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Robertas Damaševičius 3,* , Mazin Abed Mohammed 4 and Karrar Hameed Abdulkareem 5

����������
�������

Citation: Lal, S.; Rehman, S.U.; Shah,

J.H.; Meraj, T.; Rauf, H.T.;
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Abstract: Due to the rapid growth in artificial intelligence (AI) and deep learning (DL) approaches, the
security and robustness of the deployed algorithms need to be guaranteed. The security susceptibility
of the DL algorithms to adversarial examples has been widely acknowledged. The artificially created
examples will lead to different instances negatively identified by the DL models that are humanly
considered benign. Practical application in actual physical scenarios with adversarial threats shows
their features. Thus, adversarial attacks and defense, including machine learning and its reliability,
have drawn growing interest and, in recent years, has been a hot topic of research. We introduce
a framework that provides a defensive model against the adversarial speckle-noise attack, the
adversarial training, and a feature fusion strategy, which preserves the classification with correct
labelling. We evaluate and analyze the adversarial attacks and defenses on the retinal fundus images
for the Diabetic Retinopathy recognition problem, which is considered a state-of-the-art endeavor.
Results obtained on the retinal fundus images, which are prone to adversarial attacks, are 99%
accurate and prove that the proposed defensive model is robust.

Keywords: diabetic retinopathy; adversarial attack; speckle-noise attack; adversarial training; feature
fusion; deep learning

1. Introduction

A rapidly growing computer vision domain leverages advanced innovation with
comprehensive knowledge, while the developed techniques are used for a wide area of
applications such as cancer detection [1–3], facial expression recognition [4], Parkinson’s
disease diagnostics [5,6] and precision agriculture [7,8]. The success of computer vision is
due to its more powerful ability to interpret image patterns than the human cognitive visual
system. For example, artificial intelligence (AI) based image processing has transformed the
field of medical diagnostics in the healthcare domain [9]. Radiomics is an evolving medical
imaging field that utilizes a progression of subjective and quantitative examinations of high-
throughput image highlights to acquire symptomatic, prescient, or prognostic data from
clinical images [10,11]. Image data can take multiple formats, including multi-dimensional
data from a 3D scanner or medical scanning devices. Advanced modalities are computed
tomography (CT), magnetic resonance imaging (MRI), and nuclear/molecular imaging
(which uses biomarkers for in vivo imaging) [12]. Moreover, automated computer vision
methods are relevant for health and in-home medical diagnosis [13–15].
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One such problem successfully addressed by computer vision based diagnostics is the
recognition of Diabetic Retinopathy (DR). DR is a chronic disorder that causes blindness in
individuals if untreated. A high glucose ratio in the blood causes changes in the retinal
microvasculature, resulting in DR, which can lead to a total vision loss. DR is a cause of
visual impairment globally that affects nearly 30% of diabetic patients [16]. Early detection
of DR through retinal fundus images can avoid possible blindness due to disease. Previous
studies have concentrated on the automated early identification of DR by color fundus
photography and have produced spectacular classification results [17–19].

However, the accuracy and robustness of the deep learning model are frequently
plagued by confidentiality of data [20,21]. Minor changes to input images have recently
been shown to significantly alter the output of deep learning models [22]. These minor
disruptions are an example of adversarial attacks (or adversarial perturbations), which
mislead the model, cause it to predict the wrong label, and have drastic consequences for
the performance of deep neural network models [23,24]. These models are vulnerable to
adversarial examples, which pose a threat in real-world application scenarios [25,26].

Adversarial attacks are categorized as white box, black box and grey box attacks [27].
White-Box (WB) attack has both full information and access to the internal system model.
The WB attack can use two iterative methods of the Fast-Gradient Sign Method and the
Deep Fool approach, using a set classifier model to reduce its space for searching, and to
produce a positive response to unseen adversarial data [28]. The attackers do not know the
target model or network, input, and weights in a Black-Box (BB) attack [29]. For BB attacks,
reference [30] generated a GenAttack gradient-free optimization algorithm with fewer
probes while using Mixed National Institute of Standards and Technology (MNIST) [31],
CIFAR-10 [32], and other datasets. Similarly, reference [33] introduced the gradient-based
data augmentation technique and substituted ensemble training, which targeted BB attacks
on the MNIST and GTSRB datasets with accurate results [34]. In machine learning, the
robustness of the adversarial attack detection ability was enhanced by increasing the
model capacity with more adversarial training and improved label leaking accuracy [35].
Contractive auto-encoder (CAE) deep neural networks work as a robust model against
adversarial examples with high accuracy [36].

Some applications of adversarial attacks using pre-trained deep learning (DL) models
in computer vision tasks include, e.g., visual classification [37], textual data system [38],
privacy-preserving filter [39], object detector [40], image segmentation [41], natural lan-
guage processing [42], data fusion [43], hybrid digital watermarking and text document
retrieval [44], fingerprint liveness detection [45], person re-identification [46], time se-
ries classification [47], human activity recognition [48], face recognition [49], handwritten
signature verification [50], and multi-objective reinforcement learning [51].

