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Abstract: Broadband acoustic Doppler current profiler (ADCP) is widely used in agricultural water
resource explorations, such as river discharge monitoring and flood warning. Improving the velocity
estimation accuracy of broadband ADCP by adjusting the waveform parameters of a phase-encoded
signal will reduce the velocity measurement range and water stratification accuracy, while the pro-
motion of stratification accuracy will degrade the velocity estimation accuracy. In order to minimize
the impact of these two problems on the measurement results, the ADCP waveform optimization
problem that satisfies the environment constraints while keeping high velocity estimation accuracy
or stratification accuracy is studied. Firstly, the relationship between velocity or distance estimation
accuracy and signal waveform parameters is studied by using an ambiguity function. Secondly,
the constraints of current velocity range, velocity distribution and other environmental characteristics
on the waveform parameters are studied. For two common measurement applications, two dynamic
configuration methods of waveform parameters with environmental adaptability and optimal veloc-
ity estimation accuracy or stratification accuracy are proposed based on the nonlinear programming
principle. Experimental results show that compared with the existing methods, the velocity estima-
tion accuracy of the proposed method is improved by more than 50%, and the stratification accuracy
is improved by more than 22%.

Keywords: waveform optimization; phase encoding; ambiguity function; nonlinear program-
ming; ADCP

1. Introduction

Acoustic Doppler current profiler (ADCP) is a popular Doppler sonar used for mea-
suring water velocity and profile discharge in natural and human-made waterways. Due to
the advantages of high estimation accuracy, multiple measurement parameters and low
measurement cost, the ADCP has been widely used in the fields of hydrological survey,
water resources exploration, underwater protection and navigation [1–5], etc. For example,
98% of United States Geological Survey (USGS) non-wading river discharge measurements
were performed by ADCP in 2013 [6]. ADCP divides the river section into several verti-
cal subsections. The average velocity and discharge of each subsection are obtained by
measuring the velocity of multiple vertical layers in the subsection. Then, the discharge of
all subsections is superimposed to get the discharge of the entire river section [7]. There-
fore, high-precision velocity measurement is the cornerstone of accurate section discharge
measurement. The following is a brief introduction to the concept and importance of strati-
fication or layering. Stratification refers to dividing the entire echo into several segments
during signal processing. Each segment is the echo generated by the scatterers in the corre-
sponding depth water layer being illuminated by the transmitted sound wave. The velocity
and discharge of each layer are estimated separately. Since the current velocity changes
with depth, stratification can improve the accuracy of velocity and discharge measurement
of entire river section and obtain the relationship between velocity and depth. The actual
achievable layer thickness is generally determined by the transmitted pulse width of ADCP.
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The thinner the layer, the more details about the current velocity change with depth can be
obtained, which is very important for many hydrological survey applications.

The measurement methods used in ADCP include pulse incoherent method [8],
pulse coherent method [9–11] and broadband method [12–14]. Since the broadband method
combines the advantages of the incoherent method and the coherent method, it has be-
come the most popular choice. The accuracy of velocity estimation directly determines
the performance of velocity distribution estimation, profile discharge estimation, under-
water navigation and other application requirements, while the stratification accuracy
determines the observation scale of velocity variation with depth. Therefore, the velocity
estimation accuracy and water stratification accuracy are the core performance parameters
of ADCP. The broadband method usually uses a phase-encoded pulse as the transmitted
signal, its velocity estimation accuracy and water stratification accuracy are determined by
the pulse duration and the average time of phase difference, respectively.

The research on the performance and uncertainty of velocity estimation has always
been the focus in the field of acoustic Doppler current measurement. In many studies,
the measurement uncertainty guidelines [15], Monte Carlo simulation [16] and American
Aerospace Society [17] methods were used to analyze the uncertainty of various types of
ADCP measurements strictly. Aurélien Despax et al. studied the uncertainty of ADCP
discharge measurement caused by cross-section selection and human operation by using
repeated measures experiments and put forward some strategies to reduce the measure-
ment uncertainty [18]. ADCP is usually installed on a moving carrier to complete the
measurement. References [19,20] proposed a method to improve the velocity estimation
accuracy by compensating the carrier motion. The bias error in moving-carrier ADCP
current measurement can be separated into two classes: calibration error and application
error; the major sources of calibration error and the influence of parameters on the dis-
charge uncertainty were analyzed in Reference [21]. It is an efficient method to analyze
and verify the estimation performance of ADCP through laboratory calibration system,
which can simulate a variety of different measurement application environments in a short
time [22]. At the same time, analyzing the estimation performance and error sources of
ADCP through field comparison is also an important performance research method, espe-
cially for those new principle-based instruments [23]. Reference [24] uses fractional Fourier
transform to separate the component of strong scatterers from ADCP echo, which im-
proves the accuracy and stability of water velocity estimation. ADCP is widely used in
current measurement, and there are many ways to improve the performance of velocity
estimation, but there are few studies related to the optimization of transmitted waveform.
Reference [25] points out that the measurement deviation of the phase-encoded signal is
mainly determined by the energy of the autocorrelation function of a single baseband pulse
(SBPAF) and gives the calculation method of the coding phase that makes the SBPAF energy
maximum. Although this method can reduce the signal spectrum broadening caused by
phase discontinuity, it also increases the complexity of waveform design, hardware im-
plementation and signal processing. Reference [26] deduces the Cramer Rao bound of
broadband Doppler sonar, points out that the factors affecting the accuracy of single beam
velocity estimation are divided into SNR and echo randomness and gives the qualitative
selection strategy of waveform parameters. Reference [27] proposes a waveform design
method of dual band coherent phase-encoded transmitted signal by dividing the signal
spectrum into two. This method enriches the form of the transmitted signal of ADCP,
but its estimation performance is still limited by the lack of coherent method, and this
method does not consider the adaptation to the application environment. To sum up, it is
a relatively efficient strategy to adjust the velocity estimation accuracy and stratification
accuracy by changing the code length and number of code repeats (hereinafter referred to
as the number of repeats), and this strategy is easy to adapt to the application environment.
However, improving the velocity estimation accuracy will reduce the velocity measurement
range and water stratification accuracy, and improving the stratification accuracy will also
degrade the velocity estimation accuracy. The application environment of acoustic Doppler
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measurement is complex and diverse [28–30]. Due to the lack of specific strategies to adjust
the waveform parameters according to the characteristics of the application environment,
it is difficult to optimize the measurement performance of ADCP. In order to solve this
problem, this paper introduces the constraints of sonar application environment, and re-
searches the environment-adaptable waveform optimization methods of broadband ADCP
based on the ambiguity function and nonlinear programming method.

