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Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia. It tends to cause multiple
cardiac conditions, such as cerebral artery blockage, stroke, and heart failure. The morbidity and
mortality of AF have been progressively increasing over the past few decades, which has raised
widespread concern about unobtrusive AF detection in routine life. The up-to-date non-invasive AF
detection methods include electrocardiogram (ECG) signals and cardiac dynamics signals, such as the
ballistocardiogram (BCG) signal, the seismocardiogram (SCG) signal and the photoplethysmogram
(PPG) signal. Cardiac dynamics signals can be collected by cushions, mattresses, fabrics, or even
cameras, which is more suitable for long-term monitoring. Therefore, methods for AF detection by
cardiac dynamics signals bring about extensive attention for recent research. This paper reviews the
current unobtrusive AF detection methods based on the three cardiac dynamics signals, summarized
as data acquisition and preprocessing, feature extraction and selection, classification and diagnosis.
In addition, the drawbacks and limitations of the existing methods are analyzed, and the challenges
in future work are discussed.

Keywords: atrial fibrillation; unobtrusive detection; ballistocardiogram; seismocardiogram;
photoplethysmogram

1. Introduction

Atrial fibrillation (AF) is one of the most common arrhythmias that increases the risk
of heart diseases, such as cardiogenic stroke and heart failure. According to the World
Heart Federation, AF has become a global health problem as morbidity and mortality have
increased exponentially over the past decade [1]. With global aging, it is predicted that AF
may affect 12 million people in the United States by 2050 and 17.9 million people in Europe
by 2060 [2]. Therefore, precise AF detection is crucial for early diagnosis and treatment of
AF and even more serious heart diseases.

AF is derived from a chaotic, high-frequency heartbeat, a type of disorganized activity
caused by atria [3]. Generally, AF can be categorized as paroxysmal, persistent, and
permanent based on the fibrillation duration. Paroxysmal AF is usually asymptomatic,
difficult to detect in daily life, and may deteriorate to persistent and permanent or even
cause various malignant cardiovascular diseases [4]. Hence, numerous research directions
on AF detection have been proposed and implemented to diagnose AF in clinical and
daily life.

Currently, the gold standard for AF detection is the electrocardiogram (ECG) signal,
according to irregular rhythms lasting for more than 30 s and the disappearance of the
P wave in front of the QRS complex [5]. The measurement and acquisition of traditional
ECG signals require electrodes adhered to the body surface, professional equipment, and
operators suitable for clinical diagnosis. However, AF, especially paroxysmal AF, usually
occurs in daily life without obvious symptoms, so various non-invasive measurement
techniques have been proposed to monitor AF at home in recent years. The up-to-date
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unobtrusive AF detecting methods include ECG signals from portable devices and cardiac
dynamics signals. In cardiac dynamics signals, cardiac activity is considered as a nonlinear
dynamic system, and the response on the body surface reflects changes in cardiac force and
rhythm. Therefore, the cardiac dynamics signal has the same rhythm as the ECG signal,
which helps diagnose arrhythmias, especially in the detection of AF. In addition, cardiac
dynamics signals are generally collected by mechanical sensors to record subtle vibrations
on the body surface and analyze the signal waveforms to obtain cardiovascular character-
izations. Due to its unobtrusiveness and convenience, it has been widely studied in the
field of routine AF detection and screening over the past few years. The state-of-the-art
unobtrusive cardiac dynamics methods used for diagnosing AF include ballistocardiogram
(BCG), seismocardiogram (SCG) and photoplethysmogram (PPG). The purpose of this
paper is to provide a comprehensive summary of previous work on unobtrusive AF detec-
tion methods based on the three cardiac dynamics signals, which could aid in developing
future research and guidance of ideas for home AF monitoring.

The main detection processes of these three methods commonly include: signal
acquisition and preprocessing, feature extraction and selection, classification and diagnosis,
as illustrated in Figure 1. Therefore, the rest of the paper is organized as follows: Section 2
focuses on data acquisition equipment and preprocessing methods. Sections 3 and 4
summarize the feature extraction methods and classification models, respectively. Finally,
Section 5 presents the advantages and disadvantages of previous methods and future work
in AF detection.

Figure 1. Overview of the cardiac dynamics signals processing for AF detection.

2. Instrument/Signal
2.1. BCG Signal

BCG signal is an unobtrusive measurement that records subtle vibrations on the body
surface to describe cardiac diastolic and systolic forces [6]. The BCG signal has a rhythm
similar to the ECG signal, so arrhythmias, including AF, can be detected. Similar to the
ECG signal, the morphology of cardiac dynamics signals represents the corresponding
cardiovascular events. Figure 2 illustrates the typical morphology of the BCG signal.
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Figure 2. Typical BCG waveform.

The time interval between the peaks of the first major wave (called the I wave) and the
second major wave (called the J wave) is called the I-J interval, which represents diastolic
pressure. Moreover, the amplitude between the J wave and the third major wave (called
the K wave) is called the J-K amplitude and represents pulse pressure [7]. Due to the
convenience of data acquisition and almost no negative impact on daily activities, BCG
signals have been consistently applied to assess cardiac function in recent years [8]. The
main postures during data collection include standing, sitting, and lying down. Moreover,
common sensors include wearable three-axis accelerometer [9–11], electromechanical film
(EMFi) sensor [12], weighing scale [13], piezoelectric film sensors [14], and polyvinylidene
fluoride sensors (PVDF) [15].

As far as AF detection is concerned, EMFi and PVDF sensors are installed on cushions
and bed mattresses to collect BCG signals. Wen et al. placed the EMFi sensor under a
common mattress with a sampling rate of 125 Hz to collect BCG signals and used it to classify
AF and sinus rhythm (SR) [16]. Yu et al. placed the EMFi sensor on the top of a regular bed
mattress with a sampling rate of 125 Hz to collect BCG signals and detected AF [2]. Brüser
et al. and Zink et al. used an EMFi sensor with a sampling rate of 128 Hz to collect BCG
signals and detected AF, respectively [17–19]. Jiang et al. designed an acquisition system
composed of a PVDF sensor with a sampling rate of 125 Hz and placed it on the top of the
mattress. The obtained BCG signal corresponded to the upper part of the back of the patients’
body and was used to distinguish AF from non-atrial fibrillation (NAF) [20,21]. Koivisto
et al. also applied the Murata EMFi sensor with a sampling rate of 125 Hz to collect BCG
signals and detected AF from SR [22]. Moreover, Panula et al. collected BCG signals with a
three-axis accelerometer and a three-axis gyroscope to detect AF [23].

