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Abstract: The theory of modern organizations considers emotional intelligence to be the metric
for tools that enable organizations to create a competitive vision. It also helps corporate leaders
enthusiastically adhere to the vision and energize organizational stakeholders to accomplish the
vision. In this study, the one-dimensional convolutional neural network classification model is
initially employed to interpret and evaluate shifts in emotion over a period by categorizing emotional
states that occur at particular moments during mutual interaction using physiological signals. The
self-organizing map technique is implemented to cluster overall organizational emotions to represent
organizational competitiveness. The analysis of variance test results indicates no significant difference
in age and body mass index for participants exhibiting different emotions. However, a significant
mean difference was observed for the blood volume pulse, galvanic skin response, skin temperature,
valence, and arousal values, indicating the effectiveness of the chosen physiological sensors and their
measures to analyze emotions for organizational competitiveness. We achieved 99.8% classification
accuracy for emotions using the proposed technique. The study precisely identifies the emotions
and locates a connection between emotional intelligence and organizational competitiveness (i.e., a
positive relationship with employees augments organizational competitiveness).

Keywords: emotional intelligence; physiological signals; blood volume pulse; galvanic skin response;
skin temperature; organizational competitiveness; one-dimensional convolutional neural network;
self-organizing maps

1. Introduction

Organizational success is highly dependent on the competitiveness of the workforce,
products, and services in rapidly changing market conditions. As a result, enhancing
enterprise competitiveness is a popular topic in today’s competitive business environment.
Existing research demonstrates that strengthening leadership and overall organizational
behavior, establishing positive relationships with partners, upgrading technology, and
making capital investments effectively contribute to organizational competitiveness [1,2].

Human capital has emerged as the primary driver of economic growth and industrial
development in modern economies. Corporate technological creativity has also developed
into a critical component of enterprise development. People are an organization’s primary
resource because they are instrumental in sustaining its competitive advantage and en-
hancing performance. Thus, organizations should prioritize providing a healthy work
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environment with all the necessary facilities. Once organizations provide a comfortable
working environment, employee satisfaction results in more productivity [1].

Employees develop a stronger connection to their organizations due to the internal
link between emotions and the work environment, culminating in more active and positive
attitudes toward the organization. As a direct consequence of these combined factors,
organizational competitiveness improves [2].

Emotional computing (EC) should be considered because it is a broad term that encom-
passes the study of emotional analysis [2,3]. Emotion detection using physiological data
is an escalating field of research that has produced numerous studies examining various
emotions and analysis approaches. Following the rapid adoption of smart technologies in
society, the human emotion recognition system has received considerable attention. Addi-
tionally, emotion recognition is a highly effective technique for assessing human emotional
states and forecasting behavior to improve performance in various fields. Organizational
competitiveness and employee relations are no exception. In recent years, researchers
have frequently used emotional stimuli, such as images, sounds, and videos, to elicit
subjects” emotions and analyze their physiological signals to determine the regularity of
emotional changes [4,5]. Human emotion recognition is accomplished through either a
face recognition system or sensor-based systems.

Regarding the face recognition system, it is simple to smile and attempt to express
joy, which means that the system is easily deceived and cannot be relied upon as a reliable
source of information. In contrast, sensor-based systems that rely on physiological signals
are significantly more challenging to deceive. Additionally, physiological signals fluctuate
rapidly in response to changing emotions [6] and are spontaneous reactions that cannot
conceal emotions [7]. These signals are more challenging to manipulate than facial expres-
sions or strained vocalizations [8]. Therefore, the importance of a sensor-based emotion
recognition system has increased because it provides a more objective method of measuring
emotions. Sensors in emotion recognition systems are used to communicate subliminally
with a person. The sensors receive feedback from a person regarding something the person
feels, sees, or hears [2,9-12].

Among a variety of physiological signals, previous research has established that the
photoplethysmogram (PPG), galvanic skin response (GSR), and skin temperature (SKT)
provide the most indicative methods for assessing emotion. Thus, we chose to acquire and
analyze only the PPG, GSR, and SKT signals because appropriate wearable devices can
collect signals from a person without jeopardizing comfort or privacy. Only two electrodes
on the nondominant hand are necessary to acquire the PPG, GSR, and SKT signals. Other
signals lack this ease of use. For example, the subject must wear a headset or helmet to
collect electroencephalogram (EEG) signals, and the subject must place electrodes on his or
her chest to collect electrocardiogram (ECG) signals [8].

The advent of sensors and wearable devices as mechanisms for acquiring physiological
data from people in their daily lives has enabled research into emotional pattern recognition
to identify user emotions in various contexts [13]. The PPG signal detects changes in the
blood volume in the tissue using a pulse oximeter. Typically, a PPG signal is extracted from
the finger, and numerous electrical devices incorporate PPG sensor functions. Another
advantage of the PPG signal is that it is dynamic. As a result, several researchers have
employed PPG signals for emotion recognition [14,15].

The GSR is a noninvasive method for continuously measuring the electrical parameters
of human skin. Skin conductance is frequently used as the primary parameter in this
technique. The electrical parameters of the skin are not under conscious human control.
These parameters are dependent on the variation of the sweat reaction, which reflects
changes in the sympathetic nervous system, according to traditional theory [8]. There is
evidence that changes follow specific sympathetic nervous burst output signals in skin
conductance. Emotional changes cause sweating, which is most noticeable on the palms,
fingers, and soles. The sweat reaction alters the amount of salt on the skin, which results
in a change in the skin’s electrical resistance [16]. Emotions have an instantaneous effect
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on the human brain, boosting blood flow to the skin and altering the skin temperature
measured by the SKT sensor.

Emotional categories are defined in a circular structural model that includes basic
emotions (e.g., excited, happy, pleased, relaxed, peaceful, calm, sleepy, bored, sad, nervous,
angry, and annoyed) to define the arousal and valence dimensions. Typically, two emotional
dimensions from Russell’s valence-arousal emotion model are used to evaluate emotions
in the study of emotion recognition [17,18]. The majority of studies employ variants of
Russel’s circumplex model of emotions, as illustrated in Figure 1, which depicts the valence
and arousal distributions of basic emotions [19,20].

* Arousal High, Valence High

* Arousal Low, Valence High

* Arousal High, Valence Low

 Arousal Low, Valence Low

Figure 1. Circumplex model presenting arousal and valence in different emotional states adapted from [21].