On the subject of image restoration, noise in an image is crucial. Speckle noise is a type
of granular patterning that can be seen in radar coherent images. The Synthetic Aperture
Radar image and spatial data both include a lot of speckle noise. In general, SN is the gritty
salt-and-pepper pattern seen in radar imaging. It can even be considered a granular ‘noise’
that appears fundamentally in [52] ultrasound, synthetic aperture radar (SAR), active radar,
and optical coherence tomography imaging, reducing their quality. Finally, it degrades the
performance of critical image processing approaches such as detection, segmentation and
classification [4]. A dynamic ultrasound video can be considered three-dimensional (3-D)
images with moving parts. It presents a speckle technique for dynamic ultrasound called
the 3-D Gabor-based anisotropic diffusion, which has two dimensions in the spatial domain
and one in the temporal domain (GAD-3D) [5]. Three test models could be applied to
generate synthetic images: radial polar, uniform grid and radial uniform. These synthetic
images, which imitate the basic noise features of actual ultrasound images, might be useful
for speckle experimentation [53]. Adversarial training is a method of demonstrating and
defining the model as a threat by using examples of adversarial situations. In the training
phase, it’s also essential to generate and then provide adverse examples from a complete
and accurate optimization perspective at least. Whereas this strategy approximates a
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robust loss, which is precisely the goal we want to achieve, it is frequent to have a lot of the
standard loss in the original data points (i.e., gradient measures as well) in that it increases
the ‘task standard’ error’s efficiency slightly. Adversarial examples were first prepared
using methods such as FGSM, I-FGSM, DeepFool and CW, and then used to train the target
model to make it more resilient against an unknown adversarial attack using a diversity
adversarial training approach. This technique reduces average attack success rates by 27.2
and 24.3 percent for various adversarial scenarios, while retaining 98.7 and 91.5 percent
accuracies for the original data of the MNIST and FashionMNIST datasets, respectively [9].
Features represent the object’s numerical value that expresses the local and global function.
The selection of the function features is normally dependent on the problem. Sometimes
there are different results according to each feature. In certain cases, the use of a particular
feature would be no more successful, so that a successful model is created by a mixing
multiple feature. Many people have used different feature fusion techniques because when
we fuse the features they have diverse results regarding the research problem. The mixing
of characteristics from distinct layers or branches, known as feature fusion, is a common
element in current network topologies. This, however, corresponds to iterative attentional
feature fusion. On both the CIFAR-100 and ImageNet datasets, our models outperform
state-of-the-art networks with fewer layers or parameters [10]. FFU-Net (Feature Fusion
U-Net) enhances U-Net from the following characteristic points for diabetic retinopathy
lesion segmentation. To decrease spatial loss of the fundus image, the network’s pooling
layer is first superseded with a convolutional layer. Then, by fusing contextual channel
attention (CCA) models, we combine the multiscale feature fusion (MSFF) block into the
encoders, which also enables the network to learn multiscale features efficiently and to
enhance the data produced [12]. Diabetic retinopathy is a chronic disorder that cannot
be examined properly with normal vision, either aided or unaided, and it is also difficult
to predict its density. For the diagnosis and classification of diabetic retinopathy, the key
problem occurs when different sensitive sections of the eye, such as retina colors, irregular
blood vessels, hard rough exudates, cotton wool spots and different adversarial attacks, are
not detected properly. Much work has been done on DR classification and detection with
high accuracy, but recently the concept of adversarial attacks has arisen. A small disruption
is named an adversarial example/adversarial attack that misleads, with devastating effects,
an informed profound neural network model and decreases its accuracy with respect
to the correct label. Adversarial attacks against DNN are a serious security obstacle
and they decrease accuracy, thus inventing new distance metrics for human perceptual
systems and obtaining optimized results via a greedy algorithm [13]. Recently, most work
done on adversarial attacks in medical imaging [16], such as stabilized medical image
attacks [17], medical image classification [18,19], adversarial learning detecting erroneous
diagnoses [20], adversarial heart attacks [21], segmentation of biomedical images [22]
and defenses, included binary thresholding [23] using an adversarial attack to evaluate
the durability of deep diagnostic models [24] and generative model defense [25] and a
critical analysis of antagonistic threats as well as defense mechanisms in physiological
computing [26]. Therefore, in this paper, we propose a new Speckle Noise (SN) attack using
adversarial image generation, and two defensive methods against these attacks, including
defensive adversarial training and feature fusion. The contribution of this research is
as follows:

• We evaluate and analyze the adversarial attacks and defenses on retinal fundus images,
which is considered a state-of-the-art endeavor.

• We propose a framework that contains a new SN attack, a defensive model against
adversarial attacks, the adversarial training (AT), and a feature fusion strategy, which
preserves the DR classification result with correct labelling.

• We achieve accurate detection of DR from retinal fundus images using the proposed
feature fusion approach.
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The remaining paper’s organisation is as follows: Section 2 overviews related work.
The proposed method is described in Section 3. Results and analysis are given in Section 4.
The research is concluded in Section 5.

2. Related Work

During the last few decades, the medical image processing methods help in the early
and efficient diagnosis of various severe aliments frequently detected in human beings.
Recently, the advanced AI based algorithms have attained great importance with high
accuracy in the classification of medical images and the detection of diseases in the medical
field with productive results. Two-fold detection of DR using morphological procedures
was introduced [54], which detects microaneurysms, exudate, blood vessels and second
severity of its type using Support Vector Machine (SVM), but through adversarial attacks,
their credibility has decreased. Deep radiomics performs well in medical imaging, but
accuracy has deteriorated, and the incorrect label is based on minor disturbances (SP). In
this regard, reference [55] introduced two novel attacks—Bracketed Exposure Fusion (BEF)
and Convolution Bracketed Exposure Fusion (CBEF)—based on component-wise multi-
plicative fusion and element-wise convolutional for the detection of diabetic retinopathy
(DR) by using the Eyepacs Dataset with high-quality images and transferal rates.