2.2. SCG Signal

SCG signal is a non-invasive method based on measuring chest cardiogenic accelera-
tion, which is a reflection of the heartbeat in the form of local vibrations of the chest wall [6].
SCG is a dynamic manifestation of electrophysiology with a similar rhythm to ECG, thus
having the potential to differentiate AF. Figure 3 illustrates the typical morphology of the
SCG signal.
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Figure 3. Typical SCG waveform.

There are five important feature points in the SCG waveform: aortic opening (AO),
rapid ejection (RE), maximum acceleration (MA), mitral opening (MO) and aortic closure
(AC) [24]. Currently, it is convenient to collect SCG signals by placing a low-noise ac-
celerometer on the chest [8]. Moreover, the main sensors for SCG signal detection include:
three-axis microelectromechanical sensor (MEMS) accelerometer [25], single-axis MEMS
accelerometer [26], MagIC-SCG device with three-axis MEMS accelerometer [27], and
electromechanical film (EMFi) sensor [28,29].

As far as AF detection is concerned, MEMS sensors are most commonly used to record
SCG signals, which have the advantages of low volume, low power consumption, and low
noise. Currently, there are two types of MEMS applied.

One is using a stand-alone MEMS to collect SCG signals for AF detection. Koivisto et al.
applied a three-axis MEMS accelerometer fixed in the center of the chest with double-sided
glue to collect SCG signals with a sampling rate of 800 Hz, which was used to detect AF
and SR [30]. Hurnanen et al. implemented a similar work to record SCG signals with a
sampling rate of 800 Hz, ensuring sufficient temporal resolution for classification between
AF and SR [31]. Pänkäälä et al. used the single-axis MEMS accelerometers to obtain SCG
signals with a sampling rate of 3 kHz for detecting asymptomatic AF [24]. Kaisti et al.
applied a MEMS pressure sensor element with a sampling rate of 1 kHz to collect SCG
signals and detect AF [32].

The other is the micro MEMS integrated into the mobile phone to monitor AF with
SCG. Moreover, the sampling rate is usually set to 200 Hz. Lahdenoja et al. placed a
standard Sony Xperia Z-Series smartphone on the patient’s chest with the smartphone’s
speaker facing the patient’s head and the display upward to collect the SCG signal and
classify AF and NAF [33]. Mehrang et al. and Tadi et al. severally placed a smartphone on
the patient’s chest longitudinally to collect SCG signals for distinguishing AF from SR [4,34].
Iftikhar et al. placed a smartphone on the patient’s sternum and classified multiple heart
conditions, such as AF, SR, coronary artery disease (CAD), and ST-segment elevated
myocardial infarction (STEMI) by SCG signals [35]. Mehrang et al. placed a smartphone on
the patient’s bare chest and detected concurrent AF and acute decompensated HF (ADHF)
based on the SCG signals collected from the smartphone [36].

2.3. PPG Signal

PPG signal is a type of pulse pressure signal generated by the propagation of blood
pressure pulses along arteries [37]. It can obtain oxygen saturation and heart rate by pulse
oximetry, which is practical for detecting AF. Figure 4 illustrates the typical morphology of
PPG signals.
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Figure 4. Typical PPG waveform.

The pacemaker represents the opening of the aortic valve and the rapid ejection of
blood from the ventricles; the first peak is the highest point of the PPG wave, reflecting the
maximum pressure and volume in the artery; the dicrotic notch is the depression of the
main and secondary peaks, which represents the static pressure emptiness time of the aorta;
the second peak is the transmission of the blood pressure wave from the blood vessel to the
end of the body, which bounces back and causes a temporary dilation of the blood vessel
wall at the measuring end [38]. It can be measured from fingers, wrists, or earlobes [39] or
even by noncontact methods, such as cameras [40].

As far as AF detection is concerned, two main approaches are used to obtain PPG
signals: photodetectors (PD) and cameras [37]. For PD-based PPG sensors, Bonomi et al.
and Eerikäinen et al. severally used a wrist wearable sensor like a smartwatch with a
sampling rate of 128 Hz to collect PPG signals to classify AF and NAF [41–43]. Barshar et al.
also used the PD in a smartwatch to collect a PPG signal and detect AF from SR [44].
Shashikumar et al. applied a novel deep neural network approach with a sampling rate
of 128 Hz to classify AF and NAF from wrist-worn PPG signals [45]. Conroy et al. used a
single earlobe PPG sensor with a sampling rate of 300 Hz to record PPG signals and detect
the AF and NAF [46]. Aliamiri et al. used a Samsung gear device with a sampling rate
of 100 Hz for collecting PPG signals and detected AF [47]. Tang et al. set up a standard
procedure to collect fingertip PPG analog data directly from the bedside monitor with a
sampling rate of 128 Hz to distinguish the AF and NAF [48]. Ferranti et al. applied the PD
in a wristband with a sampling rate of 64 Hz to collect PPG signals and detect AF [49].

For Camera-based PPG sensors, Couderc et al. used an RGB webcam with a sampling
rate of 200 Hz, which was placed 1 m above the patient’s head so that the PPG signal could
be recorded to detect AF [50]. Moreover, Poh et al. Chan et al. and Krivoshei et al. used a
smartphone with a sampling rate of 30 Hz, where the device was placed on the tip of the
index finger to extract the PPG signal for distinguishing AF and SR [51–53]. Gallego et al.
collected the PPG signals with the sensor embedded in the Samsung smartphone to detect
AF [54].

To sum up, the cardiac dynamics signals acquisition methods for AF detection are
listed in Table 1.
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Table 1. Cardiac dynamics signals acquisition methods for AF detection.

