpler than the one in the first round:

Hypothesis 2. When a higher the mutation score is obtained by a set of testing cases, its effective-
ness of testing and detecting defects is better and, consequently, the understanding of the software is
better as well.

In other words, Hypothesis 2 states that labs’ performance can be discriminated by
using a mutation score based measure.

5.2. Interlaboratory Comparison Execution

A new round of interlaboratory comparison was planned for the second half of
2020. This new round would have considerably greater complexity and a variety of
challenges. To have flexibility in defining challenges, technologies and procedures, the
organization committee of the round decided to perform an interlaboratory comparison
instead of a proficiency testing—i.e., an interlaboratory comparison that does not follow
all requirements of ISO/IEC 17043:2017(E). Since the round would contain challenges
with complexity and unknown difficulty, it was essential to define or extend the data
analysis procedures or approval criteria of participants a posteriori (recall that one of the
requirements of ISO/IEC 17043:2017(E) is that all approval criteria must be defined before
the proficiency test round is carried out, which is not convenient when searching for new
(and unknown) comparison methods).

https://www.eptis.bam.de/eptis/WebSearch/view/640748
https://www.eptis.bam.de/eptis/WebSearch/view/640748
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The choice of not meeting ISO/IEC 17043:2017(E) also allowed simplified procedures
to be adopted in relation to the registration of laboratories and the processing of data,
once there was no need to segregate teams in charge of receiving data from registrants
and processing test results. A more particular issue in this round was the possibility of
experimenting on external and individual participation (software developers, students,
testing teams, etc.). This issue could increase the mass of data to be analyzed, but it would
hinder performing an official proficiency test round.

In this round, the challenge proposed to the participants is that they produce test
cases that efficiently eliminate the greatest possible number of mutations for the classes
selected by the round’s organization committee, within the established deadline. The
classes were selected considering the number of mutants generated by the PIT tool (the
PIT tool (https://pitest.org/, accessed on 24 May 2021) was used through a plugin for the
Eclipse IDE, which allowed a quick analysis of the quantities of mutants generated and
killed by the test cases developed by the participants, through a summary generated by
the plugin itself), adopting the complete set of mutation operators provided by it.

As done in the first round, the content of the package was made available on a virtual
machine at a specific link with the fundamental and auxiliary tools and files installed and
configured to be used. Many of the tools and files from the previous 2019 round could be
used in this new 2020 round. However, we used specific tools to aid in the analysis of the
mutation score and the participant’s performance. Here are lists of the fundamental and
auxiliary tools and files.

• Fundamental tools and files:

– Proficiency test item: source code and a functional version of the software product
chosen for the round.

* Alliance P2P—version 1.2.0 (build 1281).

• Auxiliary tool and files:

– Eclipse IDE for Enterprise Java Developers—version: 2019-03 (4.11.0).

* Java-8-Openjdk-amd64;
* JUnit5; and
* PIT (Pitest)—tool for mutation testing and code coverage.

The virtual machine was made available through a file with the extension .ova, and,
to run it, the physical machine required that Oracle Virtualbox software version 6.0.8 was
installed with a minimum of 10 GB storage space and a Core i5 processor with 6 GB of
RAM. The operating system of the virtual machine was Lubuntu 19.04.

Mutation Testing—PIT (Pitest)

In this second round, some tools and the test item in the first one were kept, including
Eclipse, JUnit and the Alliance P2P. To investigate whether, by changing the measure and
challenges, there could be better discrimination between the participant’s performance,
the round’s organization committee focused efforts on defining meaningful metrics and
building interesting “challenges”. The more important change in the testing environment
was precisely the software mutation tool.

PIT is a mutation tool for JAVA language. It generates a large number of mutants
based on a set of operators can be tuned. Besides, PIT presents statistics about the number
of mutants that were killed by the test suite, as shown in Figure 7.

https://pitest.org/
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Figure 7. Example of a PIT report.