The constraints of application environment on the waveform parameters of broadband
ADCP are mainly reflected in the following aspects. In theory, the longer the code length
and the more repeats, the higher the velocity estimation accuracy. In practice, it is necessary
to consider the limitation of current velocity range, stratification accuracy requirement and
other factors, and it is not advisable to blindly increase the code length and number of re-
peats. The velocity measurement range of the broadband method is inversely proportional
to the code length and chip width (limited by the bandwidth of the transducer and receiver,
the chip width is generally fixedly set to the reciprocal of the system bandwidth) [14]. In or-
der to prevent the maximum current velocity from exceeding the velocity measurement
range, there is an upper limit on code length. The layer thickness of the broadband method
is proportional to the product of code length and number of repeats. The upper limit of
the layer thickness requirement determines the upper limit of the product. The velocity
estimation accuracy of the broadband method is inversely proportional to code length and
number of repeats [13]. The lower limit of the velocity estimation accuracy requirement
determines the lower limit of the product of code length and number of repeats. In order
to ensure the output signal-to-noise ratio (SNR) of the matched filter of the receiver and
the peak sidelobe level (PSL) of the autocorrelation function of the coded signal, there is a
lower limit for code length. Therefore, the waveform design of the broadband ADCP must
consider the above constraints of application environment.

In order to solve the problem that the existing waveform design methods lack the
pertinence of application of environment characteristics and are difficult to realize the opti-
mization of estimation performance, this paper introduces the constraints of the application
environment, and uses an ambiguity function and nonlinear programming method to de-
sign two dynamic configuration methods of waveform parameters with environmental
adaptability and optimal estimation performance. Section 2 introduces the basic operating
principle of broadband ADCP. Section 3 employs the ambiguity function tool to broadband
ADCP for the first time, studies the relationship between the velocity estimation accuracy
of phase-encoded signal and its waveform parameters by using the ambiguity function,
and gives the performance cost functions of velocity estimation and stratification. Then,
aiming at the measurement application that prioritizes high velocity estimation accuracy
or high stratification accuracy, a velocity estimation accuracy priority (VEAP) or a wa-
ter stratification accuracy priority (WSAP) waveform optimization method are proposed.
The constraints of the current velocity range, velocity estimation accuracy requirements
and stratification accuracy requirements on the waveform parameters of the phase-encoded
signal are studied in detail. Both methods model the design task of optimal waveform
as a nonlinear programming problem with multiple inequality constraints and obtain
waveform parameters that satisfy the constraints of the application environment and make
the velocity estimation accuracy or stratification accuracy optimal. In Section 4, a principal
prototype was built using an onshore ADCP calibration system. The experimental results
demonstrate the correctness and practicability of the waveform design methods proposed
by this paper. Finally, Section 5 highlights the conclusions of this study.

2. Principle of Broadband ADCP

Broadband Doppler sonar usually uses a phase-encoded pulse as the transmitted
signal for achieving higher range and velocity accuracy. The water profile is divided into
multiple adjacent layers according to the length of the transmitted signal. First, the radial
Doppler frequency shift of single beam in a single layer is estimated, and then the velocity
profile in the geodetic coordinate system is obtained by combining the attitude sensing data



Sensors 2021, 21, 3768 4 of 21

and the radial Doppler frequency shift of multiple beams. The common velocity estimation
method of broadband Doppler sonar is complex covariance algorithm, which estimates the
average phase change of two sub-echoes in a single layer to get the radial Doppler shift
of the layer. The time delay of the two sub-echoes is called as correlation delay, and the
duration of the single sub-echo is named as average time of phase difference. The current
velocity estimation principle of broadband Doppler sonar is shown in Figure 1, where the
code length and number of repeats are set as 7 and 3, respectively. The code selection
criterion in the broadband method is that the main autocorrelation peak should be as
sharp as possible, and the secondary autocorrelation peak should be as low as possible.
There are some popular codes, such as Barker codes, minimum peak sidelobe (MPS) codes
and pseudo-random noise sequences.
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In Figure 1, td represents the correlation delay, ta is the average time of the phase
difference and the calculation formula of water layer thickness (oblique thickness along the
beam direction) ∆z is:

∆z =
c
2

ta (1)

where c is the underwater sound velocity. When the total chip number of the transmitted
pulse is fixed, the more symbols ta contains, the smaller the standard deviation of velocity
estimation [25]. Therefore, the ta is usually configured equal to the time width of N − 1
repetitive coding and td is equal to the time width of single coding, namely:

ta = (N − 1)Lτ, td = Lτ (2)

where N is the number of repeats, L is the code length and τ is the chip width. Substituting ta
in Equation (2) into (1), we get the following result:

∆z =
c
2
(N − 1)Lτ (3)

The absolute value of velocity measurement range is called ambiguity velocity. In the
broadband method, the ambiguity velocity is inversely proportional to the correlation
delay. Assuming the phase change range of the two sub-echoes is [−π, π], the ambiguity
velocity vmax is calculated as follows [13]:

vmax =
λ

2
fdmax =

λ

4td
(4)
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where λ is the wavelength and f dmax is the maximum Doppler shift. According to the
complex covariance algorithm [13], the Doppler angular shift can be calculated by the
change rate of echo phase within the correlation delay td, so the maximum Doppler angular
frequency 2πf dmax is equal to the ratio of the maximum phase change π that may occur
within td to the time interval td. Finally, f dmax = 1/(2td).