Signal Instrument/Sensor Sampling Rate

BCG

EMFi

L-series (290 × 600 mm) of Emfit (Finland) [16] 125 Hz

EMFi sensor (40 × 79 cm) of Emfit (Finland) [2] 125 Hz

EMFi sensor (30 × 60 cm) of Emfit (Finland) [17–19] 128 Hz

PVDF
Polyvinylidene fluoride (PVDF) sensor [20,21] 125 Hz

Murata BCG sensor (SCA10/11H) [22] 125 Hz

MEMS LSM6DSM always-on 3D accelerometer and 3D gyroscope [23] -

SCG

Single MEMS

Digital output three-axis MEMS
(Free scale Semiconductor, MMA8451Q)

with 14 bits of resolution [30,31]
800 Hz

Analog output one-axis MEMS accelerometer
(VTI Technologies Oy, SCA620) [24] 3000 Hz

MEMS pressure sensor element (SCB10H) [32] 1000 Hz

Smartphone

Sony Xperia Z Series Smartphone (a three-axis accelerometer
inside the smartphone and the six

data channels of three gyroscopes) [33]
200 Hz

Sony Xperia Z1 or Z5 smartphone
(sing a custom-designed Android application) [34,36] 200 Hz

Smartphone [4,35] 200 Hz

PPG

PD

Philips heart and motion detection module’s
(CM3 Generation3, Wearable Sensing Technologies)

wrist wearable sensor [41–43]
128 Hz

Earlobe PPG sensor (HeartSensor HRS-07UE,
BINAR Integrated Mobile Systems, Washington, DC, USA) [46] 300 Hz

Smart wristwatch provided by Samsung
(“Simband”) [44,45] 128 Hz

Samsung gear device [47] 100 Hz

Bedside monitor (IntelliVue MP70, Philips, Netherlands) [48] 128 Hz

PPG Empatica E4 wristband [49] 64 Hz

Camera

RGB network camera (Dell Precision M6400,
30 frames per second, resolution 1280 × 720) [50] 200 Hz

Smartphone (iPhone 4S, Apple, Inc., Cupertino,
CA, USA) [51–53] 30 Hz

Samsung Galaxy 6 smartphone and Samsung
Galaxy S8 Plus smartphone [54] -

2.4. Data Preprocessing

The cardiac dynamics signals preprocessing methods for AF detection comprise
filtering, normalization and segmentation.

For filtering processing, various filters with different cutoff frequencies are applied to
obtain pure cardiac dynamics signals. In terms of SCG signal, fast Fourier-transform (FFT)
based brick-wall filters are effective, with passband frequencies typically set from 1 Hz to
45 Hz to remove baseline wander and high-frequency noise from SCG signals [9,31,35,36].
Moreover, sliding window root-mean-square (RMS) filters with passband frequency of 1 Hz
to 40 Hz have also been applied to denoise SCG signal [16,31,33]. Additionally, a triangular
window moving-average filter with a length of 8 sampling points was designed to filter
SCG signals [34]. In terms of BCG signals, Yu et al. designed a Butterworth band-pass
filter with a passband frequency of 0.7 Hz to 10 Hz to remove the noise and respiratory
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components from BCG signals [2]. Panula et al. applied an equiripple finite impulse
response (FIR) band-pass filter of 148th order with passband frequencies ranging from 3 Hz
to 30 Hz to denoise BCG signals [23]. In terms of PPG signal, Bashar et al. filtered the PPG
signal using a 6th order Butterworth band-pass filter with passband frequencies ranging
from 0.5 to 20 Hz [44]. Estrella-Gallego et al. utilized an exponentially weighted moving
average (EWMA) filter to denoise PPG signals [54]. Shashikumar et al. applied a 41st order
FIR band-pass filter with passband frequencies from 0.2 to 10 Hz to filter PPG signals [45].

In addition, the time-frequency transform is successfully applied to filter cardiac
dynamics signals. For BCG, the Daubechies 6 wavelet was applied to decompose the
original signal into seven wavelets (D1–D7), and the filtered signal was reconstructed by
D3–D6 [16]. Similarly, the time-invariant stationary wavelet transform (SWT) can also be
applied to extract relevant features from each of six detail and six coarse coefficients [2].
For SCG, the singular spectrum analysis (SSA) time-series analysis method was used to
remove the noise and the de-baseline trend and further smooth the SCG signal derived
from accelerometers and gyroscopes [34]. For PPG, Daubechies wavelet was utilized to
decompose the original signal into 8-layer wavelets and reconstructed as filters [47].

For normalization, the aim is to eliminate the effects of different devices and subjects.
However, its effectiveness and necessity are controversial, so few studies have employed
normalization in preprocessing. Wen et al. normalized the amplitude of BCG signals to
0 to 1 by the maximum. Based on empirical values, the lower upper thresholds of the
valid signal were set to 0.1 and 0.25 [16]. Yu et al. also normalized a BCG signal with its
maximum and minimum value [2]. Conroy et al. normalized the PPG signals using the
standard score method, called the Z score [46,55,56].

For the segmentation, different frame lengths were selected, which could describe
the rhythmical changes in AF periods. The frame length of BCG signal was usually set as
5 s [22], 24 s [20,21], 30 s [2,17,18] or 60 s [16]. The frame length of SCG signal was generally
set as 5 s [22,23], 10 s [4,33–36] or 12.5 s [30,31], 30 s [41,45]. Moreover, the frame length of
PPG signal was commonly set as 1.66 s [46], 5 s [32], 10 s [57], 15 s [50], 17 s [51], 17.1 s [52],
30 s [40,43–45,47,54], or 60 s [42].

3. Features Extraction

After acquiring the preprocessed data segments, feature extraction is a key link in
SR and AF classification. The characterization performance of the extracted features
fundamentally determines the accuracy of the ultimate classification and diagnosis. For AF
detection, the most used features extracted from cardiac dynamics signals can be classified
into the following categories: time-domain, frequency-domain, time-frequency-domain
and nonlinear features.