Universal perturbations attacks (UPA), which used iterative algorithms for targeted
and non-targeted attacks, were proposed by [56], and achieved 80% accuracy in classifica-
tion. Reference [57] presented two lightweight techniques, which used local perturbation
and universal attacks. The sequential decision method for fixing the image reconstruction
model is implemented using reinforcement learning [58]. The adversarial data augmenta-
tion approach proposed by [59] for medical image segmentation was designed for deep
neural network (DNN) model training induced by a shared type of artifact in magnetic
resonance imaging (MRI).

The adversarial augmentation approach was proposed in [60], which was used to
generalize the model. Project gradient descent (PGD) or adverse synthetic nodule and
adverse perturbation noise work detected the lung by false positive reduction (FPR). For
malignancy prediction of lung nodules, reference [61] introduced an adversarial attack deep
neural network ensemble methodology for classification using FGMS and 1-pixel attack,
achieving 82.27% and 81.43% accuracy. The authors proposed a DL-based encryption
and a decryption network (DLEDNet) [62] using an X-ray image dataset through region
of interest (ROI) segmentation in an encrypted medical image. In medical imaging for
adversarial training, reference [63] developed transfer learning and a self-supervision
based procedure for adversarial training for pneumonia classification of X-ray images and
MRI segmentation using PGD and fast gradient methods. The detailed comparison of
recent related works with their dataset description is presented in Table 1.
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Table 1. Comparison of recent related works with their datasets.

Reference Methodology Dataset Evaluation Measures Results

[54] Morphological operation DiaretDB SVM classifier Mild severity DR detection and
classification

[55]
Bracketed Exposure Fusion (BEF) and
Convolution Bracketed Exposure Fusion
(CBEF) Attacks

Eyepacs Component-wise multiplicative fusion and
element-wise convolutional DR detection

[56] Iterative algorithms for universal
perturbations attacks (UPA) Multiple datasets Classification of targeted and non-targeted

UPA attacks 80% Accuracy

[57] Local perturbation and universal attacks, Cityscapes Noise function and Gradient of pixels Image Segmentation

[58] Reinforcement learning, Markov Decision
Process MRI single-coil knee dataset MSE, NMSE, SSIM and PSNR MRI phase-encoding sampling

[64] Adversarial training by modelling intensity
inhomogeneities

Automated Cardiac Diagnosis Challenge
(ACDC)

Low-shot learning, learning from limited
population

Semantic features for cardiac image
segmentation

[60] Projected gradient descent (PGD), adverse
synthetic nodule and adverse perturbation CT data False positive reduction rate Lung nodule detection and prediction of

lung by false positive reduction (FPR)

[61] Fast Gradient Sign Method (FGSM) and
one-pixel attacks

National Lung Screening Trial (NLST)
dataset Ensemble-based classification Malignancy prediction of lung nodules.

1-pixel attack with 82.27% and 81.43%

[62] Cycle-generative adversarial network
(Cycle-GAN) Chest X-ray data set X-ray dataset through ROI (region of

interest)
Encrypting and decrypting the medical
image through DeepEDN

[63] Self-supervised transfer learning combined
with adversarial training

Chest X-rays, and segmentation of MRI
images.

MRI segmentation using two PGD, and fast
gradient single method

Pneumonia classification of x-ray images
and MRI segmentation

[65] Untargeted vs Targeted Attack, One-Shot vs
Iterative Attack Fashion-MNIST dataset Feature-level interpretation and

model-level interpretation
Defensive graph-based models, causal
models generated

[66] Discrete Wavelet Transform and Discrete
Sine Transform

Object database (validation set of
ImageNet) and face recognition (MBGC) SVM Classifier Defense through which adversarial

perturbation can be neutralized

[67] Dimensionality reduction, a
characterization of the adversarial region, Multiple dataset Combining input discretization with

adversarial training
Activation transformations for the best
and robust defense against these attacks

[68] MagNet with Randomization Adversarial examples (AEs) on a
manifold and normal examples. MagNet DNN classifier 3% higher than simple MagNet.
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Table 1. Cont.

Reference Methodology Dataset Evaluation Measures Results

[69] Hilbert-based Generative pixel CNN
Hilbert-based PixelDefend (HPD) Adversarial examples (AEs) Ensemble of Hilbert curve with different

orientations.
PixelDefend mapping pixels from 2-D to
1-D.

[70] Crafts attacks, Background class image
classification training EMNIST Dataset Weak or small adversarial attacks samples

based

Constructing background images
between the key classes and artificially
expanding the background data

[71] Protrace vectorization algorithms MNIST handwritten digits dataset
In high-dimensional color image space,
simple image tracing may not yield
compact and interpretable elements.

the vector images are
resolution-independent, one could
rasterize them back into much
smaller-sized images.

[72] Obfuscated Gradients, iterative
optimization-based attacks, ICLR 2018 False sensitive security Prevent gradient descent-based attacks)

for perceived robustness

[64] Mary EAD elastic-net attack with L∞ MNIST digits dataset local first-order information, Minimum
distortion

EAD is able to outperform PGD in
transferring in the targeted case.

[73] Fuzzy Unique Image Transformation
(FUIT) Chest x-ray and CT image dataset that downsamples the image pixels into an

interval.
Diagnosis of COVID-19 through DNN
model.