The research was conducted to determine the feasibility of automatically recognizing
arousal and valence levels in 25 healthy subjects triggered with sets of affective sounds from
the International Affective Digitized Sound system database. Stimuli were quantified using
the circumplex affect model, and electrodermal activity (EDA) was analyzed. Three levels
of arousal stimuli were used in the experiment, each containing pleasant and unpleasant
sounds. The statistical analysis revealed no significant differences in the neurogenic feature
set between the three arousal groups of stimuli and the two valence levels. Instead, the
mean tonic value varied significantly across the three arousal levels and two valence levels.
The classification procedure was conducted on four distinct datasets to distinguish between
the two valence levels and three arousal levels using only positive sounds, only negative
sounds, and both positive and negative stimuli without discrimination. The results from
the convex optimization approach to electrodermal activity indicated an 80.00% recognition
accuracy on the arousal dimension. With respect to only positive and negative sounds, the
arousal identification results confirmed a high discrimination power of more than 77%,
demonstrating the minimal effect of the valence dimension on the arousal classification.
Additionally, excellent performance was obtained in the valence classification with 84%
accuracy overall [22].
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As an artificial intelligence method, deep learning has been widely employed in
emotion analysis, image recognition, video segmentation, speech, and neural language
programming. Artificial intelligence has developed rapidly and has attracted greater
attention in academia and industry [23].

Artificial neural networks (ANNs) provide an effective solution to various cognitive
tasks by simulating human learning behavior. The one-dimensional convolutional neural
network (ODCNN) and the self-organizing map (SOM) have been recognized as the most
effective ANN models. As a standard deep learning method, the ODCNN has several
advantages: it can easily extract features from the original dataset without manual selection
and adjust and optimize convolutional kernel parameters during training to achieve dataset
classification and recognition. The CNN is based on the principle of learning patterns and
correlations from numerous data points. If the data point is numeric, it is critical to note
that data points must display real-world information. The effectiveness of the SOM in
clustering has been widely recognized; thus, it can be used to discover high-level cognitive
operations, such as emotions. The SOM has been used to visualize relationships between
classified objects within a cluster and between different clusters within a dataset [24,25].

According to previous research, worker productivity is critical for any company
or organization seeking to increase performance, lower costs, maximize revenue, and
increase competitiveness. Productivity analysis is a frequently studied topic in business
management. Earlier research has examined worker productivity through the perspective
of job-related concerns [26-28], technological innovation [29,30], employee demographics
and socioeconomic characteristics [31,32], and conditions affecting employee mental and
physical health [33,34]. Although prior studies have investigated various factors affecting
worker productivity, several studies have examined the relationship between workers’
on-the-job emotional states and organizational performance [35,36]. This paper evaluates
machine learning and deep learning tools to determine organizational competitiveness
using employee physiological signals at the workplace for emotional analysis.

The paper is organized as follows. Section 2 explains the materials and methods, and
the experiments and results are analyzed and discussed in Section 3. Section 4 presents the
comparative analysis. Finally, the conclusion and future work are presented in Section 5.

2. Materials and Methods
2.1. Dataset for the Proposed Work

Regarding the data collection (i.e., measurement), three strategies are used to classify
emotions: (i) neurological /physiological measurement using sensors to detect changes in
the user’s body; (ii) subjective self-reporting using questionnaires, diaries, or interviews;
and (iii) behavioral measurement based on expert observations of the participant’s behavior.
While all these approaches have their specific advantages and disadvantages, as Kim and
Fesenmaier suggested, physiological measurement is particularly objective [37]. In this
manuscript, different repositories [38—41] are used for the input data acquisition. These
datasets facilitate generating data for this research. They contain organizational ranking
(1-10), subject ID (referring to the person), gender, age, height, weight, body mass index
(BMI), blood volume pulse (BVP), GSR, SKT, arousal, and valence and the respective emo-
tional state, which helps categorize organizational competitiveness (i.e., highly competitive,
moderately competitive, or less competitive). A value of 1 to 5 for organizational rank
depicts a high level of organizational competitiveness, and a value of 6 to 8 indicates a
moderate level of organizational competitiveness. Finally, a value of 9 to 10 represents a
low level of organizational competitiveness.

2.2. Emotion Classification through the Convolutional Neural Network

The traditional CNN is intended to work solely on two-dimensional (2D) datasets,
such as videos and images. Thus, they are regularly called 2D CNNs (TDCNNSs). Another
option, a variant of the TDCNN, the ODCNN, is employed in this research for physio-
logical signal-oriented emotional state detection (using a preprocessed /numeric dataset).
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For specific usage, ODCNNSs are beneficial and desirable over their 2D counterparts in
managing a one-dimensional (1D) dataset for the following reasons:

e Instead of matrix operations, basic array operations are required for forward and back-
ward propagation in the ODCNN, which implies that the computational complexity
of the ODCNN is less than that of the TDCNN.

e  Recent investigations have indicated that the ODCNN with generally shallow designs
(e.g., fewer neurons and hidden layers) can perform learning (for taxing operations),
including 1D input data.

e Typically, a TDCNN demands additional deep models to deal with such cases. Net-
works with shallow structures are much simpler for training and execution.

e  Usually, preparing deeper TDCNNs demands a particular setup for hardware. How-
ever, the feasibility of any processor execution over a standard computer, moderately
quick for preparing the ODCNN with some neurons (e.g., fewer than 50) and hidden
layers (e.g., two or fewer), is straightforward.

e  Fewer computational necessities make the ODCNN appropriate for low-cost, real-time,
and well-suited applications, particularly on portable or hand-held gadgets.

The ODCNN has remarkable execution on numerous other applications with a high
signal variety and very few labeled data gained through various means. This research
aims to use this preprocessed dataset obtained through physiological signals for emotional
state detection. The presented model in Figure 2 has the following layers: two layers in the
ODCNN (i.e., the typical layers of the CNN: 1D convolutions and the pooling layer) and
fully connected layers that are identical to the multilayer perceptron (MLP).

The accompanying hyperparameters shape the ODCNN'’s configuration:

Hidden layers of the MLP and hidden layers of the CNN are used.
In every layer of the CNN, the kernel/filter size is selected.

In each CNN layer, a subsampling factor is selected.

The activation and pooling functions are selected.