The performance of each participant is based on the relationship between the number
of mutants killed and the size, in KBytes, of the set of tests developed. In this way,
participants who were able to eliminate a large number of mutants with a reduced number
of test cases would be more efficient. Based on this premise, it would be possible to conclude
which participants would have a good understanding of the software documentation, the
code related to those tests, how the tests should be performed and, consequently, conclude
which participants would be proficient in the execution of code analysis and tests.

5.3. Evaluation Criteria

The determination of the consensus value of this round of comparison was through
the average (µ) of the ratios between the mutation score and the size of the test cases of
each participant, given by:

µ = Σn
i=1

(si/ti)

n
(5)

where si is the mutation score and ti is the size of the test cases of the participant i, measured
in Kbytes of the object code (Java bytecode), and n is the total number of participants.

The interpretation of the performance of the ith participant in relation to the others is
associated with the comparison of his performance index with the standard deviation σ
given by:

σ =

√
Σn

i=1
(Ri − µ)2

n− 1
(6)

where Ri = si/ti is the individual performance indicator for participant i. The result of the
evaluation of the index of the ith participant is given by the following criteria:

• Ri > µ + 3σ indicates “exceptional” performance and does not generate a signal.
• µ + 3σ ≥ Ri ≥ µ + 2σ indicates “very good” performance and does not generate

a signal.
• µ + 2σ ≥ Ri ≥ µ + σ indicates “good” performance and does not generate a signal.
• µ + σ ≥ Ri ≥ µ − σ indicates “satisfactory” performance and does not generate

a signal.
• µ− 3σ ≤ Ri ≤ µ− σ indicates “acceptable” performance and generates a warning

signal.
• Ri ≤ µ− 3σ indicates “unsatisfactory” performance and generates an action signal.

The results of the indices, presented in the following section, have been rounded to five
decimal places, following rounding criteria, due to the fact that the Ri values are very low.
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5.4. Participants Performance and Round’s Results

This Proficiency Testing Round included the participation of laboratories, profession-
als, students and software organizations. For the calculation of mutation scores for each
participant, the 2938 mutants generated by the PIT tool for the org.alliance.core.com.rpc
package were considered. Table 3 shows the results of each participant. As the round held a
public track, a group of students participated and submitted their solutions. Obviously, the
collected data from this group were not considered for calculating the mean and standard
deviation in conjunction with accredited laboratories.

Table 3. Results of participants in the second round.

ID Mutation Score Killed Mutants Bytecode (KB) Ri

ID-2 2.11 % 62 49.60 0.00043
ID-3 0.00% 0 9.60 0.00000
ID-4 63.36% 1832 6.51 0.09513

With the data shown in Table 3, the mean (µ) and standard deviation (σ) associated
with the values of the performance indices (Ri) were, respectively, 0.03185 and 0.05480.
Therefore, the application of the established criteria indicates that all participants presented
satisfactory results, except for the participant identified by “ID-4”, whose performance was
classified as “good” [70].

6. Conclusions
6.1. Discussion and Final Considerations

Regarding the first two research questions (RQ1 and RQ1.a), this work performs a
rapid review and brings up the lack of evidence regarding well-reported and evaluated
proficiency testing or interlaboratory comparison methods in the context of intelligent
sensors or software conformity assessment. This makes the comparison with other similar
studies impracticable and points out there is an open question about how to obtain such
methods through scientific knowledge production.

Analyzing and testing currently produced sensors requires exploring more complex
scenarios, which primarily and naturally involves an adequate understanding of software
issues (functional and non-functional requirements, integration capabilities, etc.) Hence,
our expectation is to continuously use and evolve the presented research method for empir-
ically investigating and developing both software- and sensor-related proficiency testing.

With respect to RQ2, the main contribution of this work is to demonstrate the feasibility
of quantitatively measuring interlaboratory comparisons involving software analysis and
testing accredited laboratories. Despite the evident importance of these comparisons, this is
the first work that proposes a systematic approach to quantitatively measure, evaluate and
evolve such activities in software conformity assessment. Two rounds of interlaboratory
comparisons were carried out: a “more conservative” first round and a “more daring”
second one.