[74] Feature Squeezing MNIST, CIFAR-10, ImageNet Joint detection with multiple squeezers,
adversarial adaptation

Color depth reduction, median
smoothing. non local smoothing

[75] Perceptual hash CIFAR-10 JSMA gradient-based attack, One Pixel
Attack is an evolutionary-based attack

White-box attack success rate 36.3%, and
in black-box attack 72.8%
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Defenses against Adversarial Attacks

Reference [65] proposed defense against two groups: feature-level interpretation and
model-level interpretation, input denoising, and model robustification. Two image trans-
formations, Discrete Wavelet Transform (DWT) and Sine Transform (ST), were presented
by [66] for classifying features with a SVM classifier. Some techniques demonstrated
by [67] included dimensionality reduction, a characterization of the adversarial region,
and combining input discretization with adversarial training. Activation transformations
for the best and most robust defense against these attacks were also considered. Meng
and Chen [68] proposed the MagNet DNN classifier, which performs classification and
reformer networks against adversarial examples (AEs) on the manifold and standard
examples. Another defense method against AEs is Hilbert-based Generative defense in-
troduced by Bai et al. [69], which worked as a pixel CNN on different dimensions and
improved their results more accurately. For weak or small adversarial attacks, for example,
in crafted attacks in DNN background class, a training process works as a defense [70].
Reference [71] introduced pro-trace vectorization algorithms defense against adversarial
attacks on the MNIST digits dataset. The defense obfuscated gradient-based approach [72]
gives false sensitive security and was tested on different nine attacks with accurate results.
Another defense for adversarial attacks on MNIST digits dataset proposed [64] a Mary
EAD elastic-net attack with minimum distortion. Reference [73] suggested that the defense
of the adversarial attack on a fuzzy unique image transformation (FUIT) method used
down-sampling while using a chest X-ray and a CT image dataset for the diagnosis of
COVID19 through a DNN model.

3. Methodology

The proposed methodology performs DR classification using original and perturbed
images, and the accuracy is preserved by including different adversarial attacks, such as
FGSM and SN DF, in which a speckle noise (SN) attack is a novel attack. The presence
of these attacks decreased the model’s credibility and the wrong classification was made.
To overcome this problem, adversarial training and feature fusion were proposed as
two defensive strategies against adversarial attacks. We performed four distinct training
sessions with fine-tuned transfer learning utilizing the Darknet53 model and outcomes in
adversarial training. For robust results, we integrated deep and handcrafted features in
feature fusion. The handcrafted features included HOG, FHOG(Sv) SFTA FST(Tv), LBP,
FLBP(Uv) and FDARK53(xv), which increased the accuracy. All primary steps are shown
in Figure 1 and explained in the subsections below.

Figure 1. Block diagram of the proposed system.
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In this proposed defense model block diagram, we used both the original and per-
turbed images dataset prepared by using a data augment technique and then resizing the
data images into 224× 224× 3. Perturbed images generated through FGSM and SN/MN
and DEEP FOOL attacks were applied to the dataset and three types of perturbed im-
ages were generated. Adversarial attacks decreased the accuracy with abrupt changes
and misclassified the model. To overcome this problem, we proposed the feature fusion
defense, in which we combined the deep features using Drknet53 features extracted by
applying fine-tuned transfer learning In the proposed model, we use conventional ex-
traction methods of LBP, HOG, and SFTA, which extract robust, immutable features to
image, translate and display. These attributes are based on appearance and composition,
an essential component in defining the characteristics of the images of an individual’s eyes.
This feature fusion works as a robust model against these adversaries, which fooled our
network and maintained accuracy with high precision.

3.1. Data Augmentation and Pre Processing

A dataset with 1000 instances from Kaggle has been taken with three diabetic retinopa-
thy classes: DR1, DR2, and DR3 fundus images with minor, moderate and severe conditions.
We used a data augmentation approach that involved flipping and flopping at various
rotations to construct a new dataset with 6497 images. Regional resolution is the low-
est in the retinal images. Since the original dataset images are 2592 × 1728 too large
and complicated to be processed further for this dimension, the time spent in the RGB
(red/green/blue) channel to produce adversary attacks is reduced, and the images are
resized to 224× 224× 3.

3.2. Transfer Learning

Fine-tuned transfer learning is applied; it involves using the features learnt from one
issue and a new related concern. The fine-tuning of the DarkNet-53 [76] model involves
unfreezing the whole or part of these model structures and re-training it with a meagre
learning rate on the new results. This could lead to significant changes by adapting
the pre-trained functionality to the new data gradually. Fine-tuning is an interesting
activity that entails unfreezing the entire model (or a section of it) and retraining it on
new data with a very modest learning rate. By incrementally modifying the pretrained
features to the new data, this has the capability for considerable improvements. Using a
fully convolutional neural network, a multi-source adversarial transfer learning approach
enables the development of a feature representation glucose prediction for diabetic persons.
The evaluation is carried out by examining several transfer scenarios using three datasets
with considerable inter and intra variation [29]. COVID-19 is diagnosed using Distant
Domain Transfer Learning (DDTL) [30]. COVID-19 detection used fine-tuned convolutional
neural networks and confined in chest X-ray images [31]. We used fine-tuned transfer
learning in our proposed work, which creates a basic model and loads pre-trained weights
into it. The FC layer was removed from DarkNet53 and was replaced with the ’new
classoutput’ layer. Some convolutions layers were frozen. Various parameters and loss
functions were optimized. It was run with a new dataset and the output of one (or more)
layers was recorded from the basic model. Feature extraction is the term for this process,
using the output as the basis for a new, more compact model.