The Ith neuron in the hidden layer of the CNN (i.e., m) carries out the convolutional
sequence. Following this, the subsampling operation (i.e., the actuation work, f) is used for
its summation. It is the primary contrast between the ODCNN and TDCNN. For feature
maps and kernels, the 2D matrix is replaced with a 1D array. As a subsequent stage, the 1D
input data (i.e., physiological data) are processed by the CNN layers, and it determines
how to perform the extraction (through MLP layers) of such features used in the detection
and classification of emotions. As an outcome, feature extraction and classification are
optimized by fusing them into a process. The ODCNN has low computational complexity
(as the single function with high cost is due to a series of 1D convolutions that comprise
two 1D arrays). During backward and forward propagation, parallel execution of linear
functions is performed. This method is adaptive because it permits the changes in the
dimensions of the input layer to adaptively tune the subsampling factor of the output layer
of the CNN (for emotional state classification).

Backward and Forward Propagation in the One-Dimensional Convolutional Neural Network

The mathematical expression for forward propagation in every layer of the ODCNN
is given below (Equation (1)):

Om—1
y'=Cl'+ Z convlD (x]’.;‘_1 , t]'."_l), (1)
j=1

where y}" is characterized as the input parameters (i.e., age, height, weight, BMI, BVP, GSR,
SKT, valence, and arousal). At the mth layer, C}" is characterized as a bias of the /th neuron.
At the (m — 1)th layer, iL]’."*1 is the outcome of the jth neuron, and x’f’l’*l is the filter from
the jth neuron (at the (m — 1)th layer) to the Ith neuron (at the mth layer). Without zero
padding, conv-1D (., .) is used to carry out legitimate 1D convolutions. Subsequently, the
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input array dimension yj” is less than the output array dimension (i.e., t]'."_l). With the
passage of input parameters (i.e., y;") from the activation function f(.), the intermediate
result zj" is presented below (Equation (2)):

Z'=f(y")and fj'= 2" | tt, @)

where t]” represents the Ith neuron’s outcome at the mth layer, and the down-sampling
operation is addressed by “| tt” with a scalar factor (i.e., tt). The backpropagation scheme
can be summed as given below. From the output layer of the MLP, the backpropagation
scheme for the error starts. Suppose that m = 1 for the input layer and m = M for the output
layer. Additionally, suppose that OM is the number of classes in the dataset (four classes
of emotional states: neutral, happy, excited, and angry). Thus, for an input vector g, the
output and target vector udis [z}, - - -, 23 1'.

1D Conv-1

1D Conv-2 =

. 1D Conv-n -

1x1 Convolution

Flatten Layers

Multi-layer Perceptron

Hidden Layers Outputs

Figure 2. Proposed model for emotional state detection based on the one-dimensional convolutional neural network (ODCNN).
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For the q input parameters in the output layer, the mean squared error (MSE), F;, is
expressed below (Equation (3)):

F,=MSE (u, [z}, -+, 25,00 =) (2] — u?) . 3)

The delta error, A]" = dF dylm, is calculated through every network parameter to
determine the derivative of Fj;. In particular, the chain rule of derivatives can be employed
(in the previous layer) to refresh the weights and bias of the neurons (Equation (4)).
oF

= A land —— = A", 4
ax”m‘, 1 aCl ( )

The backpropagation procedure from the first layer of the CNN to the last layer of the
MLP is given below (Equation (5)):

O m+l 0,
ai: Atm_ il oF ay] — il AM+1 xn:l (5)
ot ! aymﬂ o =

When the first backward propagation is conducted from the (m + 1)th to the mth layer,
backpropagation is performed on the input delta for the mth layer of the CNN. Assuming
the zero-order up-examined map is vt}” = vq(t]"), the delta error can be communicated as
presented below (Equation (6)):

oF oz" oF ovt"
N Sy or oz | ) = VAl £ ), ©

where ¢ = (tt)!. The backward propagation of the delta error (At 2 A]'."“) is given
below (Equation (7)):

Om+1
A= Z; conlea(A}"“, rev(xjf)). )
]:

The calculation rev (.) is used to reverse the array, and convlDa (., .) is employed
to conduct zero-padding-oriented 1D convolutions. The bias and weight sensitivities are
presented below (Equation (8)):

;:C—I:n: convOD(t]", AI'."H and — ZA"’ 8)
7l

The bias and weight sensitivities are calculated to refresh the weights and biases with
the learning factor ¢, as given below (Equation (9)):

- - oF JF
x;?; 1(u+1) = x;’l’ 1(u) - ET and cf*(u+1) = ' (u) — £ -
il l

©)

For the mth layer of the CNN, at the Ith neuron, At]" is framed by backpropagating
the entire delta error (i.e., A]’.”H) using Equation (7) at the following layer, m+. The
iterative backward and forward progressions for the physiological signals in the dataset
are expressed in Figure 3 and explained step by step through Algorithm 1.
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Algorithm 1. Backward and forward propagation in the one-dimensional convolutional neural network (ODCNN)

—_

Random initialization of the network biases and weights (i.e., ~V(-0.1, 0.1))

2. For each iteration of backward propagation, iterate

3. For each physiological signal in the dataset, iterate

4. i. Forward propagation: At each layer, to find each output’s neurons, perform forward propagation
from the input to the output layer, tj*,Vj€ [1, Om], and Vm € [1, M]

5. ii. Backward propagation: At the output layer, calculate the delta error, and to compute the delta error,
perform backward propagation to the first hidden layer, Aj",VI€ [1, Om], and Vm € [1, M]

6. iii. Post process: Post process for the calculation of the weight and bias sensitivities

7. iv. Update: Update biases and weights by the sensitivity accumulation scaled with € (i.e., the learning
factor)

8. HEnd

9. HEnd

10. End

CNN Laver {(m-1) CNN Layer m CNN Layer (m +1)
by ¥ b

Figure 3. Backward and forward propagation in the one-dimensional convolutional neural network (ODCNN). Where
* represents the product function during forward and backward propagation procedures.

2.3. Detection of Organizational Competitiveness Based on the Self-Organizing Map

Due to extensive learning rather than error amendment learning, the SOM exhibits
robust outcomes for the weight modification. Just the single node is used at every cycle
where the neural network is provided with the parameters of the input vector’s instance
(entire nodes try for the best reaction to the input).
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The best matching unit (BMU)—the selected node—is chosen according to the like-
ness among all grid nodes and the present input values (emotional state). The smallest
Euclidean distance-based node and the input vector are chosen (inside a specific radius)
along the nodes (adjoining) to have their position marginally managed to coordinate with
the input vector.