3.1. Time-Domain Features

Time-domain features describe the variation of cardiac force over time, a statistical
method to describe time-series, such as peaks and troughs, means, and standard devia-
tions [58]. Similar to the features extracted to diagnose AF using ECG signals, the different
morphological features and rhythmic features between SR and AF are also represented in
the cardiac dynamics signals.

(a) Signal morphology: Similar to ECG signals in AF, such as the absence of P waves,
the cardiac dynamics signals also have a morphology that distinguishes AF from SR [59].
For AF diagnosis, Brüser et al. calculated the skewness and kurtosis of the BCG segment
using the kth sample moments around the mean [17]. Two years later, four new waveform
features were supplemented, including the skewness, the kurtosis, the standard devia-
tion, the difference between the maximum and minimum values of each segment [18].
Pänkäälä et al. extracted the variance of the difference between maximum and minimum
to describe SCG waveforms [24]. Tadi et al. extracted the zero-crossing ratio of SCG
waveforms to detect AF [34]. Additionally, the entire SCG, PPG or BCG segment was fed
into a specific classifier to diagnose AF automatically [20,30,47,51].
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(b) Time interval: Time interval refers to the interval between two feature points (peaks
or troughs) in the time domain waveform. For AF detection, Pänkäälä et al. extracted the
AO interval from SCG signals to characterize the variational rhythms [24]. Bonomi et al.
calculated the beat-to-beat intervals (BBI) of PPG signals to distinguish AF from NAF [41,42].

(c) Heart rate: Due to the arrhythmia of AF, the heart rate (HR) is usually used as
the primary diagnostic indicator. For AF diagnosis, Tadi et al. and Iftikhar et al. applied
short-term autocorrelation of SCG segments to obtain the instantaneous heart rate (IHR),
respectively [34,35]. Mehrang et al. also adopted short-term autocorrelation from SCG
signals to estimate HR [36]. Lahdenoja et al. calculated HR from the median of eight BBI
from each SCG segment to identify AF [33]. A. Estrella-Gallego et al. extracted HR using
the location of each PPG trough to detect AF [54].

(d) Heart rate variability: Heart rate variability (HRV) refers to the new parameter
extracted from the obtained BBI series mathematically. For instance, the root-mean-square
of the successive difference (RMSSD) [34,40,44,48,53,58,59] and the standard deviation
(SD) [40,43,45,58,59] are commonly used as HRV indicators to characterize AF. In addition,
Shashikumar et al. calculated a robust version of SD and a weighted SD feature from
the PPG BBI series to describe the rhythm variation [45]. Shi et al. and Conroy et al.
severally extracted four HRV features from PPG BBI based on RMMSD and SD to quantify
the irregularity of HR [40,46]. Moreover, the median absolute difference and its related
parameters were calculated to estimate the HRV of the SCG BBI series [31,33–35]. Song
et al. used the mean and SD of the BCG BBI series to distinguish AF [58].

3.2. Frequency-Domain Features

Frequency domain analysis is an effective and commonly used method for describing
rhythmic variations. Generally, the signal is transformed into the frequency domain by
FFT, and the frequency features are extracted from the frequency spectrum.

For AF diagnosis, Shan et al. applied FFT to extract three features of the PPG sig-
nal, including the low-frequency (LF), high-frequency (HF) and the ratio of LF to HF
(LF/HF) [48,59]. The same frequency features of PPG signals were calculated by Shi et al.,
and the power in LF/HF was normalized [40]. Additionally, Song et al. calculated the
power spectral density (PSD) of the BBI series using the FFT or AR Model, which was
denoted as the HRV spectrum of the BCG signal. The HF, the LF and the LF/HF compo-
nents of the HRV spectrum were used as the features to distinguish AF from NAF [58].
Yu et al. used FFT to extract four frequency features of BCG signals, including spectral
entropy, dominant frequency, magnitude and ratio of the dominant frequency [2]. Tadi et al.
applied spectral flux and spectral peaks to identify AF using SCG signals [34]. Among
them, spectral flux was calculated by comparing the power spectrum of one frame with the
power spectrum of the previous frame. Moreover, spectral peaks referred to the amplitudes
of the six largest peaks in the density spectrum, which was estimated by Welch’s PSD.

3.3. Time-Frequency-Domain Features

Biosignals are highly non-stationary in nature, especially in the presence of arrhyth-
mias [17]. Time-frequency-domain features describe the change in frequency over time,
which is beneficial for real-time AF monitoring.

(a) Time-varying PSD/FFT: Time-varying FFT can reduce the edge effect of FFT and
smoothen the spectrum. For AF diagnosis, Hurnanen et al. extracted the spectral entropy
obtained by the time-varying PSD of the rectified SCG segments with the Hamming
window [31–36]. Brüser et al. calculated seven time-frequency features based on the PSD
of BCG signals to distinguish AF from SR, such as skewness and kurtosis [18,57].

(b) Wavelet transform: Wavelet transform (WT) is an ideal tool for time-frequency
analysis and processing, which can inherit and develop the short-time FFT localization
and provide a “time-frequency” window to overcome the limitations of fixed window
size. Yu et al. analyzed the atrial activity by capturing the power distribution profile
using time-invariant stationary WT of BCG signals [2]. Shashikumar et al. extracted the
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wavelet power spectrum of PPG signals to detect AF [45]. Among them, a large ensemble
of surrogate data was generated by Morlet wavelet, and the wavelet power was calculated
using the 95-percentile of the power as the threshold.

3.4. Nonlinear Features

In nonlinear measurements, a signal can be regarded as a complex system. Moreover,
then nonlinear features are commonly used to describe the complexity of the informa-
tion [58]. There are five nonlinear characteristics adopted in AF diagnosis: approximate
entropy (ApEn), turning point ratio (TPR), sample entropy (SamEn), Shannon entropy and
Poincaré plot analysis (PPA).

(a) Approximate Entropy: ApEn is a self-similarity parameter that quantifies the
unpredictability of fluctuations in a time-series [34]. The larger the ApEn is, the more
irregular the signal is. Lahdenoja et al. extracted the ApEn parameter from SCG signals to
diagnose AF [33–36].