3.3. Perturbed /Adversarial Image Generation

Many Deep Neural Network (DNN) adversaries have recently been revealed as
the source of defects. In addition to the research entry, these disruptions are small and
unnoticeable to humans, but the output of the network becomes unpredictable.
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3.3.1. Fast Gradient Sign Method (FGSM) Attack Image Generation

The attack changes the entry data to optimize the loss based on the same back-
propagated gradients rather than mitigating loss. In other terms, the attack uses the
malfunction gradient to change the data to increase the loss [77]. FGSM is based on
the standard networks’ principle implementing the gradient descent to set a minimum
loss point. We can maximize the loss by only adding a small perturbation in the case of
following the sign of gradient descent, described as:

Iprt = I+ ∈ ∗ ∆
(
∂y l(I, Ztl

)
, (1)

where I is an original image Iprt is adversarial image, ∈ is a multiplier to guarantee the
perturbations are minor, ∂ are model parameters, l is the classification loss function and
Ztl is a true label for original input I. Examples of the FGSM attacked images, which
mislead the model, are presented in Figure 2.

Figure 2. Addition of FGSM Attacks. The first row shows the original images, while the second row
represents the FGSM attacked images that mislead the model.

3.3.2. Speckle Noise (SN) Attack Image Generation

Frequently known as multiplicative noise or speckle noise (MN/SN), multiplicative
noise is less frequent than additive white Gaussian noise (AWGN). However, it is widely
used in incoherent image acquisition, including radar and synthetic sonar depth of field,
and primarily for medical imaging, using ultrasound and laser imaging techniques. The
systematic interference of waves reflected from several primitive scatterers causes speckle to
appear in synthetic aperture radar images. This generates pixel-to-pixel intensity variance,
which appears as granular noise in SAR images [4]. Because of the system’s function, noise
is more complex and challenging to cope with:

1. Each pixel of the original image is composed of noise components.
2. The noise of speckle is not usually distributed and similar to the Rayleigh and Gamma

distributions described below:

S = (I + n× I), (2)

where n is random noise with a mean of 0 and variance of s is uniformly distributed, s
is set to 0.50 by default. The value of s might be anywhere between 0 and 1. The mean
and variance parameters for the gaussian’, ssian’, 0.50 by localvar’ noise types are always
supplied as if the image were of class double in the range, with 0 indicating no noise and 1
indicating a completely noisy image (0, 1).
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The medical images are significantly degraded because of these images:

1. Noise is unavoidable in the process of data acquisition.
2. Low contrast due to the variations of lighting and a variety of other causes.
3. Random pixel values for individual pixels of an image can be created by multiplying

speckle-noise.

The addition of SN attacks is given in Figure 3.

Figure 3. Addition of FGSM attacks. The first row shows the original images, while the second row
represents the SN attacked images.

3.3.3. Deep Fool Attack Generation

Deep Fool (DF) is an opposing attack aimed at taking an example of the closest
boundary. In contrast to rough extrapolations of an optimal distributive vector generated
by FGSM, according to the authors, this method produced a subtle disturbance. The DF
attack uses one loss gradient in l ( f (k) and y) as follows [78].

∆(I; b ) =: minc‖c‖subjecttob (I + c) 6= b (I). (3)

Here, I is an original image, b is estimated label, c is minimal perturbation.
Deep-Fool describes optimization for a two-class problem as follows. Deep-Fool can

have a simple solution for multi-class problems if the classifier is one-vs-all. Here, we
mean the classification system of one-vs-all, taking into account two-class concerns, where
n are the number of classes which are also the number of discrimination-related functions.
However, the one-vs-all method does not apply to a linear machine because one-vs-all
essentially manages a series of separating hyperplanes while one-vs-all does not apply.
In contrast to rough extrapolations of optimal distributive vector generated by FGSM,
according to the authors this method produced stubble disturbance.

The addition of DF attacks is given in Figure 4.



Sensors 2021, 21, 3922 11 of 21

Figure 4. Addition of DF attacks. The first row shows the original images, while the second row
indicates the DF attacked images.

3.4. Proposed Defense against Adversarial Attacks
3.4.1. Adversarial Training (AT)

In the proposed defense method, we have done four adversarial training (AT) on a
dataset. In the first training session, we take half of the original data and half of our FGSM
adversarial images of three classes: DR1, DR2, DR3, and trained a new prepared dataset
from scratch using deep network DarkNet-53 model through fine-tuning and transfer
learning. The proposed model extracted the features and made predictions, which were
further checked through testing. The testing is performed on the newly trained dataset
using original and perturbed images. The accuracy measure increases when the testing
is performed on originally trained data in the second adversarial training. In the second
adversarial training, two parts of the dataset, images, were included in which half of
images of the original dataset and half of speckle-noise (SN) attacks images data set of
every class included DR1, DR2, and DR3. In the third training, images were included in
which half of images of the original dataset and half of Deepfool (DF) attacks images data
set of every class included DR1, DR2, and DR3.