After traversing each node of the grid, the whole grid is matched with the input data
(i.e., the emotional state of the employee), where identical nodes are grouped, and the
distinct nodes are isolated. This grouping is performed to cluster the emotional state of
each employee to categorize the organization’s overall competitiveness (highly competitive,
moderately competitive, or less competitive).

Figure 4 represents the SOM structure where the outside nodes are represented by blue,
the inner neighborhood radius is represented by purple and pink, and yellow represents
the BMU. The parameters are presented below:

The U represents the current iteration.

The total number of iterations of the network is represented by o, the limit of iterations.

For the decay of the learning rate and radius, the time constraint is represented by A.

The row coordinate of the node matrix is represented by j.

The column coordinate of the node matrix is represented by k.

The distance between the BMU and node is represented by e.

The weight vector is represented by x.

The connection weight between the input vector occurrence and ith and jth nodes in

the matrix (for the tth iteration) is represented by x_ij(t).

The input vector is represented by y.

The instance of the input vector at the tth iteration is represented by y(t).

The learning rate is represented by f(t), in the [0,1] range. To guarantee the coverage

of the network, it diminishes with time.

e  The neighborhood operation is represented by < _ij(t), which diminishes and ad-
dresses the distance between the BMU and the i and j nodes and its effect on the
learning rate at the tth iteration.

e  The neighborhood operations radius is represented by « (¢), which determines (in the

2D matrix) how far neighbor nodes are inspected with the update of the vectors. It is

progressively diminished after some time. Figure 5 presents the SOM with the input
and output identification.

Update of Parameters in the Self-Organizing Map

The accompanying mathematical expressions perform the parameter updates. The
neighborhood weight update is performed as presented below (Equations (10) and (11)):

x_i(t+1) = x;; () + Bi (8) [y(t) — x5(1)], (10)

or
x_ij(t+1) = x;j (£) + Bi (£) vij () [y(t) —x;5(8)]. (11)

Equation (10) reveals that the newly refreshed weight x_ij(¢ + 1) for the i and j nodes
is equivalent to the summation of the prior weights x_ij(t) and a ratio of the distinction
between the input vector y(¢) and the prior weights. The weight vector is transferred near
the input vector. Another significant component is the weight corresponding to the 2D
distance between the BMU and the nodes in the neighborhood radius.
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L}
Input Vector

Figure 4. Structural representation of a self-organizing map.

Figure 5. Self-organizing map with input and output labels.

Moreover, it does not represent the learning influence (relative to the distance between
the BMU and the node). As the measure of learning should diminish according to distance,
the updated weight must be well thought out, considering that the learning results are
nearly none at the neighborhood limits. Accordingly, the following condition adds the
additional y_#j(t) neighborhood operation and is the most precise.
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Figure 6 indicates that the learning rate and radius both decay exponentially (Equa-

tions (12) and (13)):
a(t)=ao(t) . exp (_7), wheret=1,2,3,...n (12)
B(t)= Po(t) . exp (_Tt), wheret=1,2,3, ...n (13)
The neighborhood operation can be computed as shown below (Equation (14)):
—?
Yij(t)= exp (2 2(0) ), wheret =1, 2,3, ...n. (14)

The Pythagorean theorem is used for the Euclidean distance calculation (Equation (15)):

Iy x; ll= \/tio[ v % (t)]z, (15)

From the computed distances of each node, the BMU is selected with the least distance
(Equation (16)).

n

c=min(l§ 5 D=min ([ S50 5 0] a6)

t=0

Algorithm 2 and Figure 7 demonstrated the clustering procedure for the organiza-
tional competitiveness identification through emotional states categorization and Figure 8
summarizes this hybrid procedure containing the ODCNN and SOM and displays the
overall flowchart of the proposed work.

Algorithm 2. Categorization of organizational competitiveness based on the self-organizing map

11.
12.
13.
14.

15.

16.

17.

18.

19.
20.

An arbitrary number initialization of the weight x_ij for every node

il Selection of an arbitrary y_k input vector

if. Iterate for each node in the lattice

iii. According to the first node, the Euclidean distance is computed between the weight vector x_ij and the
input vector y(t), where j, i, and t are initialized with 0

iv. The node that can generate the least t (i.e., distance) is tracked

v. Track the BMU, for example, the node with the least distance from every determined node

vi. Determine the topological neighborhood vy_ij(t), the corresponding «a(t) (i.e., the radius of BMU in the
model)

vii. Iterate for each neighborhood node of BMU: first the node’s weight vectors (x_ij) update in the BMU’s

neighborhood by adding the ratio of the difference between the neuron’s weight x(t) and the input vector
y(®)

viii. Iterate the entire cycle until arriving at the defined limit of iteration (t reaches n)
End
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Vij (t)

a (t)

Figure 6. Relation between the learning rate and radius.

Self Organizing Map Weights’ Adjustment

Figure 7. Organizational competitiveness using a self-organizing map.
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Figure 8. Flow diagram to present the overall process.
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3. Experimental Results

This study included 1200 participants working in 10 different organizations. The mean
age of the participants was 44.20 years, and the majority (52.2%) were male, as listed in Table 1.

Table 1. Sociodemographic data of the participants.

Age (Years) Mean =+ Standard Deviation 44.20 & 11.50
Gend Female 574 (47.8%)
ender Male 626 (52.2%)
Rank 1 130 (10.8%)
Rank 2 131 (10.9%)
Rank 3 121 (10.1%)
Rank 4 127 (10.6%)
. . Rank 5 123 (10.3%)
Organizational Ranking Rank 6 135 (11.3%)
Rank 7 100 (8.3%)
Rank 8 125 (10.4%)
Rank 9 110 (9.2%)

Rank 10 98 (8.2%)

The results of the analysis of variance (ANOVA) test indicate no significant difference
in BMI values with participants exhibiting different emotional states; however, a significant
mean difference was observed for age, BVP, GSR, SKT, valence, and arousal values (Table 2).
Participants in a higher age group tend to be happier or more neutral, but the mean age of
the participants was lower (39.72 &+ 14.38) in the anger group. A higher rate of BVP was
observed in a neutral state, followed by happy, excited, and angry. The maximum values
were observed in participants in the excited state (8.15 £ 0.70) followed by happy, angry,
and neutral for the GSR. For SKT, the lowest mean was observed in the excited state. The
lowest values were observed for valence in participants with angry emotions (2.45 + 0.82),
and the highest values were noted when they were excited (9.28 & 0.23). Furthermore, for
arousal, the lowest value was in a neutral state (5.29 + 0.44), and the most elevated value
occurred in an angry state (7.41 £ 0.85).