3. Methods
3.1. Relationship Between Velocity Estimation Accuracy and Waveform Parameters

The ambiguity function is a tool used in the radar field to analyze the effects of time
delay and Doppler frequency shift on radar echoes. In view of the similarity between
Doppler sonar and radar systems, it is also feasible to apply ambiguity functions to the field
of sonar. By studying the ambiguity function of the transmitted waveform, the relationship
between the waveform parameters and the resolution, ambiguity and estimation accuracy
of the Doppler sonar can be determined. The definition of the complex ambiguity function
is as follows:

χ(t, f ) =
∫ ∞

−∞
x(s)x∗(s− t)ej2π f sds (5)

where t is the time delay relative to the expected matched filter peak output, f is the
Doppler shift between the actual echo and the transmitted signal, x(t) is usually the complex
envelope of the signal and the higher the value of χ(t, f ), the stronger the resolution of the
system on this (t, f ). Ambiguity function is usually defined as the amplitude function of
complex ambiguity function, namely |χ(t, f )|.

The ambiguity function of the phase-encoded signal is based on the ambiguity function
of the rectangular pulse signal. It is assumed that the complex envelope of the rectangular
pulse is defined as follows:

xr(t) =
{

1/
√

τr, |t| ≤ τr/2
0, |t| > τr/2

(6)

where τr is the pulse width and the amplitude is normalized. The expression of xr(t)
complex ambiguity function is as follows [31]:

χr(t, f ) =
τr − |t|

τr
· sinπ(τr − |t|) f

π(τr − |t|) f
ejπt f , |t| ≤ τr (7)

Calculate the amplitude of the complex ambiguity function and regard the result as
the ambiguity function expression of the rectangular pulse, which is shown in Equation (8):

|χr(t, f )| =
(

τr − |t|
τr

)∣∣∣∣ sinπ(τr − |t|) f
π(τr − |t|) f

∣∣∣∣, |t| ≤ τr (8)

The complex envelope of repeated binary phase-encoded signal can be expressed as:

x(t) =
NL−1

∑
n=0

xr(t− nτ)ejθn (9)

where θn is equal to 0 or π, represents the polarity of biphase code, L is code length, τ is
chip width and N is the number of repeats. By substituting Equation (9) into the definition
formula of complex ambiguity function, the following results are obtained:
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χ(t, f ) =
NL−1

∑
m=0

NL−1
∑

n=0
ej(θm+θn)

∫ ∞
−∞ xr(s−mτ)x∗r (s− t− nτ)ej2π f sds

=
NL−1

∑
m=0

ej2π f mτ
NL−1

∑
n=0

ej(θm+θn)χr(t−mτ + nτ, f )

(10)

where χr(t, f ) is the complex ambiguity function of the rectangular pulse, the expression
is as Equation (7) and τr equals τ. Conducting double summation decomposition on
Equation (10), the complex ambiguity function of N times repeated L-bit coded pulse is:

χ(t, f ) =
0
∑

n=1−NL
χr(t− nτ, f )

NL−|n|−1
∑

m=0
ej2πmτ f ej(θm+θm−n)

+
NL−1

∑
n=1

ej2πnτ f χr(t− nτ, f )
NL−|n|−1

∑
m=0

ej2πmτ f ej(θm+θm+n)

(11)

Since the range of χr(t, f ) on the t-axis is |t| ≤ τ, χr(t, f ) with different delays in
Equation (11) will not be aliased, and the ambiguity function |χr(t, f )| is equal to the sum
of the amplitudes of all the summation terms in Equation (11). Equation (11) shows that
the ambiguity function of the phase-encoded signal is superimposed by rectangular pulse
ambiguity functions with different delays after amplitude weighting, and the weighting
coefficient is related to the autocorrelation characteristics of the encoding. The distance
and speed resolution performance of |χr(t, f )| is mainly determined by its main peak.
Taking n = 0 in Equation (11) to obtain the expression of the ambiguity function in the main
peak range is:

|χ(t, f )| = |χr(t, f )|·
∣∣∣∣NL−1

∑
m=0

e j2πmτ f
∣∣∣∣, |t|<τ,| f |< 1

τ

= τ−|t|
τ ·
∣∣∣ sin[π(τ −|t|) f ]

π(τ−|t|) f

∣∣∣
·
∣∣∣ sin(πNLτ f )

sin(πτ f )

∣∣∣, |t|<τ,| f |< 1
τ

(12)

The ambiguity function of the 13-bit Barker code phase modulation signal is shown
in Figure 2, and the contour plot of Figure 2a is shown in Figure 2b. Figure 2 is the graph
of the square of the modulus of Equation (12) when N = 1 and L = 13. The amplitude,
frequency shift and delay in the figure are all normalized, and T is the transmitted pulse
width (T equals NLτ).
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Based on the ambiguity function, the relationship between the velocity estimation
accuracy and the waveform parameters such as code length and number of repeats
can be concluded, and the cost function of velocity estimation performance can be es-
timated, which provides a theoretical basis for the optimal waveform design. Let t = 0 in
Equation (12) to obtain the velocity ambiguity function of the phase-encoded signal:

|χ(0, f )| =
∣∣∣∣ sin(πNLτ f )

πτ f

∣∣∣∣, | f |< 1
τ

(13)

It can be seen from Equation (13) that the greater the product of code length and the
number of repeats, the greater the PSL of the sin(πNLτf )/(πτf ) structure, the more obvious
the “pushpin” shape of the velocity ambiguity graph, and the less the influence of the
multi-valued ambiguity on the velocity estimation results.