(b) Turning–Point Ratios: TPR is a nonparametric statistical approach to determine
the signal’s randomness [34]. Lahdenoja et al. calculated TPR to detect AF by defining the
operator RD representing the total number of consecutive increases and decreases in the
SCG segment [33–36]. Shan et al. calculated the TPR of PPG signals to identify AF, which
is the ratio of the turning point to the total data length. Each beat in the BBI series was
compared to its two nearest neighbors, and a turning point is defined if it is greater or less
than two neighbors [48,59].

(c) Sample Entropy: SamEn is a nonlinear method, which has been widely used to
evaluate the physiological control mechanisms [48]. SamEn is also a modified version of
ApEn, which is considered to assess the complexity or dynamics of physiological time-
series. For AF diagnosis, Shan et al. and Shashikumar et al. severally extracted the SampEn
feature from PPG signals [43,48,53,59].

(d) Shannon entropy: Shannon entropy is a common definition of entropy in in-
formation theory. Shannon’s measure of information is the probability of symbols rep-
resenting the amount of uncertainty or randomness in the data [48]. Shan et al. and
Krivoshei et al. severally calculated the Shannon entropy parameter of PPG signals to
detect AF [43,48,53,59].

(e) Poincaré plot analysis: The Poincaré plot describes the nonlinear dynamics of a
phenomenon that can recognize hidden correlation patterns in a time-series. It consists of a
visual representation of the values of each pair of successive elements in a time-series into
a simplified phase space or Cartesian plane. At successive times, a series of these points
outline a curve, or trajectory, which describes the system’s evolution [60]. For AF diagnosis,
Krivoshei et al. and Shi et al. applied the Poincaré plot to analyze the rhythmic variation of
PPG signals, respectively [40,53].

3.5. Other Features

In addition to the common features mentioned above, some studies defined new
features to characterize AF. For example, Wen et al. converted the original BCG signal
into an energy signal and defined three concepts of “peak”, “burr”, “trough”. Moreover,
then four new data sequences were defined: “peak intervals”, “relative difference of peak
amplitude”, “relative trough”, and “burrs between adjacent peaks”. Finally, the mean
value, variance, skewness, and kurtosis of these four data sequences were calculated as
16 features [16].

To sum up, the feature extraction methods for AF detection using cardiac dynamics
signals are listed in Table 2.
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Table 2. Feature extraction methods for AF detection using cardiac dynamics signal.

Feature Type Features Signal Method

Time-domain

Signal morphology

BCG

Skewness and kurtosis [17]

Skewness, kurtosis, standard deviation, the
difference between the maximum and minimum

values of each segment [18]

Entire BCG segment [20]

SCG

Entire SCG segment [30]

Variance of the difference between maximum and
minimum [24]

Zero-crossing ratio [34]

PPG
Entire PPG segment [47,51]

Kurtosis [43]

Time interval
SCG AO–AO interval [24]

PPG BBI [41,42]

Heart rate

BCG HR from sensor built-in algorithms [22]

SCG

IHR [34,35]

HR from the median of the eight BBI [34]

HR approximation was achieved by computing
short segment autocorrelations [36]

PPG HR from means of the location of each PPG
waveform trough [54]

HRV

SCG

Means of the median absolute difference of the
cardiac cycle durations [31]

RMSSD and the median difference based on the
successive SCG BBI [34]

Root-mean-square of the successive median absolute
difference of SCG BBI and the two higher-order HRV

parameters [33,35]

Median absolute difference of the obtained BBI [36]

BCG Mean, standard deviation of BBI and RMSSD [58]

PPG

Normalized SD and RMSSD [59]

RMSSD, mean, SD [40]

SD, a robust version of SD, and a weighted SD [45]

Avg ∆ SS, SDSS, pNNx, CVSS [46]

SD [43]

RMSSD [44,48,53]

Frequency
domain FFT/PSD

SCG Spectral flux and the spectral peaks [34]

BCG

Spectral entropy, the dominant frequency, and the
magnitude and ratio of the dominant frequency [2]

HF, LF and the LF/HF components [58]

PPG

LF, HF and LF/HF [48,59]

LF, HF and normalized LF/HF [40]

Spectral entropy [43]
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Table 2. Cont.

Feature Type Features Signal Method

Time
frequency
domain

Wavelet
BCG Power distribution profile using time-invariant

stationary WT [2]

PPG The wavelet power spectrum [45]

Time-varying PSD/FFT

SCG Spectral entropy [31–36]

BCG Seven time-frequency features based on PSD, such
as skewness, kurtosis [18,57]

Nonlinear

Approximate entropy
estimate (APEN) SCG

ApEn is a self-similarity parameter that quantifies
the unpredictability of fluctuations in a time-series

[33,35,36]

Turning point ratios (TPR)
SCG Nonparametric statistical approach to determine the

randomness of the signal [33–36]

PPG Ratio of the turning point to total data length [48,59]

Sample entropy (SampEn) PPG
Modified version of ApEn, which is considered to

assess the complexity or dynamics of physiological
time-series [43,45,48,59]

Shannon entropy PPG Common entropy definition in information theory
[43,48,53,59]

Poincaré plot
analysis (PPA) PPG SD1 (axis vertical to the line of identity), SD2 (axis

along the line of identity) [40] and SD1/SD2 [53]

Other New defined BCG Mean value, variance, skewness, and kurtosis of
four new defined data sequences [16]

4. Classifier

Generally, the extracted features or entire segments are fed into classifiers to automati-
cally diagnose various diseases, including binary or multiclass classification problems [35].
AF detection is usually a binary classification problem, which divides the input vectors
into SR or AF. There are three main types of classifiers applied in previous work: machine
learning (ML), deep learning (DL), and statistical classifiers.

4.1. Machine Learning

ML is a type of supervised learning method that tests and trains labeled data [6,61].
Over the past decades, ML classifiers have been broadly and successfully applied to AF
detection for cardiac dynamics signals, including support vector machine (SVM), random
forest (RF), k-nearest neighbor (KNN), naïve Bayes (NB), linear least-squares, k-means
clustering, boosting, linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), bagged trees (BT), and bootstrap-aggregated decision trees. Among them, SVM
and RF were verified as the optimal classifiers, which achieved superior performance in
AF detection.