Table 2. Comparative analysis of variables in different emotional states.

Emotional Bodv Mass Blood Galvanic Skin
Status Age y Volume Skin Valence Arousal
o Index Temperature
(n, %) Pulse Response
Angry

(236, 19.7%) 39.72 £14.38 2250 + 3.50 34.81 £1.43 5.67 £+ 0.67 29.14 £0.18 245+ 0.82 741 £+ 0.85

(341;121;913%’0/) 46.26 = 11.50  22.94 +4.27 35.30 = 0.69 6.19 £ 0.05 29.08 £ 0.20 7.28 £0.60 574 £ 041

(255“21;620/) 41.88 +7.84 22.64 +3.14 35.88 +0.42 8.15 +0.70 28.69 £+ 0.01 9.28 +0.23 6.71 +£0.45
Neutral
(320, 26.7%) 4740 +£1047  22.75 4+ 3.68 36.19 + 0.61 4.95 + 0.07 29.02 + 0.01 5.38 +0.72 5.29 +0.44

p-value <0.001 0.48 0.001 <0.001 0.001 <0.001 <0.001
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We also correlated the included parameters with each other in all four emotional
states (Table 3). In the angry state, arousal is negatively correlated with valence (r = —0.53,
p <0.01) and SKT (r = —0.49, p < 0.01). A negative correlation was also observed in valence
and BVP (r = —0.14, p = 0.01) and SKT and BVP (r = —0.23, p < 0.001). However, a positive
correlation was observed with SKT and GSR (r = 0.34, p = 0.01). In participants with a
happy emotion, valence is positively correlated with arousal (r = 0.62, p < 0.01) and GSR
(r =0.16, p = 0.003), and negatively correlated with SKT (r = —0.42, p = 0.006). In the
excited state, arousal and valence are positively correlated (r = 0.35, p < 0.001), and SKT also
exhibited a positive correlation with BVP (r = 0.18, p = 0.01). In the neutral state, a positive
correlation was observed for arousal and SKT (r = 0.11, p = 0.04), valence and BVP (r = 0.16,
p = 0.003), valence and SKT (r = 0.19, p = 0.001), and SKT and GSR (r = 0.94, p = 0.01).

The ANOVA results indicate no mean difference in the BMI of the participants exhibit-
ing different emotional states, though a significant mean difference was observed for age,
BVP, GSR, SKT, arousal, and valence. The results of ANOVA are presented in Figure 9.

Table 3. Correlation analysis in different emotional states.

Correlation Analysis in the Angry Status

Skin Galvanic Skin Blood Volume
Age Arousal Valence
Temperature Response Pulse
PC 0.49 —0.09 0.09 0.12 0.03 —0.12
Body Mass Index ) (1ie  <0.001+ 0.15 0.16 0.07 0.64 0.06
Blood Volume PC —0.08 0.08 —0.14 —0.23 0.07
Pulse p-value 0.20 0.20 0.01* <0.001 0.30
Galvanic Skin PC —0.05 —0.05 —0.06 0.34
Response p-value 0.43 0.41 0.25 0.01*
Skin PC 0.13 —0.49 0.10
Temperature p-value 0.05 <0.001 * 0.09
Val PC 0.14 —0.53
alence p-value 0.02* <0.001 *
PC —0.09
Arousal p-value 0.15
Correlation Analysis in the Happy Status
Age Arousal Valence Skin Galvanic Skin Blood Volume
Temperature Response
PC 0.28 0.04 —0.04 —0.06 0.06 0.01
Body Mass Index (1 <0.001+ 0.4 0.36 0.77 0.25 0.83
Blood Volume PC 0.06 -0.17* 0.16 0.03 0.03
Pulse p-value 0.26 0.001 * 0.07 0.54 0.61
Galvanic Skin PC 0.01 0.09 0.16 —0.19
Response p-value 0.99 0.11 0.09 0.07
Skin PC 0.03 —0.08 —0.42*
Temperature p-value 0.96 0.10 0.006
Val PC —0.06 0.62*
alence p-value 0.20 <0.001 *
PC —0.04
Arousal p-value 0.45
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Table 3. Cont.

Correlation Analysis in the Excited Status

Skin Galvanic Skin Blood Volume
Age Arousal Valence
Temperature Response Pulse
PC 0.19 0.13 0.05 0.06 0.02 —0.08
Body Mass Index— (1ie  <0.001* 0.09 0.34 0.28 0.71 0.15
Blood Volume PC 0.01 —0.30 —-0.10 0.18* 0.02
Pulse p-value 0.88 0.61 0.08 0.01* 0.99
Galvanic Skin PC —0.04 0.08 0.06 0.01
Response p-value 0.44 0.13 0.28 0.86
Skin PC —0.03 —0.36 —0.03
Temperature p-value 0.50 0.54 0.51
Val PC 0.01 0.35
alence p-value 0.82 <0.001 *
PC 0.15
Arousal p-value 0.01*
Correlation Analysis in the Neutral Status
Skin Galvanic Skin Blood Volume
Age Arousal Valence
Temperature Response Pulse
PC 0.24 0.01 —0.13 0.09 0.10 —0.08
Body Mass Index ) 0 e <0.01* 0.74 0.18 0.10 0.06 0.14
Blood Volume PC —0.14 —0.005 —0.006 —0.14 —0.14
Pulse p-value 0.01* 0.933 0.91 0.08 0.01*
Galvanic Skin PC 0.04 0.09 0.16 0.94
Response p-value 0.43 0.08 0.003 * <0.001 *
Skin PC 0.04 0.11 0.19
Temperature p-value 0.41 0.04* 0.001 *
Val PC —0.11 0.02
alence p-value 0.03 * 0.72
PC —0.01
Arousal p-value 0.89

PC: Pearson correlation; * significant p-value.