The accuracy of frequency estimation is determined by the second derivative of
the velocity ambiguity function |χ(0, f )| [32], and the relational expression is shown
in Equation (14). Equation (14) means the sharpness of the frequency dimension of the
ambiguity function at point (0,0). The smaller the value of σ2

f , the sharper the peak, and the
higher the accuracy of velocity estimation. The velocity estimation accuracy can be greatly
improved through reasonable configuration of the waveform parameters.

σ2
f =

−1
E

En

[
∂2

∂ f 2 |χ(0, f )|
]

f=0

(14)

where E is the energy of signal received by receiver, En is the noise energy per unit
bandwidth of receiver, En = kTkFn, k is the Boltzmann constant (k = 1.38 × 10−23 J/K), Tk is
the thermodynamic temperature corresponding to 17 ◦C and Fn is the noise coefficient of
receiver. Substituting Equation (13) into (14), the following results are obtained:

σ2
f =

3En

Eπ2N3L3τ2 (15)

The standard deviation of velocity estimation is obtained by substituting the relation-
ship between Doppler shift and velocity v = λf /2 into Equation (15):

σv =
λ

2π

[
3

(E/En)N3L3τ2

]1/2
(16)

Equation (16) shows that the standard deviation of velocity estimation is inversely pro-
portional to N3/2 (the 3/2 power of number of repeats), L3/2 (the 3/2 power of code length)
and τ (the chip width). That is to say, the wider the chip, the longer the code, and the more
repeats, the higher the accuracy of velocity estimation. In practice, the design of the sonar
waveform needs to consider the actual current characteristics of measurement applications.
In the following, specific phase-encoded waveform design methods are proposed for two
common applications with high velocity estimation accuracy requirements and high-water
stratification accuracy requirements.

3.2. Velocity Estimation Accuracy Priority (VEAP) Waveform Optimization Method

For the current measurement application that prioritizes high velocity estimation
accuracy, priority is given to achieve high velocity accuracy. In this section, a configuration
method of code length and number of repeats is proposed, which can satisfy the con-
straints of stratification accuracy and velocity estimation range and optimize the velocity
estimation accuracy. From the analysis in Section 3.1, we can see that the best velocity
estimation accuracy can be obtained when we maximize the code length, the number
of repeats and chip width of the transmitted signal. Limited by the bandwidth of the
transducer and receiver, the chip width is generally fixed as the inverse of the system
bandwidth. Extending the code length will reduce the ambiguity velocity, which may
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cause the current velocity exceeds the velocity estimation range of the sonar; increasing the
number of repeats will increase the layer thickness, resulting in a decrease in the ranging
resolution. Therefore, while improving the velocity estimation accuracy, it is necessary to
take into account the constraints, such as stratification accuracy requirement and velocity
estimation range, and not blindly increase the code length and the number of repeats.
It can be seen from the above analysis that the waveform design in this application is a
nonlinear programming problem constrained by multiple inequalities. The solution is to
first transform the cost function from two-variable function to a one-variable function,
and then transform inequality constrained optimization into equality constrained optimiza-
tion by introducing slack variables, and then introduce Lagrangian multipliers to transform
equality constrained optimization into unconstrained optimization. The flow chart of the
VEAP method is shown in Figure 3.
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Based on the relationship between layer thickness and waveform parameters, the per-
formance cost function of velocity estimation is transformed into a one-variable function.
The calculation formula of the layer thickness ∆z in the broadband method is shown in
Equation (3), assuming g(∆z) = 2∆z/(cτ), Equation (3) is equivalent to:

L = g(∆z)/(N − 1) (17)

By substituting Equation (17) into (16), the cost function σv is transformed into a single
variable function:

σv =
λ

2π

[
3

(E/En)g3(∆z)

]1/2(N − 1
N

)3/2
(18)

Equation (19) shows that the cost function and the number of repeats are non-linear.
In addition, when N is fixed, the larger ∆z, the higher the accuracy of velocity estimation,
so ∆z takes the maximum allowable layer thickness ∆zm.

The following is a detailed analysis of the constraints on the waveform parameters,
such as current velocity range and stratification accuracy requirement. The current velocity
range constraint makes N have a lower limit. The correlation delay is inversely proportional
to the ambiguity velocity, and the maximum correlation delay must ensure that no velocity
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estimation ambiguity occurs, that is, the ambiguity velocity should be greater than the
to be measured maximum current velocity. In addition, Doppler tolerance of the Barker
code is poor [31]. In order to control the Doppler mismatch loss within 1dB, the phase
change caused by the maximum current velocity generally does not exceed π/2, that is,
the ambiguity velocity should be greater than 2 times the maximum current velocity to be
measured. Thus, the inequality between maximum radial velocity vm and correlation delay
td is obtained:

td ≤
λ

8vm
(19)

Substituting the td expression in Equation (2) into (19), we get the following result:

L ≤ λ

8τvm
= Lmid (20)

where Lmid = λ/(8τvm) represents the upper limit of the code length determined by the
current velocity range. Combining Equations (17) and (20) to obtain a lower limit of N:

N ≥ 16vm∆zm

cλ
+ 1 (21)

The characteristics of the broadband method require that the number of repeats is not
less than 2:

N ≥ 2 (22)

The lower limit of the PSL of code autocorrelation function makes L have a lower limit.
Combining Equation (17) to obtain the constraint of the minimum allowable code length
Lmin on N is:

N ≤ 2∆zm

cτLmin
+ 1 (23)

Then, three slack variables r2
1, r2

2 and r2
3 are introduced to transform inequality con-

straints into equality constraints. According to Equations (21)−(23) the transformation
result is: 

16vm∆zm
cλ + 1− N + r2

1 = 0

N − 2∆zm
cλLmin

− 1 + r2
2 = 0

2− N + r2
3 = 0

(24)

