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Recent advances in sensor technology have allowed us to develop many interest-
ing applications and enhance the quality of human life. In particular, imaging sensors
have been regarded as critical elements in achieving high-level imaging methods such as
laser-based imaging, ultrasound imaging, and X-ray imaging, as well as non-destructive
inspection imaging, contributing to high sensitivity, real-time display, and compact imple-
mentation. These cutting-edge sensing technologies are a crucial player in the biomedical
and industrial fields.

The purpose of this Special Issue is to cover some of the recent developments in
imaging sensors and their applications. The Special Issue has been co-organized by Prof.
Changho Lee, Department of Nuclear Medicine, Chonnam National University Medical
School, Korea, and Prof. Changhan Yoon, Biomedical Engineering, Inje University, Korea.
In this Special Issue, 17 original papers and two review papers have been published [1–19].
Most of the papers (15 papers) are in the field of biomedical engineering and four papers
are related to the field of industrial applications.

Photoacoustic imaging is an emerging technology that combines optical contrast and
ultrasonic resolution. This technology allows us to visualize functional information deep
inside the body with high spatial resolution, which was not possible with a pure optical
imaging modality. To further increase the depth-of-field, T. P Nguyen et al. proposed
a multifocal point transducer for photoacoustic microscopy [1]. This work fabricated
the multifocal point transducer with seven focal points by separated spherically focused
surfaces. J. Jang et al. presented a transrectal ultrasound and photoacoustic probe for
prostate cancer detection [2]. The goal of this work was to develop a transrectal hybrid
probe, of which the size is similar to that of the currently used transrectal ultrasound
transducer. T. T. Mai et al. performed a pilot study to monitor peripheral vascular dynamic
to investigate the side effects of carfilzomib using quantitative photoacoustic imaging [3].
Additionally, new tracking and visualization using fast photoacoustic microscopy have
been proposed to perform the safe and accurate navigation of balloon catheters for arterial
stenosis dilatation, coronary artery disease, and gastrointestinal tracking applications [4].
R. Manwar et al. proposed the photoacoustic imaging approach to estimate the maximum
thickness of the skull [5].

Many research papers have been published in the field of conventional medical imag-
ing. High-resolution imaging techniques based on synthetic aperture and plane wave
have been proposed for ophthalmic and abdominal applications and their performances
were evaluated through ex vivo and in vivo studies [6,7]. C. Z.-H. Ma et al. proposed a
new protocol of measuring bilateral back muscle stiffness along the thoracic and lumbar
spine with ultrasound imaging [8]. In this work, they ascertained that ultrasound shear-
wave elastography and a tissue ultrasound palpation system produced reliable results
for measuring back muscle stiffness. K. Kim et al. introduced an advanced bandwidth
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expander circuit composed of unique switching designs to support a wide range of the
transducer with a single ultrasound imaging system [9]. In addition, two comprehensive
review papers have been published in this Special Issue. One is about the recent develop-
ment of super-resolution ultrasound imaging and another is about the limitation of clinical
elastography diagnosis [10,11].

J. Kang et al. proposed a brain tumor classification method based on a combination of
deep features and machine learning classifiers [12]. In this work, they tried to adopt the
theory of transfer learning and utilized various pre-trained deep learning algorithms to
acquire crucial deep features of brain magnetic resonance imaging data. For the remote
sharing economy, two-photon laser scanning microscopy based on the internet of things
was proposed as a remote research equipment sharing system [13]. Using the internet of
things modules, they developed a web service system where data are transmitted to and
received from remote users and installed in the two-photon laser scanning microscopy.
S. A. Saleah et al. presented a new quad-scanner-based optical coherence tomography for
visualizing the full-directional volumetric structure [14]. H. Wu et al. proposed a new
approach for measuring the adjustable volumetric frequency and phase information of the
human chest and abdomen surface regardless of motion artifacts [15].

For industrial applications, J. Lee et al. proposed a novel around view monitoring
calibration method to avoid conventional exhaustive procedures which includes accurate
positioning and estimating the calibration boards surrounding the vehicle [16]. This method
only requires four pieces of random calibration information based on the correct position
of individual calibrating boards. G. Lefever et al. investigated the effectiveness of elastic
waves for a non-destructive testing method of cementitious samples and revealed their
composites of the inner structure at the microscale [17]. K. A. Tiwari et al. presented a new
analysis method of wave patterns from the macro-fiber composite transducer to overcome
the limitation of accuracy issue of the previous analytical model [18]. They confirmed that
the proposed model enhanced the analytical modeling for directivity pattern estimation. A
multi-wavelength fluorescence LiDAR system was proposed for vegetation monitoring
in forestry and agricultural applications [19]. The authors extended the system to the
multi-channel fluorescence detection of laser-induced fluorescence based on the LiDAR
scanning and ranging mechanism.
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