4.1.1. Support Vector Machine

For binary classification problems, SVMs map the input vectors from low-dimensional
space to high-dimensional space using kernel functions [49]. The purpose is to find the
optimal classification hyperplane, where the maximum margin between two classes is
obtained. SVM obtains the kernel function parameters from the training datasets and uses
them to classify the testing datasets [62].

In terms of PPG signal, Ferranti et al. first trained SVM to detect AF using PPG
signal and used principal component analysis (PCA) and packing methods to reduce the
dimensionality of the dataset [49]. The accuracy and sensitivity reached 90% and 96.67%,
respectively. Moreover, later, Shan et al. proposed a cost-sensitive SVM to address the
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class imbalance problem [59]. The PPG signal was selected to classify patients with AF
and NAF, and the accuracy was improved to 95.7%. Yang et al. used radial basis function
kernel support vector machine (RBF-SVM) to classify PPG signals for AF detection, and the
algorithm performed best in classifying 10 s PPG with an accuracy of 90% [57]. Similarly,
in Shi et al.’s study, RBF-SVM was also used to classify 30 s PPG signals for AF detection,
and finally, the AF detection accuracy improved to 92.56% with a larger amount of data
used [40]. In terms of SCG signals, Lahdenoja et al. compared three ML models to classify
the 10 s SCG segments, and the kernel support vector machine (KSVM) performed best
and achieved an accuracy of 97.4% [33]. Based on Lahdenoja’s work, Iftikhar et al. applied
KSVM and RF to classify the SCG segments from a larger dataset, and KSVM outperformed
RF, with improved specificity and accuracy of 100% and 98.4%, respectively [35]. In terms
of BCG signals, Yu et al. employed three ML models to classify 30 s BCG segments,
and the fine Gaussian SVM model achieved the highest accuracy of 92.2% [2]. In the
study by Wen et al., both KSVM and SVM were used in the experiments [16]. 60 s BCG
segments were applied to identify AF, and the SVM performed the best among the five
tested classifiers and achieved sensitivity, precision, and accuracy of 96.8%, 92.8%, and
94.5%, respectively. Brüser et al. trained an SVM to classify 30 s of BCG signals from
patients with AF. The result obtained 96.2% sensitivity and 91.9% specificity [17].

4.1.2. Random Forest

RF was applied to physiological signal measurements by Breiman back in 2001, which
is usually more efficient and provides more accurate results than the simple decision trees
approach. RF is based on a tree structure constructed following bagging and bootstrap
methods. The dataset is subdivided into several parts by the bootstrap, and then a decision
tree is learned from each part [63].

For AF detection, Eerikäinen et al. used RF with 30 s PPG segments and achieved a
sensitivity of 93.6% and a specificity of 88.2% [43]. Koivisto et al. used the RF classifier
to classify 5 s BCG signals for detecting atrial fibrillation and compared it with the SVM
classifier [22]. RF performed better than SVM, obtaining 100% sensitivity and 93.3%
specificity. Brüser et al. used 30 s BCG segments and evaluated seven popular ML
algorithms. RF achieved the best performance, with Matthews correlation coefficient, mean
sensitivity, and mean specificity of 92.1%, 93.8%, and 98.2%, respectively [18]. Tadi et al.
applied three classifiers to detect AF SCG signals and compared six lengths of segments [34].
The RF classifier based on bootstrap aggregation (bagged) decision tree achieved the best
performance in classifying 10 s SCG segments, yielding results with 97% accuracy.

Moreover, different segment lengths affect the performance of RF classifiers. In the
study by Tadi et al., SCG segments with the length of 10, 20, 30, 40, 50 and 60 s were used
to classify AF patients. The RF classifier achieved the highest classification performance
with 97% and 95% accuracy and specificity with 10 s SCG signal segments, while a slightly
poorer performance was achieved when the segments were 30 s in length, achieving 95%
accuracy and 92.7% specificity [34].

4.1.3. Other ML Models

Moreover, several other ML models have been applied to AF detection, such as KNN,
boosting, and NB.

KNN is a supervised learning method based on the closest training data. In the
classification task, voting is usually used to select the category that appears most in k
samples as the prediction result [64]. Yu et al. presented a “fine” KNN model with a
neighbor number of 1 to classify AF and SR using 30 s BCG signals, and the accuracy
reached 91.94% [2].

Boosting is also a supervised learning model consisting of many weak classifiers to
form an integrated strong classifier. In integration, the weak classifiers are given different
weights according to their classification accuracy, which can reduce the bias in supervised
learning. In recent studies, this model has been extended to many sub-algorithms, such
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as gradient boosting [65], adaBoost (include real adaBoost, gentle adaBoost and modest
adaBoost) [66]. Tadi et al. used a noise-tolerant boosting model, an ensemble of classifi-
cation trees to detect AF. Moreover, the accuracy of this model was 97.6% using 10 s SCG
segments [34].

Naïve Bayes classifier works based on Bayes’ theorem. Prior and conditional probabil-
ities are calculated from the dataset [67]. For continuous variables, a univariate Gaussian
distribution is used to estimate their class-conditional marginal densities. A histogram
is used for discrete attributes. The underlying assumption of this classifier is that predic-
tor attributes are independent; hence, it is called naïve. This simple classifier is popular
considering that it performs well for even small-scale data and can be trained in batches
while having less computational complexity. In the study by Song et al., the naïve Bayesian
classification method was applied to classify AF segments from 18 patients using BCG
signals [58]. Moreover, the results provided a classification precision of 92.3%. In addition,
linear least-squares, k-means clustering, and extreme gradient boosting can also be used
for SCG signals to detect AF [31,32,45].