In order to transform the equality constrained optimization issue into the uncon-
strained optimization, Lagrangian multipliers µ1, µ2 and µ3 need to be introduced. Accord-
ing to Equation (24), the Lagrangian function f (N,r2

1, r2
2, r2

3, µ1, µ2, µ3) is:

f (N, r2
1, r2

2, r2
3, µ1, µ2, µ3) = σv

+ µ1

(
16vm∆zm

cλ + 1− N + r2
1

)
+ µ2

(
N − 2∆zm

cλLmin
− 1 + r2

2

)
+ µ3

(
2− N + r2

3
)

(25)

After calculating the partial derivative of the Lagrangian function with respect to the
respective variables, an equation group after simplification is obtained:

∂σv
∂N − µ1 + µ2 − µ3 = 0

µ1

(
16vm∆zm

cλ + 1− N
)
= 0

µ2

(
N − 2∆zm

cλLmin
− 1
)
= 0

µ3(2− N) = 0

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0

(26)
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where the expression of ∂σv/∂N is:

∂σv

∂N
=

3λ

4π

[
3

(E/En)g3(∆zm)

]1/2(N − 1
N5

)1/2
(27)

According to the relationship between the expression on the right side of Equations (21)
and (2), the solution of equation group (27) can be divided into two cases: vm∆zm ≥ cλ/16
and vm∆zm < cλ/16. When vm∆zm ≥ cλ/16, the value range of N is shown in Figure 4a.
The thin solid lines in the figure represent curve cluster obtained by Equation (17), all ∆z
with different values satisfies ∆z ≤ ∆zm. The thick solid line represents the feasible region
of N. The cost function σv takes the global optimal value at the red circle in Figure 4a.
At this point, the expressions of L and N are:

L =

[
λ

8τvm

]
, N =

[
g(∆zm)

L
+ 1
]
=

[
16∆zmvm

cλ
+ 1
]

(28)

where the brackets indicate rounding. Equation (28) shows that when vm∆zm ≥ cλ/16,
the standard deviation of velocity estimation can be minimized by first determining the
code length by the velocity estimation range constraint and then determining the number
of repeats by the stratification accuracy constraint. The minimum σv obtained in this case is:

σvmin =
16λ

π

[
3

2(E/En)

]1/2( cτvm

16vm∆zm + cλ

)3/2
(29)
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When vm∆zm < cλ/16, the feasible region of N is shown in Figure 4b. The cost
function σv takes the global optimal value at the black circle in Figure 4b. At this point,
the expressions of L and N are:

L = [g(∆zm)] =

[
2∆zm

cτ

]
, N = 2 (30)

where the square brackets indicate rounding. Equation (30) shows that when vm∆zm < cλ/16,
the standard deviation of velocity estimation can be minimized by first setting the number
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of repeats to 2 and then determining code length by the stratification accuracy constraint.
The minimum σv obtained in this case is:

σvmin =
λ

16π

[
3c3τ3

(E/En)(∆zm)3

]1/2

(31)

In summary, the longest code length and the smallest number of repeats in the feasible
region can minimize the velocity estimation standard deviation in the VEAP method.

3.3. Water Stratification Accuracy Priority (WSAP) Waveform Optimization Method

For the current measurement application that prioritizes high stratification accuracy,
priority is given to achieve small layer thickness. In this section, a configuration method
of code length and number of repeats is proposed, which can satisfy the constraints of
velocity estimation accuracy and velocity estimation range and optimize the stratification
accuracy. It can be seen from Equation (3) that the thinnest layer thickness can be obtained
by selecting the smallest number of repeats, code length and chip width. Limited by the
bandwidth of the transducer and receiver, the chip width is generally fixed as the inverse
of the system bandwidth. Shortening the code length will increase the ambiguity velocity,
and the phase change caused by the same velocity will decrease, which will lead to the
greater influence of phase noise; thus reducing the number of repeats will reduce the time
bandwidth product of the echo segment from which the phase difference is estimated,
which will lead to the decline of velocity estimation accuracy. Therefore, when increasing
the hierarchical accuracy, it is necessary to consider constraints such as velocity estimation
accuracy, velocity estimation range, etc., and cannot reduce the number of code length and
repeats. From the above analysis, it can be seen that the waveform design in this case is
also a nonlinear programming problem with multiple inequality constraints, but the cost
function changes into the Equation (3). The solution is similar to that in Section 3.2 and
will not be repeated here. The flow chart of the WSAP method is shown in Figure 5.
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Based on the relationship between velocity estimation accuracy and waveform param-
eters, the cost function of stratification accuracy is transformed into a one-variable function.
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Assuming that the maximum allowable velocity standard deviation is σvm, the velocity
estimation accuracy constraint can be expressed as:

σv =
λ

2πτ

(
3En

EN3L3

)1/2
≤ σvm (32)

The Equation (32) is transformed into:

L = y(σv)/N (33)

where y(σv) is:

y(σv) =

(
3λ2

4π2τ2σ2
v (E/En)

)1/3

(34)

By substituting Equation (33) into (3), the cost function ∆z is transformed into a single
variable function:

∆z =
cτ(N − 1)

2N
y(σv) (35)

Equation (35) shows that the cost function and the number of repeats are non-linear.
In addition, when N is fixed, the larger σv, the higher the stratification accuracy, so σv takes
the maximum allowable standard deviation σvm.