An eventual failure on the part of the organization or an insufficient result on the part
of laboratories could create obstacles for the accreditation process and for the very support
of the nascent network of accredited laboratories in software analysis. Thus, we chose to
follow a “conservative” approach in the first round and conducted a round meeting all
the requirements of a proficiency test as provided for in ISO 17043, restricted to accredited
and academic laboratories. On the other hand, we chose to present as a “challenge to
the laboratories” a set of test cases having only moderate difficulty, reducing the risks
that there would be bad results on the part of the laboratories. In addition, there was
no clear perception of how the laboratories would behave in such a round, and whether
the proposed challenges really reflected activities associated with the competencies of
those laboratories. The completion of the round represented a great challenge, because
carrying out the round was a totally new process. The successful execution of the round
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produced lessons learned and gave us confidence in the procedures, from the comparison
methods and metrics to the procedures of disclosure, delivering instrumentation and
test items and receiving/processing of results. The result of this first round is described
in Section 4.4 : all laboratories achieved a Jaccard Index score of J = 1. This prevents
the labs’ performance from being used to discriminate them through a more in-depth
comparative analysis and cannot support Hypothesis 1. However, it is one of the first
pieces of evidence of the feasibility of quantitative interlaboratory comparison related to
software conformity assessment.

The results achieved in the first round allowed having confidence in the labs’ technical
capacity. Thus, the second round exploits more freely other methods and metrics. In this
context, we opted for the use of a mutation score-based metric, which could generate
more test case scenarios. Due to this option, the second round did not define the data
analysis and approval criteria a priori. As a consequence, the interlaboratory comparison
round cannot be characterized as a proficiency test. On the other hand, being characterized
as a rigorous comparison between the participating laboratories, the round continued
to be a valid mechanism to meet performance monitoring requirement as a “different
interlaboratory comparison of proficiency testing", under the terms of item b of article
7.7.2 of ISO/IEC 17025:2017. By dismissing meeting the requirements of ISO 17043, other
aspects of the round could be simplified, such as the procedures for guaranteeing integrity
and irrefutability and the mechanisms for identifying collusion. Additionally, such sim-
plifications permitted holding a parallel and “public” track, admitting the participation
of software organizations not actively involved in conformity assessment, practitioners
and even students. It demonstrates the possibility of exploiting other experiment designs,
recruiting new kinds of participants (by expertise, organizational arrangement, etc.) and
new ways of data gathering. In addition, we believe the large number of classes to be
evaluated and a short time for producing test cases were also important factors in ensuring
that there would be variability among the participants’ performance. Finally, Hypothesis
2 is supported by the second round’s result and is the second and more concrete piece of
evidence of the feasibility of quantitative interlaboratory comparisons related to software
conformity assessment provided by this work.

In contrast to the first round, the test cases and reports delivered by labs indicated the
proposed challenge in the second round was more difficult. According to some returned
reports, this difficulty would be related to the need to deepen both the inspection of the
source code and the design of test cases. In addition, the test item to be developed in the
Java language was reported by one of the participants as being an activity outside the scope
of services provided by laboratories. However, the setbacks brought by a programming
language are problems inherent to the labs performing software conformity assessment. In
general, many real software products are composed of different technologies according to
the manufacturer’s choice and are not limited to the technologies dominated by accredited
laboratories. In addition, the use of mutation testing was indicated to be more effective,
thus it required greater dedication from the participants in the steps of code inspection and
testing. This fact could probably be stated as a new hypothesis (“developing test cases to
kill mutants tends to be more complex than that ones just covering the same set of lines of
software code”). In the future, we are going to evaluate whether it would deserve more
attention and whether its investigation is into the scope of our research.