We equally divided the whole data into four parts in this training in which original,
the FGSM, SN, DF attacked images were included according to each class data images DR1,
DR2, and DR3. This defense is more robust than the first one, because in this training, more
data is given, and classifier learns to work best, and model fooling chances are less when
compared to the first one. Through the testing process, we check can the defensive model
accuracy and robustness.

1. Training 1: original + FGSM attacks images (AT1)
2. Training 2: original + SN attacks images (AT2)
3. Training 3: original + DF attacks images (AT3)
4. Training 4 : original + FGSM + DF images (MAT)

Adversarial training architecture of all types of data sets is given in Figure 5 [34,35,52].
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Figure 5. Illustration of the adversarial training process.

3.4.2. Feature Extraction and Feature Fusion Defense

In the proposed method, we use conventional extraction methods of Local Binary
Pattern (LBP) [79], Histogram Oriented Gradient (HOG) [80], and Segmentation Based
Fractal Texture Analysis (SFTA) [81], which extract robust, immutable features to image,
translate, and display. These attributes are based on appearance and composition, which are
essential components in defining the characteristics of the images of an individual’s eyes.

3.4.3. Local Binary Pattern (LBP)

LBP is a primary but very effective method that labels the image pixels by threshing
every pixel region and takes the output as a binary number. LBPs is a part of the computer
vision classification visual descriptor. The LBP descriptor by its specifications, represents
the input image. For capturing images such as boundaries, spots, and flat regions used it.
Feature vector F_LBP is calculated as:

LBP(x, y) =
P−1

∑
P=0

t
(

gnp − gcp
)
2P (4)

where gnp is the intensity of neighboring pixel, and gcp is the intensity of the central pixel
t(x), which can be defined as:

t(x) =
{

1 i f x > 0
0 i f x < 0

. (5)

3.4.4. Histogram Oriented Gradient (HOG)

The strategy calculates gradient orientation instances in the located sections of an
image. This approach is close to that of histograms of edge orientations, scale-invariant
descriptors, and shape contexts, but differs in that this method is measured on a dense
grid of continuously adjacent cells using local contrast normalization, which overlap for
enhanced precision. The number of pixels is specified for each cell, and the histogram of
the gradients is then computed for each cell. The Laplacian and Sobel operator give u the
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direction of HOG. The gradient of f is given as a column vector for a function f (x, y) at the
coordinates (x, y):

∇ f =

[
Gx
Gy

]
=

[
∂ f
∂x
∂ f
∂y

]
(6)

The magnitude of this vector is given by:

∇ f = mag(∇ f ) (7)

f (x, y) = tan−1( fy(x, y)/ fx(x, y)
)
. (8)

Feature vector FHOG is calculated through it.

3.4.5. Segmentation Based Fractal Texture Analysis (SFTA)

SFTA is an active texture-based extraction method. It gives a set of reliable features of
an individual not overemphasised by scaling, rotation, and translation complications. The
SFTA characteristics are immune to the “noise” effects of the image. Feature vector FST is
calculated through it. The SFTA functionality is sensitive to the image impact of “noise” SFTA
transforms an image of an individual into a binary as an input (referred to below equations):

ibny(k, l) = 1 i f rlw < i(k, l) ≤ rup 0 , otherwise (9)

where ibny(k, l) is a resulting binary image, an input image is denoted by i (k, l) and rlw
and rup upper and lower threshold values. SFTA utilizes a threshold value by multimodal
Otsu algorithm [82]. SFTA then calculates the binary fractal calculation border area.

∇(k, l) = 1 i f ∃
(
k′, l′

)
εN8[(k, l) ] (10)

lb
(
k′, l′

)
= 0

lb(k, l) = 1, 0, otherwise

where ∆(k, l) is consequential boundary image, lb(k, l) is a binary image and N[(k, l)]
connected pixel value ∆(k, l) has value 1, if the corresponding lb(k, l) has value 1, and
otherwise 0. SFTA generates an invariant image vector for scaling, rotation, or translation.

3.5. Deep Feature Extraction

The DarkNet-53 network model contains 53 layers, including input and output lay-
ers. Transfer learning is used through DarkNet-53. There are 184 layers in DarkNet-53,
including one input layer, 53 convolutions layers, 53 Batch Normalization (BN) layers,
52 Leaky ReLU, 23 Addition, 1 Global Average pooling layer, and 1 classification output
softmax layer. The image size of the input of a network is 256× 256. The detector module
consists of several Conv layers clustered in blocks, up-sampling layers, and three Conv
layers, which are linearly activated and allow detections at three different scales. There is
no max-pooling layer present in DarkNet-53. Instead, it uses BN and leaky RELU layers for
every convolution step.For deep features extraction using DNN, we used trained Darknet53
from starch to classify the different stages of diabetic retinopathy which included DR1,
DR2, and DR3.Darknet53 is used in image processing many tasks included object detection,
real-time object detection YOLO, image classification, segmentation, model compression,
fruit classification [52] etc. In medical imaging darknet53 used for detection of covid-19 [34]
computed aided covid-19 detection [36] for MRI scan brain tumor data augmentation [35]
YOLO V3 has been used to identify red lesions in retinal fundus images [37]. smart medical
autonomous distributed system for diagnosis [38], melanoma detection [39].

Feature Fusion (FF)

We have fused the hand-crafted features with deep features to obtain a single vector.
A serial feature fusion approach is used in the proposed method. The feature vector
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obtained is more efficient, since it includes additional information than these, which we
obtain by using a single extractor procedure.