The following is a detailed analysis of the constraints on the waveform parameters,
such as current velocity range and velocity estimation accuracy requirement. The restriction
of current velocity range on N has been studied in detail in Section 3.2, and only the final
expression is given:

N ≥ 8τvm

λ
y(σv) (36)

The characteristics of the broadband method require that the number of repeats is not
less than 2:

N ≥ 2 (37)

The lower limit of the PSL of code autocorrelation function makes L have a lower limit.
Combining Equation (32) to obtain the constraint of the minimum allowable code length
Lmin on N is:

N ≤ y(σv)

Lmin
(38)

The method of transforming inequality constrained optimization into unconstrained
optimization is similar to that in Section 3.2. The equations obtained by partial derivation
of Lagrange function are given directly:

∂∆z
∂N − µ1 + µ2 − µ3 = 0

µ1

(
8τvm

λ y(σv)− N
)
= 0

µ2

(
N − y(σv)

Lmin

)
= 0

µ3(2− N) = 0

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0

(39)

where the expression of ∂∆z/∂N is:

∂∆z
∂N

=
cτy(σv)

2N2 (40)

According to the relationship between the expression on the right side of Equations (36)
and (2), the solution of equation group (39) can be divided into two cases: y(σvm) ≥ 2Lmid
and y(σvm) < 2Lmid. When y(σvm) ≥ 2Lmid, the value range of N is shown in Figure 6a.
The thin solid lines in the figure represent curve cluster obtained by Equation (33), all σv
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with different values satisfies σv ≤ σvm. The thick solid line represents the feasible region
of N. The cost function ∆z takes the global optimal value at the black circle in Figure 6a.
At this point, the expressions of L and N are:

L =

[
λ

8τvm

]
, N =

[
8vm

(
3τ

4λπ2σ2
vm(E/En)

)1/3
]

(41)

where the brackets indicate rounding. Equation (41) shows that when y(σvm) ≥ 2Lmid,
the layer thickness can be minimized by first determining the code length by the velocity
estimation range constraint and then determining the number of repeats by the velocity
estimation accuracy constraint. The minimum layer thickness ∆zmin obtained in this case is:

∆zmin =

(
3c2λ2

32π4τσ2
vm(E/En)

)1/3

− cλ

16vm
(42)

Sensors 2021, 21, x FOR PEER REVIEW 14 of 22 
 

 

According to the relationship between the expression on the right side of Equation 
(36) and 2, the solution of equation group (39) can be divided into two cases: y(σvm) ≥ 2Lmid 
and y(σvm) < 2Lmid. When y(σvm) ≥ 2Lmid, the value range of N is shown in Figure 6a. The 
thin solid lines in the figure represent curve cluster obtained by Equation (33), all σv with 
different values satisfies σv ≤ σvm. The thick solid line represents the feasible region of N. 
The cost function Δz takes the global optimal value at the black circle in Figure 6a. At this 
point, the expressions of L and N are: 

1/3

m 2 2
m m n

3,  8
8 4 π ( / )v

L N v
v E E

λ τ
τ λ σ

   
 = =   
     

 (41)

where the brackets indicate rounding. Equation (41) shows that when y(σvm) ≥ 2Lmid, the 
layer thickness can be minimized by first determining the code length by the velocity es-
timation range constraint and then determining the number of repeats by the velocity es-
timation accuracy constraint. The minimum layer thickness Δzmin obtained in this case is: 

1/32 2

min 4 2
mm n

3
1632π ( / )v

c cz
vE E

λ λ
τσ

 
Δ = − 

 
 (42)

 

2

Lmax

L

N0

NL=y(σvm)

Lmin

Lmid

NL=y(σv2)
NL=y(σv1)

 2

Lmax

L

N0

Lmin

NL=y(σvm)

NL=y(σv2)
NL=y(σv1)

 
(a) (b) 

Figure 6. Feasible region of cost function of water stratification accuracy: (a) the case of y(σvm) ≥ 2Lmid; (b) the case of y(σvm) 
< 2Lmid. 

When y(σvm) < 2Lmid, the feasible region of N is shown in Figure 6b. The cost function 
Δz takes the global optimal value at the black circle in Figure 6b. At this point, the expres-
sions of L and N are: 

1/32
m

4 4 2
m n

( ) 3 ,   2
2 32π ( / )

v

v

yL N
E E

σ λ
τ σ

     = = =        
 (43)

where the square brackets indicate rounding. Equation (43) shows that when y(σvm) < 
2Lmid, the layer thickness can be minimized by first setting the number of repeats to 2 and 
then determining code length by the velocity estimation accuracy constraint. The mini-
mum layer thickness Δzmin obtained in this case is: 

1/32

min 4 2
m n

3
2 4 4π ( / )v

c cz L
E E

λτ
τσ

 
Δ = =  

 
 (44)

In summary, the longest code length and the smallest number of repeats in the feasi-
ble region can minimize the layer thickness in the WSAP method. 

Figure 6. Feasible region of cost function of water stratification accuracy: (a) the case of y(σvm) ≥ 2Lmid; (b) the case of
y(σvm) < 2Lmid.

When y(σvm) < 2Lmid, the feasible region of N is shown in Figure 6b. The cost function
∆z takes the global optimal value at the black circle in Figure 6b. At this point, the expres-
sions of L and N are:

L =

[
y(σvm)

2

]
=

[(
3λ2

32π4τ4σ2
vm(E/En)

)1/3]
, N = 2 (43)

where the square brackets indicate rounding. Equation (43) shows that when y(σvm) < 2Lmid,
the layer thickness can be minimized by first setting the number of repeats to 2 and then
determining code length by the velocity estimation accuracy constraint. The minimum layer
thickness ∆zmin obtained in this case is:

∆zmin =
c
2

Lτ =
c
4

(
3λ2

4π4τσ2
vm(E/En)

)1/3

(44)

In summary, the longest code length and the smallest number of repeats in the feasible
region can minimize the layer thickness in the WSAP method.