6.2. Future Works

The present work describes a first approach to interlaboratory comparison for evalu-
ating software analysis and testing accredited laboratories. Hence, we foresee a series of
possible outspreads of the present project, as we describe in the following.

• Specific purpose software: In the executed rounds, a generic network application was
used as the test item. The idea is that the analysis of such software would not involve
too specific knowledge in any application area, being, therefore, more suitable for
initial rounds of interlaboratory comparison. In future rounds, one can explore the
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analysis of software modules dedicated to specific applications within the scope of the
participating laboratories. For example, accredited laboratories for testing software for
smart energy meters could be challenged to perform analysis of electrical metrology
software modules.

• Security testing: In several conformity assessment programs, it is important that the
test lab masters cybersecurity analysis techniques. One way to assess the competence
of laboratories in cybersecurity is to carry out interlaboratory comparisons with
reference to test cases that explore exploitation of vulnerabilities and security flaws.

• Integration tests: All the challenges presented to the laboratories in the two rounds
explored highly compartmentalized test scenarios, such as unit tests (class tests). An
interesting question is whether it would be possible to develop a comparison model
between laboratories based on system or integration tests, that is, tests in which the
software application is executed as a whole or closer to its totality. This scenario can
bring a new level of complexity and difficulty that allows a more rigorous assessment
of the competence of the participating laboratories.

• Standard model: There is currently no standard model for measuring laboratories
performance in evaluating software products. Analyzing other technical areas, such
as chemistry, biomedical, medicine, physical, etc. would be interesting to check what
is worth bringing to computer science and what can applied in software companies,
software development, software testing, etc.

6.3. Implications
6.3.1. For Practitioners

In a national quality infrastructure, technical excellence of accredited labs is essential
to guarantee that goods meet the security, safety and quality requirements. This means
guaranteeing that such goods can be consumed by citizens, industries and nations, as
well as that technology producers compete in fair and healthy economies. Even with the
increase of demand in the last years, sensors, ICT or software conformity assessment has
not accompanied the pace of knowledge production in other conformity assessment areas,
taking into account the produced knowledge about how to measure this excellence in an
impartial, objective and fair way.

This work is part of a project that started the collaboration among the national metrol-
ogy institute and two universities in Brazil, aiming at investigating, developing and
evolving processes, methods and tools to make that measurement feasible. As a concrete
result for Brazilian society, the results of both reported rounds have been used to evaluate
and harmonize the competence of the body of Brazilian accredited labs’, which are directly
involved in evaluating real software-embedded products related to conformity assessment
programs. Among these products, there are digital time card (timesheet) machines, smart
card readers, smart meters, etc.

Additionally, one of that project’s goals is to organize and perform at least one round of
interlaboratory comparison per year, which leads the project team to expand collaboration
with other national or international institutions for: (1) building and spreading knowledge;
(2) speeding up the development of methods, tools and human resources; (3) facilitating
international comparisons and trades; and (4) empowering metrology institutes or nations.

6.3.2. For Researchers

To respond to the first two research questions, we exposed the lack of evidence and
the emergent need of producing high quality scientific content regarding sensor- and
software-related proficiency testing and interlaboratory comparison methods.

To respond to the last research question, we proposed a research method and carried
out two rounds of interlaboratory comparisons, which became in this article the first piece
of evidence of the feasibility of quantitatively measuring performance of software analysis
and testing accredited labs properly reported in the technical literature. Furthermore,
all of our results lead us to believe that the concepts, metrics, procedures and result are
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replicable or repeatable, whether taking into account the necessary adjustments inherent to
the particularities of each region, country or international consortium.

Thus, we conclude this paper claiming researchers and practitioners must consider
establishing a research agenda for proficiency testing methods to support conformity
assessment of sensors, ICT and software products. The lack of new research is a risk of any
scientific discipline. It jeopardizes the building of news ideas and strengthens the prevailing
ones, which prevents accelerating the pace of knowledge acquisition in a theme [51].
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