Three function vectors like the HOG, SFTA, and LBP are allowed by the suggested
method FHOG(Sv) , FST(Tv), FLBP(Uv) deep characteristic allows for the DarkNet-53
FDARK53(xv). I × J is the dimensions of it. The classification os performed using the
following equation:

Fi∗j=(Sv + Tv + Uv + FDarknet53). (11)

4. Results and Discussion

In this section, the experimental results are presented. Table 2 shows the experimental
results obtained on the attacks’ images, three different attacked images, fast gradient
sign method (FGSM) attack images, speckle noise (SN) attack images, and deep fool (DF)
attacked images. The unexpected changes in accuracy results occur in this part of the
experimentation.

Table 2. Testing of Original Training Network with Attack Images

Original Class
Label Attacks Applied Predicted Label

After Attack
Accuracy with
Class DR1 (%)

Accuracy with
class DR2 (%)

Accuracy with
Class DR3 (%)

DR1 FGSM DR2 0 93.01 6.99
DR2 FGSM DR1 81.71 0 18.29
DR3 FGSM DR2 0 91.09 8.91
DR1 SN DR2 12.27 87.98 0
DR2 SN DR3 10.09 10.82 79.09
DR3 SN DR1 89.82 10.18 0
DR1 DF DR2 0 100 0
DR2 DF DR1 82 17.59 0.41
DR3 DF DR2 0 99.75 0.41

Table 2 shows abrupt changes in the prediction, when testing the attacked images
with the originally trained network; they wrongly predicted their classes with maximum
accuracy all wrongly predicted values highlighted in this tables, which shows wrong
labels of each class. When FGSM attacked images of class DR1 were tested, it predicted
as belonging to class DR2 with 93.01% accuracy, while they are from class DR1 same as
for other classes of DR, class DR3 attacked images were misclassified. When speckle-noise
attacked images of class DR2 were tested, they are categorised as class DR3 with 79.09%.
The other two classes images wrongly predicted with a high precision rate due to a speckle-
noise attack. For DF, when class DR3 image was tested, it was predicted into class DR2
with 99.75% accuracy, while DR1, DR2 classes images were also wrongly labelled.

Table 3 shows the testing accuracy of FGSM attack Dataset images, SN attack images,
and DF attack images (Adversarial Training AT1). In the first training session, we take a
half of the original data and a half of our FGSM adversarial images of three classes: DR1,
DR2, DR3, and trained a new dataset from scratch using DarkNet-53 through fine-tuning
transfer learning. The model extracted the features and made predictions which checked
through testing. When testing performed on this newly trained network using original and
perturbed images, the accuracy measure increase compared to already testing performed
on the trained network initially.
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Table 3. Testing of Adversarial Training AT1 Network with Attack Images.

Original Class
Label Attacks Applied Predicted Label

After Attack
Accuracy with
Class DR1 (%)

Accuracy with
Class DR2 (%)

Accuracy with
Class DR3 (%)

DR1 FGSM DR1 88.86 0 11.14
DR2 FGSM DR2 20 72.07 7.93
DR3 FGSM DR3 10.01 8.94 81.05
DR1 SN DR2 40 57.23 2.77
DR2 SN DR1 70 0 30
DR3 SN DR3 0 0 40
DR1 DF DR3 0 40.97 58.50
DR2 DF DR1 89.79 0.21 10.0
DR3 DF DR3 0 35.32 64.51

When the adversarial training AT1 network is tested through the FGSM attack images,
the results are presented in Table 2, in which the FGSM attacked image was misclassified
through maximum 93.01% is classified into DR2 class after this training correctly labelled
with 88.86% in DR1 class, and 0% chance that it belongs to DR2 class same as in the other
class images. In the SN and DF attacked images, some images were correctly labelled with
40% and 64.51% accuracy.

Table 4 shows the testing accuracy of the FGSM attacks dataset images, SN attacks
images, and DF attacks images with Adversarial Training AT2. In the second adversarial
training, two parts of the dataset, images were included in which a half of images of
the original dataset and half of the speckle noise (SN) attacks images data set of every
class included DR1, DR2, and DR3 classes, and network trained using fine-tuned transfer
learning and testing performed results are shown in Table 4.

Table 4. Testing of Adversarial Training AT2 Network with Attack Images.

Original Class
Label Attacks Applied Predicted Label

After Attack
Accuracy with
Class DR1 (%)

Accuracy with
Class DR2 (%)

Accuracy with
Class DR3 (%)

DR1 FGSM DR3 2.71 20.3 76.98
DR2 FGSM DR2 0 62.37 37.26
DR3 FGSM DR1 81.34 4.7 13.96
DR1 SN DR1 98.02 1.98 0
DR2 SN DR2 0.02 88.66 11.32
DR3 SN DR3 0 5.98 94.07
DR1 DF DR2 14.62 71.8 13.58
DR2 DF DR3 0 10.15 89.95
DR3 DF DR1 82.75 1.8 15.45

When adversarial training AT2 network was tested through attack images, the detected
anomaly resolved all the SN attacked images classified with high 98.02%, 88.66%, 94.07%
accuracy and the other two attacked images are also correctly classified.

Table 5 showed testing accuracy of FGSM attacks images, SN attack images, and DF
attack images with Adversarial Training AT3. In the third training, images were included
in which a half of images of the original dataset and a half of Deep-fool (DF) attacks image
data set of every class included DR1, DR2, and DR3 classes. The network trained using
fine-tuned transfer learning and testing performed on all types of attacked images and the
result is shown in Table 5.
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Table 5. Testing of Adversarial Training AT3 Network with Attack Images.