4. Experiments and Verification

An experimental platform based on an onshore calibration system for ADCP is built
to verify the effectiveness of the proposed waveform design methods.
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4.1. Overview of Experimental Platform

The onshore calibration system can generate multi-channel simulated current mea-
surement echo according to the set parameters and simulate underwater acoustic current
measurement through seamless docking with the transducers of current measurement
instruments in the laboratory. The onshore calibration system can flexibly set the trans-
mitted waveform (including noncoherent pulse, coherent pulses train and phase-encoded
pulse), water depth, scatterer distribution, current distribution, environmental noise etc.,
which provides convenience for the study of acoustic current measurement methods and
the test of current measurement instruments. The shore calibration system consists of
a computer (including acoustic Doppler echo simulation software), an arbitrary wave
generator, a power amplifier, a transducer and a current measuring instrument (taking the
600 kHz ADCP as an example). The workflow chart of the onshore calibration system is
shown in Figure 7a. The echo simulation software running on the computer is responsible
for generating the digital echoes according to the set parameters. The screenshot of the
software interface is shown in the upper left corner of Figure 7b. The arbitrary waveform
generator A and B convert the digital echoes into analog signals, and their actual photos are
shown in the upper right corner of Figure 7b. Each arbitrary waveform generator can gen-
erate two channels of analog signals at the same time. The power amplifier is responsible
for amplifying the analog signals to an appropriate power level and matching appropriate
interface impedances for all the transducers. The photo of the power amplifier is shown in
the lower right corner of Figure 7b. Finally, four transducers connected the output of the
power amplifier are docked with transducers of an ADCP one by one. The photo of four
groups of connected transducers is shown in the lower left corner of Figure 7b. The main
parameters of the experimental platform are shown in Table 1.
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Table 1. The parameters of the experimental platform.

Parameters Value

1 Operating Frequency 600 kHz
2 System Bandwidth 50 kHz
3 Minimum Layer Thickness 0.1 m
4 Velocity Resolution 0.5 mm/s
5 Beam Width 3 degrees
6 Beam Inclination 30 degrees
7 Velocity Range ±20 m/s
8 Maximum Profile Range 60 m

4.2. VEAP Waveform Optimization Experiment Result

This experiment is aimed to compare the velocity estimation performance of the wave-
form obtained by the proposed VEAP method and other waveforms under the constraints
of stratification accuracy requirement and current velocity range. This experiment contains
two parts: a low velocity case and a high velocity case.

4.2.1. Low Velocity Case

The onshore calibration system is set as follows: the current velocity of all layers is
set to 0.37 m/s, so the maximum current velocity vm equals 0.37 m/s, and the maximum
allowable layer thickness ∆zm is set to 0.8 m. The default code is Barker code, and the MPS
code is used when there is no corresponding length Barker code. The four codes selected
in this experiment are shown in Table 2 [33].

Table 2. Codes used in the experiment of VEAP waveform design.

Code Length Code Type Hexadecimal Binary

7 Barker 0x32 1110010
13 Barker 0x1F35 1111100110101
23 MPS 0x38FD49 01110001111110101001001

42 MPS 0x4447B874B4 000100010001000111101
110000111010010110100

Three waveforms which are different from the waveform obtained by the VEAP
method in this paper are selected, and the standard deviation of velocity estimation of
the four waveforms under eight SNR (5–40 dB) is compared. Under each SNR condition,
the sample number of velocity estimation is 500. The process of calculating the waveform
parameter of VEAP method is described as follows: the chip width is 20 µs obtained from
the system bandwidth, and the chip width is fixed. According to the value of ∆zm and
vm, this measurement application belongs to the case of vm∆zm ≥ cλ/16. According to
Equation (28), the code length and number of repeats that minimize the velocity standard
deviation are L = 42 and N = 2. At the same time, the correlation delay is td = 0.84 ms,
the average time of phase difference is ta = 0.84 ms and the layer thickness is ∆z = 0.63 m.
In addition, other three waveforms are selected in the feasible region, and their waveform
parameters are (N = 3, L = 23), (N = 5, L = 13) and (N = 8, L = 7).

The values of layer thickness achieved by the four waveforms are shown in Figure 8a.
They are 0.73 m, 0.78 m, 0.69 m and 0.63 m, which are all smaller than ∆zm, and all
meet the stratification accuracy constraint. The velocity estimation range achieved by
the four waveform is shown in Figure 8b, respectively 4.5 m/s, 2.4 m/s, 1.4 m/s and
0.74 m/s, which are all greater than two times of the vm, and all meet the current velocity
range constraint.
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Figure 8. The layer thickness and velocity estimation range of the four waveforms all meet the constraint conditions:
(a) layer thickness achieved by four waveforms; (b) velocity estimation range achieved by four waveforms.

The standard deviation of velocity estimation realized by the four waveforms is shown
in Figure 9. The dotted line with star icon indicates the velocity standard deviation of
the waveform (N = 2, L = 42) obtained by the VEAP method in this paper. The triangle
icon indicates the deviation of (N = 3, L = 23) waveform. The diamond icon indicates the
deviation of (N = 5, L = 13) waveform. The square icon indicates the deviation of (N = 8,
L = 7) waveform. It can be seen from Figure 9 that the velocity standard deviation of four
waveforms decreases with the increase of SNR. When SNR is greater than 25 dB, the velocity
standard deviation tends to be stable, and the stable values ordered from largest to smallest
are 0.22 cm/s, 0.14 cm/s, 0.1 cm/s and 0.05 cm/s. Under all SNR conditions, the velocity
estimation accuracy of the waveform designed by the proposed VEAP method is better
than that of the other waveforms, which proves the effectiveness of the proposed method.
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Figure 9. Comparison of the velocity standard deviation between four waveforms. The waveform
(N = 2, L = 42) obtained by the proposed VEAP method achieves the smallest velocity standard deviation.

4.2.2. High Velocity Case

The onshore calibration system is set as follows: the current velocity of all layers is set
to 2 m/s, so the maximum current velocity vm equals 2 m/s, and the maximum allowable
layer thickness ∆zm is set to 0.8 m. According to Equation (28), the code length and number
of repeats that minimize the velocity standard deviation are N = 8 and L = 7. In addition,
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other three waveforms are selected in the feasible region, and their waveform parameters
are (N = 9, L = 6), (N = 10, L = 5) and (N = 12, L = 4).