3.1. Emotional State Detection
3.1.1. One-Dimensional Convolutional Neural Network

The ODCNN scheme is employed to classify emotional states. The emphasis is on
compact ODCNNSs with very few hidden layers or neurons and their implementation in
emotion detection for organizational competitiveness classification. This scheme is under
the condition that labeled data are limited or application or device-specific solutions are
needed to optimize the identification accuracy. Table 4 provides an optimized characteriza-
tion of the ODCNN for classifying emotional states. The acquired accuracy rate is 99.8%.
The total misclassification was recorded as 12, the prediction speed was around 120 obser-
vations/s, and the training time recorded was about 1.8652 s (Table 4). In comparison, we
analyzed the performance of the two most commonly used and famous algorithms against
multiclass classification (i.e., the support vector machine (SVM) and ensemble algorithms).

3.1.2. Support Vector Machine

The fine classification of the input parameters is performed using the SVM. Table 5 pro-
vides the SVM characterization and indicates that a precision rate of 83.5% is accomplished.
The Gaussian kernel is used with a 2.5 scaling rate and a one-to-many criterion.
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Figure 9. Comparative analysis of identified parameters during different emotional states.

Table 4. One-dimensional convolutional neural network characterization.

Parameter Value
Accuracy Rate 99.8%
Total Misclassification Cost 12
Prediction Speed ~420 obs/s
Training Time 13.8652 s
Model Type ODCNN

3.1.3. Ensemble RUSBoosted Tree (ERT)

The ensemble of primary decision trees with the RUSBoosted (ERT) approach is
employed here, which might provide a more precise rate (based on the data). Table 6
provides the ERT particulars, including a precision rate of 71.4%.
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Table 5. Support vector machine characterization.

Parameter Value
Accuracy 83.5%
Total Misclassification Cost 802
Prediction Speed ~1201 obs/s
Training Time 11.8658 s
Model Type Gaussian SVM
Kernel Function Gaussian Kernel
Kernel Scale 2.5
Multiclass Method One to Many

Table 6. Ensemble RUSBoosted tree characterization.

Parameter Value
Accuracy 71.4%
Total Misclassification Cost 1398
Prediction Speed ~881 obs/s
Training Time 14.5868 s
Model Type Boosted Trees
Ensemble Method RUSBoosted
Learner Type Decision Tree
Maximum Number of Splits 30
Number of Learners 20

The confusion matrices from Figures 10-12 were acquired after performing the emo-
tional state classification using the identified input parameters. There were 1200 instances
in the dataset, comprising neutral (0), happy (1), excited (2), and angry (3) emotional states
(physiological signal-oriented) data samples. Data augmentation was performed to obtain
a dataset of around 5000. The results from the ODCNN show the highest accuracy rate
for happy emotional states (1388 samples with six misclassified cases). The neutral state
is in the second rank with 1276 correctly classified samples and four misclassified cases.
The excited emotional state is in the third rank with 1180 correctly classified cases and
three misclassified cases. Finally, the angry emotional state is in the fourth rank with
1143 correctly classified cases and zero misclassified cases. Similarly, the SVM acquired
the highest accuracy rate for the happy emotional state with 1396 correctly classified cases
and seven misclassified samples, but the overall misclassification rate was higher than for
the ODCNN. Likewise, in the ERT, the highest accuracy rate was achieved for the happy
emotional state with 1388 correctly classified cases and eight misclassified cases, but the
overall misclassification rate was even higher than for the ODCNN and SVM.

0 1276 4

2 4 1388 2

= 1 b

Q

¥

=

- 1180 3
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0 1 2 3
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Figure 10. Confusion matrix for the one-dimensional convolutional neural network.
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Figure 11. Confusion matrix for the support vector machine.
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Figure 12. Confusion matrix for the ensemble RUSBoosted tree.

The graphs below in Figures 13-15 represent the receiver operating characteristic
(ROC) curves for the ODCNN, SVM, and ERT. For multivariate analysis, the ROC curves
are provided. The x-axis indicates the (1-specificity) and the y-axis in the ROC curves
shows the sensitivity for the four output classes. The area under the curve is 0.99 for the
ODCNN, 0.90 for the SVM, and 0.87 for ERT.

In the following parallel coordinate plots (PCPs; Figures 16-18), distinct parameters
are plotted corresponding to each other (with the pivot). Each pivot has a substitute
scale, as each feature works as a different measurement unit. In addition, each axis can
be standardized, keeping every scale uniform. These parameter values are shown as
the assortment of lines (they are connected through the axis). Thus, on every pivot, a
sequence of points forms a line (entirely connected). The connection between different
dataset parameters is presented below the PCPs (based on the standard deviation and mean
values). An axis is provided for every parameter (i.e., age, gender, height, weight, etc.), and
the axes are parallel to one another. An alternate scale is provided for each axis, as every
input parameter works as an alternate unit to classify the emotional state. A progression of
lines is used to plot the values associated across each axis. On every axis, a series of points,
which are all associated, is represented by each line. The misclassifications are represented
by the cross symbol (x), and correct classifications are indicated by the dot symbol (.). The
PCP demonstrates that effective variables or features of the selected emotions (neutral,
happy, excited, and angry) contribute to their discrimination. The plots demonstrate that
the ODCNN technique more accurately classifies the defined features into the labeled
emotional categories than the SVM and ERT techniques.
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Figure 13. Receiver operating characteristic (ROC) curve for the one-dimensional convolutional
neural network.

&

£

True positive rate

Figure 14. Receiver operating characteristic (ROC) curve for the support vector machine.

Figure 15. Receiver operating characteristic (ROC) curve for the ensemble RUSBoosted tree.
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3.2. One-Dimensional Convolutional Neural Network Structure Optimization

Various hyperparameters, such as network depth, kernel size, and learning rate,
were examined to optimize the performance of the chosen technique, ODCNN. The cross-
validation setup was used to train the model on the training set. The accuracy of each
set of hyperparameters in the ODCNN model was used as a performance metric. The
input layer contained 13 nodes, and the output layer contained four nodes representing
the four classes. Additionally, a convolutional layer and pooling layer were included in the
definition of a convolutional group. The number of groups in the ODCNNS indicates the
depth of the network.
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+3.0 std [—

+2.0 std [—
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mean [—
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Figure 17. Parallel coordinate plot for the support vector machine.
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Figure 18. Parallel coordinate plot for the ensemble RUSBoosted tree.

Three elements were considered when examining the effect of the ODCNN model on
the classification performance: network depth, convolutional kernel size, and learning rate.
As listed in Table 7, the numbers from 1 to 16 in the first column represent 16 configurations.
The second to the fourth columns denote the three mentioned factors. The row in the table
corresponds to an instance. For instance, the fifth configuration indicates that the network
depth is four, the convolutional kernel size is three, and the learning rate is 0.00005. The
seventh column is the accuracy measure, which indicates the classification performance of
the model using the given hyperparameters. The eighth and ninth columns represent the
prediction speed and training time, respectively.