Original Class
Label Attacks Applied Predicted Label

After Attack
Accuracy with
Class DR1 (%)

Accuracy with
Class DR2 (%)

Accuracy with
Class DR3 (%)

DR1 FGSM DR1 68.05 20.97 20.09
DR2 FGSM DR3 29.91 10.91 50.09
DR3 FGSM DR3 3.90 35.32 74.51
DR1 SN DR3 39.91 0 60.09
DR2 SN DR2 9.87 90.02 0.01
DR3 SN DR3 0 45.32 54.51
DR1 DF DR1 82.97 17.02 0
DR2 DF DR2 0.04 99.96 0
DR3 DF DR3 0 0 100

When adversarial training AT3 network tested through attack images, the anomaly
present in the previous tables was resolved. Most of the FGSM and SN attacked images
were correctly labeled with a maximum accuracy, and all the DF attacked images were
correctly classified with 82.97%, 99.96%, and 100% accuracy.

Table 6 shows the testing accuracy of the FGSM attack dataset images, SN attack
images, and DF attack images with Mixed Adversarial Training (MAT). We equally divided
the whole data into four parts in which the original FGSM, SN, and DF attacked images
were included according to each class of images DR1, DR2, and DR3. This defense is
more robust than the previous scenarios, because more data is given in this training, and
classifier learns to work best, and model fooling chances are less. Through the testing
process, we check the accuracy and robustness of the defensive model.

Table 6. Testing of Mixed Adversarial Training MAT Network with Attack Images.

Original Class
Label Attacks Applied Predicted Label

After Attack
Accuracy with
Class DR1 (%)

Accuracy with
Class DR2 (%)

Accuracy with
Class DR3 (%)

DR1 FGSM DR1 99.83 0.11 0
DR2 FGSM DR2 23.52 74.94 1.54
DR3 FGSM DR3 2.89 0.02 97.09
DR1 SN DR1 94.46 4.83 0.71
DR2 SN DR2 0 99 1
DR3 SN DR3 17.9 0 82.09
DR1 DF DR1 96.51 0 3.29
DR2 DF DR2 0 100 0
DR3 DF DR3 0 0.01 99.99

Through mixed adversarial training (MAT), the results of MAT were obtained in
which the majority or attacked images were correctly classified with high accuracy and
precision, and the trained model became most robust. To incorporate and deal with the
adversarial attacks, we performed the adversarial training on mixed data, and the testing
results revealed that almost half of the labels were predicted correctly. Moreover, we also
used the original, FGSM, SN, and DF datasets for adversarial training, which performs
efficiently and labels the majority of the labels correctly. The summary of the defensive
proposed model is presented in Table 7.
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Table 7. Summary of proposed defense model.

Training Dataset Testing Dataset Correct Label Prediction %

Original Dataset Original dataset 100%
Original Dataset FGSM Attacked Dataset 0%
Original Dataset SN Attacked Dataset 10%
Original Dataset DF Attacked Dataset 0%

Adversarial Training (AT1) Original+ FGSM 62%
Adversarial Training (AT2) Original+SN 52%
Adversarial Training (AT3) Original+DF 66%

Adversarial Training (Mixed Data MAT) Original+FGSM+SN+DF 92%

Feature Extraction and Feature Fusion Defense

A serial feature fusion approach is used in the proposed method. Three function vec-
tors from HOG, SFTA, and LBP methods are allowed by the suggested method FHOG(Sv),
FST(Tv), FLBP(Uv) deep characteristic allows for the DarkNet-53 FDARK53(xv). I × J is the
dimensions of it. Our proposed feature fusion method achieved robust results on adversary
images and classified correctly. The results obtained using feature fusion approaches are
given in Tables 8 and 9. Furthermore, the ROC curve and fusion scatter plots for the
proposed method are visualized in Figure 6.

Table 8. Accuracy obtained using feature fusion approaches on different models.

Model SVM KNN (Cubic) Ensemble

DarkNet-53 80.9% 79.6% 90.3%
HOG+SFTA+LBP 82.3% 84.1% 85.5%
Proposed Model 99.9% 99.5% 99.9%

Figure 6. ROC curve (left) and fusion scatter plot (right) .

Table 9. Results obtained using feature fusion approaches on different target classes.

Class No of
Instances Accuracy (%) Precision Recall F1-Score

DR1 2543 99.94 1.0 1.0 1.0
DR2 2509 99.95 1.0 1.0 1.0
DR3 1591 99.98 1.0 1.0 1.0
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5. Conclusions

The attacks against artificial intelligence models can decrease model performance.
We have proposed an adversarial training based defense against adverse disruptions in
order to address this problem. The method improvement includes not simply an advanced
understanding of image processing techniques, but also needs essential medical input,
including expert knowledge related to diabetic retinopathy and its screening procedure, in
addition to the eye fundus photography process.

To mitigate the impact of adversarial attacks, we have executed different kinds of
adversarial training, through which the adverse effect is reduced, and with which the
model cannot become fooled when compared to existing models. Results obtained are 92%
correct and prove that the proposed defensive model is robust. Another defense model
based on feature fusion was also proposed for adversarial attacks, in which deep and
handcrafted features were fused, including the DarkNet-53 deep features and LBP, HOG,
SFTA features, and the accuracy was increased by 99.9%.
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