4.2. Deep Learning

DL is a learning process that uses deep neural networks to solve feature expres-
sions [68]. The aim is to build a neural network that can mimic the thinking and judging
process of the human brain. Compared with traditional ML models, DL requires a large
amount of data for analysis and training to achieve higher accuracy. At present, the main
classifiers based on DL are DCNN, end-to-end learning network and CNN, which have
been applied to classify PPG and BCG signals.

Ming-Zher Poh et al. proposed a deep convolutional neural network model (DCNN)
to detect AF using 17 s PPG segments [51]. This model used features such as peaks, troughs,
and upward and downward slopes and achieved an accuracy of 96.1% and a specificity of
99.0%. This study validated the feasibility of applying a DL system to detect AF from raw
PPG waveforms.

Aliamiri et al. proposed an end-to-end learning network based on wearable devices
to detect AF from PPG signals [47]. 30 s PPG segments were fed to the model directly, and
the accuracy of AF detection was improved to 98.19%.

CNN is a general classifier consisting of a series of convolutional layers, which can
extract features consecutively to improve the compatibility and accuracy of the model.
Shashikumar et al. established a CNN model to identify AF using 30 s PPG segments [45].
The model’s weight was optimized by the root-mean-square prop (RMSProp) algorithm,
and the final accuracy was 91.8%. Jiang et al. presented a new method for detecting AF
based on CNN [20]. The principle was to train the CNN model with 20,000 ECG segments
first and then classified the 2000 BCG segments from 19 subjects with the trained CNN
network using the transfer learning method. The final classification accuracy, sensitivity,
and specificity were 95.8%, 98.3% and 93.3%, respectively. Later, Jiang et al. utilized an
integrated framework with CNN and Bi-LSTM networks based on the attention mechanism
to improve the robustness of AF detection [21]. In this work, the 1D morphology feature
extracted from the Bi-LSTM network and both the 1 s segments and 24 s segments were
selected as input data. Compared with the classical ML classifiers, the performance of the
proposed method was superior with 94.7% accuracy, 93.5% specificity, 95.9% sensitivity,
and 93.7% precision.

4.3. Statistical Analysis

Statistical analysis is the unmasking of patterns and trends in future data by collecting
and interpreting known data, which can be used to collect research interpretation, statistical
modeling, or to design surveys and studies [69]. For AF detection, the Markov model,
logistic regression, and elastic net logistic model are three common statistical classifiers
using PPG signals.
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Markov model is a statistical model, which assumes that the future state depends
only on the current state. Therefore, it is powerful to deal with time-series classification
problems. Bonomi et al. employed a 1st order Markov model to estimate the probability of
arrhythmias in AF induced by BBI derived from 30 s PPG signals [41]. The sensitivity and
specificity were 97 (±2)% and 99 (±3)%, respectively. The results showed that the Markov
model could robustly handle the missing beats in the time interval series. G. Bonomi et al.
proposed an AF detection algorithm that used the Markov model to classify PPG signals
from 20 AF patients [42]. The segment length was set to 60 s, and the accuracy of AF
detection was higher than 96%.

Logistic regression is a common statistical analysis method, which can be used for
both binary and multiclass classification. When carrying out binary classification problems,
logical regression uses the S function to limit the output to two values, 0 and 1. Tang et al.
applied a 30 s PPG signal to classify AF and SR using logistic regression [48]. The area
under the receiver operating characteristic (ROC) curve was 97.3%.

Zou et al. proposed the elastic net, a new regularization and variable selection
method [70]. Real-world data and a simulation study show that the elastic net often
outperforms the lasso while enjoying a similar sparsity of representation. In addition,
elastic net encourages grouping effects, where strongly correlated predictors tend to enter
or exit the model together. The elastic net is particularly useful when the number of
predictors is much bigger than the number of observations. Nemati et al. designed an
elastic net model to detect AF. In this model, 30 s PPG signals were used, and the result
achieved 95% accuracy, 97% sensitivity and 94% specificity [71].

To sum up, classifiers for AF detection using cardiac dynamics signals are listed
in Table 3.

Table 3. Classifier for AF detection using cardiac dynamics signals.

Classifiers Models Signal Dataset Performance Comparison

ML

SVM

BCG

8 h data from 37 subjects [16]
SEN = 96.8%
PRE = 92.8%
ACC = 94.5%

NB, BAT, RF,
DT

7.5 h data from 12 AF patients [2] ACC = 92.2%
SEN = 95.82% BT, KNN

2 h data from 10 AF patients [17] SEN = 96.2%
SP = 91.9% -

SCG

16 AF patients, 23 healthy
individuals [33]

ACC = 97.4%
SP = 100% KSVM, RF

3 min data from 23 healthy
individuals, 40 AF patients [35] ACC = 98.4% RF

PPG

468 AF patients [59]
ROC = 97.1%
SEN = 94.2%
ACC = 95.7%

-

10 min data from 30 AF patients
and 31 healthy individuals [49]

ACC = 90%
SEN = 96.67% -

10 min data from 30 AF patients
and 30 healthy individuals [40]

SEN = 91%
SP = 94.11%

ACC = 92.56%
-

11 AF patients [57] ACC = 90% -

RF

BCG

30 min BCG data from 20 AF
patients and 15 healthy

individuals [22]

SEN = 100%
SP = 93.3% SVM

45 min data from 10 AF
patients [18]

Matthews
correlation

coefficient = 0.921
SEN = 93.8%
SP = 98.2%

LDA, QDA,
SVM, NB,
BoT, BAT

SCG
3 min data from 435 subjects,

including 190 AF patients and 245
healthy individuals [34]

AUC =
0.972~0.983 KSVM

PPG 24 h data from 40 subjects (14 with
AF) [43]

SEN = 93.6%
SP = 88.2% -
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Table 3. Cont.