Table 7. Comparison of the configuration results.

Prediction

Configuration Network Kernal Learning Activation Model Accuracy Speed Training
Number Depth Size Rate Function Type (%) P Time (s)
(obs/s)
1 3 3 0.00005 ELU ODCNN 95.53 ~180 3.8862
2 3 5 0.00001 ELU ODCNN 97.74 ~204 42252
3 3 7 0.0005 ELU ODCNN 92.92 ~230 43711
4 3 9 0.0001 ELU ODCNN 90.03 ~308 6.1201
5 4 3 0.00005 ELU ODCNN 91.47 ~198 6.0529
6 4 5 0.00001 ELU ODCNN 97.13 ~276 9.8658
7 4 7 0.0005 ELU ODCNN 96.22 ~332 11.2355
8 4 9 0.0001 ELU ODCNN 97.93 ~412 13.1341
9 5 3 0.00005 ELU ODCNN 98.79 ~208 8.3424
10 5 5 0.00001 ELU ODCNN 99.56 ~302 11.0012
11 5 7 0.0005 ELU ODCNN 99.80 ~420 13.8652
12 5 9 0.0001 ELU ODCNN 96.53 ~538 15.4654
13 6 3 0.00005 ELU ODCNN 93.76 ~272 10.2232
14 6 5 0.00001 ELU ODCNN 92.23 ~399 12.1113
15 6 7 0.0005 ELU ODCNN 95.02 ~454 20.7345
16 6 9 0.0001 ELU ODCNN 91.88 ~688 22.8952

It is evident from Table 7 that the accuracy measure increases when the network
depth increases from 8 to 11. However, the accuracy decreases when the network becomes
deeper from 11 to 14, which indicates that too many parameters in the network may cause
overfitting and affect the generality. The accuracy measure increases dramatically and
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10

then decreases with the increase in kernel size. The highest accuracy measure emerges
when the kernel size is seven, and the accuracy measure increases when the learning rate
increases from 0.00001 to 0.0005. Therefore, the best combination is configuration 11. Based
on the above work, the optimized parameters are listed in Table 4. A new ODCNN model
was trained using these hyperparameters. The model’s classification accuracy is 99.80%,
demonstrating that this set of hyperparameters is optimal. Additionally, the time taken
using the proposed ODCNN framework is 13.8652 s, which is also fast and suitable for
real-time applications.

Two traditional approaches (SVM and ERT) were also tested and compared with the
intended ODCNN method. All algorithms, written in Python 3.8, were implemented in
TensorFlow 1.15 and executed on a laptop with the Nvidia GeForce graphics card, an
8th generation Intel Core i7 processor, and a 1 TB solid-state drive. As mentioned, the
emotion classification was achieved using the identified features and the ODCNN classifier.
Remarkably, a high accuracy rate of 99.80% was achieved, which is better than the other
two methods. The results indicate that the proposed ODCNNSs can exploit the latent feature
representations of the dataset, and the emotional states can be classified accurately.

3.3. Organizational Competitiveness Categorization through the Self-Organizing Map

The output of the SOM, representing the classification of organizational competitive-
ness based on employee emotions during their mutual interactions in the workplace, is
provided in Figure 19. The square cells represent nodes. The K-means approach was
applied for partitioning clusters, generating four clusters through this approach. Different
colors represent the membership of clusters. A high degree of the angry emotional state
indicates low-level organizational competitiveness. In contrast, a high degree of the neutral
emotional state represents moderate-level organizational competitiveness. However, a
high degree of the happy and excited emotional states in the employees indicates high-
level organizational competitiveness. In the following map, a high level of possession
of organizations is shown by the green cluster (at the top of the map), representing the
happy emotional states in the majority of employees. The map depicts a high degree of
organizational competitiveness. A comparative view of the proposed work with a few
prior similar types of research is provided in Table 4.
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Figure 19. Clustering based on emotions through the self-organizing map.
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4. Discussion

With the successful introduction of AlexNet, the era of deep TDCNNs began. Within
a short period, TDCNNSs supplanted conventional pattern classification techniques. Deep
CNN s have evolved into the primary tool for any deep learning task. Apart from using a
deeper network with sparse connections, the central concept is that GoogLeNet achieved
the highest object detection results in ImageNet Large Scale Visual Recognition Challenge
2014 using an ensemble of six CNNs. Since then, deep CNNs have grown in popularity,
eventually becoming the industry standard for various identification and classification
applications. Additionally, they have been widely applied to the processing of sequential
data, such as natural language processing and speech recognition, and 1D signals, such
as vibration [42-44].

Apart from the superior performance that deep CNNs accomplish, another prominent
feature is that, unlike standard ANNSs, they can incorporate feature extraction and classi-
fication tasks into a single body. In contrast, conventional machine learning techniques
typically involve preprocessing and rely on stabilized and indicative features, which are
inefficient and take a considerable computational load. The CNN-based methods learn
to extract optimized features directly from the problem data to maximize classification
accuracy. This outcome is the key element for significantly improving classification perfor-
mance, which is why CNNs are appealing for complex applications. However, standard
machine learning strategies have remained unchecked for 1D signals, as deep CNNs were
designed and developed solely for 2D signals. The application of these strategies to 1D
signals is not concise, particularly when data are abundant. Additionally, the direct use
of a deep CNN for 1D signal processing applications necessitates an appropriate 1D to
2D conversion [44,45].

The ODCNN is used in this study because deep CNNs have several disadvantages
and limitations. Primarily, it has been well established that CNNs have high computational
complexity, necessitating specialized hardware designed specifically for training. Thus,
TDCNNS are unsuitable for real-time applications on mobile and low-power /low-memory
devices. Additionally, proper training of deep CNNs requires a large training dataset to
maintain a reasonable degree of generalization capability. It may not be a feasible option
for numerous practical 1D applications in which labeled data are limited. Kiranyaz et al.
proposed the first modular and resilient ODCNNSs capable of operating explicitly on
patient-specific ECG data in 2015 to address these shortcomings [46].