The standard deviation of velocity estimation realized by the four waveforms is
shown in Figure 10. The dotted line with star icon indicates the velocity standard deviation
of the waveform (N = 8, L = 7) obtained by the proposed VEAP method. The triangle
icon indicates the deviation of (N = 9, L = 6) waveform. The diamond icon indicates
the deviation of (N = 10, L = 5) waveform. The square icon indicates the deviation of
(N = 12, L = 4) waveform. Under all SNR conditions, the velocity estimation accuracy of
the waveform designed by the proposed VEAP method is better than that of the other
waveforms, which proves the effectiveness of the proposed method.
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Figure 10. Comparison of the velocity standard deviation between four waveforms. The waveform
(N = 8, L = 7) obtained by the proposed VEAP method achieves the smallest velocity standard deviation.

4.3. WSAP Waveform Optimization Experiment Result

This experiment aimed to compare the stratification performance of the waveform
obtained by the proposed WSAP method and other waveforms under the constraints of ve-
locity estimation accuracy requirement and current velocity range. The onshore calibration
system is set as follows: In order to simulate shear current application, the current velocity
is set to be linearly distributed with depth. The velocity of top layer is 1 m/s, and the
velocity of bottom layer is 0.1 m/s, so the maximum current velocity to be measured
is vm = 1 m/s. The maximum allowable velocity standard deviation is σvm = 0.05 m/s.
The default code is Barker code, and the MPS code is used when there is no corresponding
length Barker code. The four codes selected in this experiment are shown in Table 3 [33].

Table 3. Codes used in the experiment of WSAP waveform design.

Code Length Code Type Hexadecimal Binary

4 Barker 0xD 1101
5 Barker 0x1D 11101
6 MPS 0x34 110100
9 MPS 0xD7 011010111



Sensors 2021, 21, 3768 18 of 21

Three waveforms that are different from the waveform obtained by the WSAP method
in this paper are selected, and the layer thickness of the four waveforms under 20 dB
SNR is compared. The sample number of velocity estimation is 500. The process of
calculating the waveform parameter of WSAP method is described as follows: The chip
width is 20 µs obtained from the system bandwidth. y(σvm) = 16.8 is obtained from the
maximum allowable velocity estimation error σvm, and Lmid = 15.6 is obtained from the
maximum current velocity vm. Therefore, this measurement application belongs to the case
of y(σvm) < 2Lmid. According to Equation (43), the code length and number of repeats that
minimize the layer thickness is N = 2 and L = 9. At the same time, the correlation delay is
td = 0.18 ms and the average time of phase difference is ta = 0.18 ms. In addition, the other
three waveforms are selected in the feasible region, and their waveform parameters are
(N = 3, L = 6), (N = 4, L = 5) and (N = 5, L = 4).

The values of velocity standard deviation achieved by the four waveforms are shown
in Figure 11a. They are 4.58 cm/s, 4.77 cm/s, 4.61 cm/s and 4.45 cm/s, which are all smaller
than σvm, and all of them meet the velocity estimation accuracy constraint. The velocity esti-
mation range achieved by the four waveform is shown in Figure 11b, respectively 7.8 m/s,
6.3 m/s, 5.2 m/s and 3.5 m/s, which are all greater than two times of the vm, and all meet
the current velocity range constraint.
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Figure 11. Velocity standard deviation and velocity estimation range of the four waveforms all meet the constraint conditions:
(a) velocity standard deviation achieved by four waveforms; (b) velocity estimation range achieved by four waveforms.

The layer thickness obtained by the four waveforms is shown in Figure 12. The black
vertical bar indicates the layer thickness of the waveform (N = 2, L = 9) obtained by the
WSAP method in this paper. The gray vertical bars indicate the layer thickness of the other
waveforms (N = 3, L = 6), (N = 4, L = 5) and (N = 5, L = 4), respectively. It can be seen from
Figure 12 that the layer thickness of the four waveforms decrease from left to right, and the
values are 0.24 m, 0.23 m, 0.18 m and 0.14 m, respectively. The stratification accuracy of
the waveform designed by the proposed WSAP method is better than that of the other
waveforms, which proves the effectiveness of the proposed method.
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Figure 12. Comparison of the layer thickness between the waveform obtained by the proposed
WSAP method and the other waveforms. The waveform (N = 2, L = 9) obtained by the proposed
WSAP method achieves the smallest layer thickness.

5. Conclusions

In order to overcome the shortcomings of the existing waveform design methods,
such as lack of application environment pertinence and difficulties in optimizing the
estimation performance, this paper designs two waveform optimization methods with
environmental adaptability and optimal estimation performance. In these two methods,
the environment characteristics such as current velocity range and distribution are taken as
the constraints of the nonlinear optimization problems to realize the velocity estimation or
stratification performance optimization.

The proposed methods improve the velocity estimation accuracy, stratification accu-
racy and environmental adaptability of broadband ADCP. Evaluation of algorithm per-
formance in comparison with other existing methods indicate that the velocity estimation
accuracy of the proposed VEAP method is improved by at least 50%, and the stratification
accuracy of the proposed WSAP method is improved by at least 22%, which demonstrates
the proposed methods are accurate and effective.

Obtaining high-precision velocity estimation and water stratification is the primary
purpose of most ADCP measurement applications, so the proposed methods in this paper
are valuable for many measurement activities. The waveform parameters can be dynami-
cally configured according to the characteristics of the measurement environment by using
the proposed methods, then higher accuracy and flexibility can be obtained than the fixed
parameter measurement method.

However, there may be some limitations in practical applications. For example,
it is sometimes not easy to obtain accurate characteristics of measurement environment.
The environmental characteristics obtained by experience and rough estimation sometimes
have certain errors. Therefore, research on obtaining accurate environmental characteristics
will be interesting and valuable.
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