Classifiers Models Signal Dataset Performance Comparison

ML Others

NB BCG 18 subjects [58] PRE = 92.3%
ACC = 92.30% -

Linear least-squares

SCG

119 min of AF data 126 min of SR
data from 13 patients [31]

TPR = 99.9%
TNR = 96.4% -

K-means clustering 10 min data from 7 AF
patients [32]

SEN = 99.1%
PRE = 100% -

Extreme gradient
boosting

three minutes data from 150 AF
patients and 150 healthy

individuals [36]
AUC = 0.98 LR, RF

K-nearest neighbor PPG 11 AF patients [57] ACC = 90% KSVM

DL

CNN
BCG

8 h data from 19 patients [20]
ACC = 95.8%
SEN = 98.3%
SP = 93.3%

PRE = 93.7%
-

8 h data from AF patients [21]
ACC = 94.7%

SP = 93.5%
SEN = 95.9%
PRE = 93.7%

-

PPG 5 min data from 45 AF patients
and 53 healthy individuals [45]

AUC = 0.95
ACC = 91.8% -

End to end model PPG 19 AF patients [47] ACC = 98.19% -

DCNN PPG 17 s PPG waveforms, 149,048 PPG
waveforms from 3039 subjects [51]

SEN = 95.2%
CI = 88.3%~98.7%

SP = 99.0%
ACC = 96.1%

-

Statistical
analysis

Markov model PPG

16 AF patients and 11 healthy
individuals [41]

SEN = 97 ± 2%
SP = 99%

ACC = 98%
-

24 h data from 20 AF patients [42]
SEN = 97%
SEN = 93%
SP = 100%

ACC > 96%
-

Logic regression PPG 1, 2, and 10 min of data from 666
AF patients [48]

AUC = 97.2%
SEN = 94.0%
ACC = 96.2%

-

Elastic net logistic model PPG
3.5 to 8.5 min data from 15 AF

patients and 31 healthy
individuals [71]

Acc = 95%
Sen = 97%
Sp = 94%

AUC = 99%
-

5. Conclusions

This study sums up the major research on non-invasive AF detection methods based on
cardiac dynamics signals, which are more suitable for long-term unobtrusive cardiovascular
monitoring at home. In the existing studies, BCG, SCG and PPG signals all have shown
good specificity for AF classification, and a series of wearable devices have been designed
to diagnose AF in daily life.

For BCG signals, EMFi or PVDF sensors were designed as cushions or mattresses to
monitor AF in daily life, especially during sleep. Traditional detection methods extract
temporal and frequency features of the preprocessed BCG segments and then apply the
ML classifiers to distinguish AF from NAF. However, the features’ characteristics and
classification performance depend mainly on the signal quality. Therefore, recent studies
have focused on the DL classifiers, which can omit the feature extraction module. The
experimental results demonstrate the superiority of DL methods compared to ML methods.
However, the accuracy of DL methods is influenced by the amount of data contained in the
dataset, which is a challenge for BCG signal processing.

For SCG signals, the MEMS is the main sensor, and smartphones are popular AF
detecting devices, which are convenient and widely used. We can place the smartphone on
the chest to monitor the arrhythmia anytime and anywhere. Due to the acquisition location
close to the heart, the signal quality of SCG is superior to that of BCG. However, BCG is
more suitable for long-term monitoring. The common SCG-based AF detection method also
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extracts the temporal and frequency features of the preprocessed SCG segment and then
applies an ML classifier to distinguish AF from NAF. Hence, far, there is no study on AF
detection with SCG signals using a DL classifier. The balance between the computational
burden of the DL method and the classification performance of the ML method determines
its application in smartphones.

For PPG signals, PD sensors are equipped on wearable devices, such as watches to
monitor cardiac function. Meanwhile, the camera on the smartphone can also provide PPG
signals. Undoubtedly, it is more convenient to collect the signal with the camera, but the
preprocessing method is more complicated. In addition, for the PPG waveform compu-
tationally reconstructed from the camera, the characteristic components contained in the
morphology are weakened, which is usually only effective in extracting HRV parameters
but not for diagnosing specific heart diseases. The classical AF detecting method of PPG
is to recover the PPG waveform, extract the HRV or nonlinear features, and then feed it
into an ML classifier to detect AF. Recently, the DL classifiers and statistical classifiers have
been applied to screen AF using PPG signals. The feature extraction module also could
be omitted. The classification performance is satisfactory, and porting the algorithm to
the mobile phone may become the next task. In addition, it is a challenge to improve the
characterization performance of the reconstructed PPG waveform.

Moreover, there are still some common limitations in the existing studies.
First is the scarcity of raw data sources. Because cardiac dynamics signals are generally

weak and susceptible to perturbations, a slight movement of the subject will affect the
quality of the signal collected, leading to a paucity of labeled data and subjects available.
Furthermore, the elderly account for most AF patients, and relatively few data have been
recorded from normal subjects, resulting in a severe imbalance for data distribution. The
drawbacks constraint the accuracy and generalizability of existing AF detection algorithms.

Moreover, unlike the ECG signal, the morphology of cardiac dynamics signals depends
on different devices and different subjects. Therefore, extracting the universal features from
different cardiac dynamics signals to characterize AF is a key challenge for AF screening
in daily life. Additionally, the waveform mechanism of cardiac dynamics signals is not
thoroughly understood, so all experimental labels rely on synchronized ECG signals,
limiting the detection conditions and the data sources.

As a result, the following studies can be carried out in future work as illustrated
in Figure 5.

Figure 5. Future work.

First, open cardiac dynamics datasets for AF detection are necessary to validate
the performance of the proposed methods. Universal datasets from different devices
will improve the generalizability of AF detection algorithms and facilitate using cardiac
dynamics signal applications in cardiovascular disease diagnosis.
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Second, an increasing number of artificial intelligence approaches will be applied to
extract the characterization parameters automatically and adaptively. Common temporal
and frequency features are not suitable for a wide range of cardiac dynamics signals.
Artificial intelligence approaches, such as DL algorithms, have been successfully used to
optimize AF classification performance. Therefore, with developing artificial intelligence
technology, the detection accuracy will be further improved.

Finally, studying the mechanisms of cardiac dynamics signals will reveal the phys-
iological and dynamic principles of the signal production and transmission processes.
Hence, more precise mathematical models will be further established to analyze cardiac
function and cardiovascular system performance. Furthermore, the personalized AF or
cardiovascular disease monitoring system based on cardiac dynamics signal models would
benefit unobtrusive healthcare at home.
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