Moreover, ODCNNSs have gained popularity in a relatively short period due to their
superior performance in a wide range of signal processing applications, including early
arrhythmia diagnosis in ECG beats [45,47] and monitoring and detecting underlying health
problems [48-52]. However, deep ODCNN approaches have recently been proposed for
anomaly detection in ECG signals. These deep configurations share many of the same
disadvantages as their 2D peers [53-55]. Numerous techniques have been used to enhance
the generalization performance of the deep ODCNN, including data augmentation, batch
normalization, dropout, and majority voting [56]. Regularization is critical, especially in
ill-posed problems with insufficient data. Regularization can be interpreted as a technique
for achieving algebraic stability during the reconstruction process but is much more than
a simple stabilization technique [57,58]. Data augmentation is a prevalent method for
regularizing data. The scheme’s core premise is to augment the training dataset via trans-
formations that reduce overfitting. The experimental results reveal that data augmentation
makes the classification process more efficient.

Recently, with deep learning-oriented advancements, research has been conducted
on emotional state classification. Previously proposed emotion detection approaches are
usually dependent on EEG, ECG, facial, or vocal cues and are difficult to compute in regular
day-to-day life. Generally, these approaches are challenging to rely on and use because the
outcomes are distinctive and rely on the domain specialist or dataset. Physiological cues
have the benefit of the option to be estimated noninvasively in regular daily life. Physio-
logical signal-oriented gadgets are now commonly employed. Additionally, applications
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using physiological cues are primarily effectively developed and employed. Following this,
independent deep learning-oriented frameworks limit preprocessing approaches, such as
noise filtration, feature extraction [59], and others. Different organizations have established
these frameworks for EC in different domains for diverse purposes.

We presented an experimental study to recognize human emotions in response to mu-
tual interaction using preprocessed demographics (gender, age, and BMI) and physiological
signal-based datasets (BVP, GSR, SKT, valence, and arousal). From the experimental results,
we observed that physiological signals, such as BVP, GSR, SKT, valence, and arousal, could
be used to classify human emotions more precisely than features based on the EEG and
ECG. Moreover, the accuracy of emotion recognition in response to mutual interaction
increases by fusing the modalities mentioned earlier. Our proposed (ODCNN) emotion
recognition schemes are compared with state-of-the-art techniques in terms of accuracy,
as presented in Table 8. To verify the algorithm, we conduct extensive experiments to
demonstrate that the algorithm improves the generalizability of the ODCNN through
optimization and is robust to the choice of hyperparameters, as listed in Table 7.

Table 8. Comparison with previous research.

Research Accuracy
(5] 95%
[21] 89.29%
[60] 53%
[61] 99.01%
[62,63] 97%
Proposed (ODCNN) 99.8%
SVM 83.5%
ERT 71.4%

The ODCNN, SVM and, ERT classifiers were used for classification. The results reflect
that the ODCNN classifier outperformed SVM and ERT in this research. The combinations
of the features were input into the three classifiers. The ODCNN has a better classification
rate, and the complex network features are effective in recognizing emotion. The study
provides a new research idea in emotion recognition. The emotion recognition problems in
the references of Table 8 are all multiclassification. With the proposed classifiers (ODCNN,
SVM, and ERT), the achieved accuracy is 99.8%, 83.5%, and 71.4%, respectively, for the
emotional states of neutral, happy, excited, and angry. According to Li et al. [5], a brain—
computer interface-based emotion recognition scheme with an improved particle swarm
optimization for feature selection was employed with an accuracy of 95%. Graterol et al. [60]
proposed a method for emotion recognition and achieved an accuracy of around 53% for
classification tasks. Seo et al. [21] used machine learning methods for boredom classification
using EEG and GSR data to reach an accuracy of 89%. An EEG-based emotion classification
study using a long short-term memory network with an attention mechanism was proposed
in [61]. The experimental results demonstrated that the classification accuracy was around
99% for emotion classification.

Due to these advancements, emotional state detection or classification is a vast and
robust approach for correspondence with medically introverted persons who cannot com-
municate their feelings without help from others. Moreover, in the treatment of mental
health and brain—computer interaction, perceived emotional state detection systems could
be employed. Through this research, experimentation on emotional state detection was
conducted (generally with limited preprocessing steps to ensure the emotion detection
precision rate) on how this emotional state of organizational employees affects the overall
degree of competitiveness of the organization. Likewise, this work supports multiple
degrees of emotional states and monitors the changes in emotional states over time to
improve the precision rate of emotion detection. A hybrid approach was used for this
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work: one (i.e., ODCNN) for classifying the emotional states of employees and a second
(i.e., SOM) for detecting employee emotion-oriented organizational competitiveness.

Moreover, the current model was checked and explored using a preprocessed phys-
iological dataset. Gathering physiological signals or using an alternate kind of dataset
requires ensuring identical performance. For future directions in research, input data
(unprocessed and well-processed data) must be compared according to different environ-
mental conditions.

5. Conclusions and Future Work

In this manuscript, a deep learning-oriented ODCNN approach is employed to classify
the emotional state of organizational employees based on a preprocessed dataset obtained
using physiological signals, which has acquired popularity as a reasonable approach (in
the domain of EC). Second, the presented approach classifies organizational competi-
tiveness (using a SOM) by clustering the emotional states of organizational employees.
The outcomes depict a 99.8% precision rate individually, using a two-stage classification
procedure for employee emotion classification and categorizing organizational competi-
tiveness. For the proposed experimentation, organizational competitiveness is classified
using the combined working of ODCNN and SOM. We followed with the research results
that physiological signals such as BVP, GSR, SKT, valence, and arousal could be used to
more concisely characterize human emotions than EEG and ECG characteristics. Moreover,
aging, especially experience, along with the emotional detachment and balance that it
brings, is an indispensable resource in the professional world.

For future directions, the imbalance in the dataset must be addressed (using the
regularization approach). It can more efficiently cater to the physiological signals and
other kinds of signals that are crucial in the precise prediction of emotional states. Further
improvements in time consumption (while performing the emotion state classification
and categorizing organizational competitiveness) are also vital, using other physiological
signs and datasets. Along these lines, besides collecting data from various sources for
the proposed work, the daily life (real-time) feasibility must be assessed. Moreover, the
comparison of different inputs can be made using different sources (e.g., unprocessed
or well-processed data), and noise injection can be performed in different physiological
signals (in the middle layers of a model). Later, further research can be conducted on brain
activation, according to the transformation and fluctuation in the physiological signs and
cues. How do these variations affect a person’s emotional states and, consequently, what is
the influence on the overall effect toward organizational competitiveness and effectiveness?
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