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Abstract: Localization is fundamental to enable the use of autonomous mobile robots. In this work,
we use magnetic-based localization. As Earth’s geomagnetic field is stable in time and is not affected
by nonmagnetic materials, such as a large number of people in the robot’s surroundings, magnetic-
based localization is ideal for service robotics in supermarkets, hotels, etc. A common approach for
magnetic-based localization is to first create a magnetic map of the environment where the robot
will be deployed. For this, magnetic samples acquired a priori are used. To generate this map, the
collected data is interpolated by training a Gaussian Process Regression model. Gaussian processes
are nonparametric, data-drive models, where the most important design choice is the selection of an
adequate kernel function. These models are flexible and generate mean predictions as well as the
confidence of those predictions, making them ideal for their use in probabilistic approaches. However,
their computational and memory cost scales poorly when large datasets are used for training, making
their use in large-scale environments challenging. The purpose of this study is to: (i) enable magnetic-
based localization on large-scale environments by using a sparse representation of Gaussian processes,
(ii) test the effect of several kernel functions on robot localization, and (iii) evaluate the accuracy of
the approach experimentally on different large-scale environments.

Keywords: machine learning; Gaussian processes; autonomous mobile robots; robust navigation;
mapping; localization

1. Introduction

The new coronavirus, which caused a pandemic that raged around the world in 2020,
has made us change the way we have always lived. It is recommended that face-to-face
conversations and meetings are avoided, and travel by public transportation now poses a
risk of viral infection. Common practice has changed, and technological innovations have
become key to enable us to cope with this new reality. In particular, robotic research has
enabled robots to be used in a wide variety of applications, such as delivery and customer
service [1,2]. It is expected that in the near future autonomous mobile robots will replace
human labor, providing services such as transportation and security in indoor public
spaces. This lowers the risks of contagion of workers, e.g., security guards, by lowering the
chances of contact with customers in commercial facilities [3,4] and can make it possible to
use autonomous mobile robots to supplement the labor force after COVID-19, making the
development of real applications using autonomous mobile robots appealing due to the
plethora of benefits it can bring to society.

To perform navigation, it is necessary to develop technologies such as mapping, local-
ization, and path planning [5]. In this work, we focus on accurate and reliable localization
in large-scale real environments for stable navigation.

Several sensors can be used for robot localization, such as Global Positioning System
(GPS) [6,7], 2D and 3D laser rangefinders [8,9], monocular and RGB-D cameras [10,11],
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wireless signals [12,13], and magnetic sensors [14]. For indoor localization in particular,
a notable exception is the use of GPS, as radio waves from satellites are often blocked,
making localization impossible [15].

Laser rangefinders and cameras compare acquired information (range or features
extracted from images) to a previously built map of the environment. Approaches using
these sensors are typically very accurate; however, in crowded indoor public spaces such as
supermarkets, people become dynamic obstacles that constantly occlude sensor readings,
making localization accuracy deteriorate [16,17].

Wireless signals and magnetic data can also be used for robot localization by matching
observed sensor data to a previously made strength map. These techniques are collectively
referred to as fingerprinting, scene analysis, or profiling techniques. In the case of wireless
signal strength, this is typically a map of received signal strength information (RSSI) [13]
or channel state information (CSI) [18]; while for magnetic data it is magnetic strength in a
given axis [19] or magnetic angle [20].

For fingerprinting, sensor samples are first collected at known locations of the environ-
ment. These locations can be generated using other sensors, such as laser rangefinders [21]
when there are no or few people in the environment, or map generation and localization can
be done simultaneously by (Simultaneous Localization and Mapping (SLAM) [22,23]. These
data points are collected onto a training dataset that is used to predict the location of new
measurements by either matching new observed sensor data to the most similar samples on
the training dataset, becoming a classification problem, or by generalizing these points by
learning continuos or grid-map of the environment, making it a regression problem.

Previous works using classification techniques include the usage of k-Nearest Neigh-
bors [24,25], support vector machines [26,27], random forests [28], among others. While
works using regression techniques include linear interpolation in graphs [29], smoothing
functions [30], Gaussian Processes Regression (GPR) [12,31], among others.

Wireless signal strength, especially on the 2.4 GHz bandwidth, does not allow for
precise localization (even considering multiple sources and proper data fusion, accuracy
is around 1 m on indoor environments [32]), mainly due to wireless signal strength dis-
tribution being wide (strength does not change fast with respect to the location signals
that were taken). Therefore, WiFi-only robot navigation would lead to accidents such as
collisions with obstacles when the robot moves autonomously for services such as delivery
and customer service. Instead, it is typically used with other sensors [20,21,33], where WiFi
is used for enhanced robustness. Additionally, while wireless signals are not completely
occluded by obstacles (even walls and furniture), signal strength does lower, especially in
the presence of crowds of people, making the previously acquired map information less
accurate [34].

The magnetic information we refer to in this work is the strength and direction of
the environmental magnetic field, which is a combination of geomagnetism and residual
magnetism. Geomagnetism is the Earth’s magnetic field and generally has a constant
intensity and always points towards the magnetic north. Residual magnetism refers to
the magnetic disturbance caused by magnetic materials in the environment, such as steel
frames, pipes, and manholes.

These materials often remain magnetized after being exposed to magnetic fields
during their manufacturing or construction processes of the building where they are placed.
Due to the effect of this residual magnetism, the environmental magnetic field has several
local disturbances in strength and orientation. Some robots using electronic compasses
model these disturbances as noise taking measurements to avoid them. However, as
these magnetic disturbances are stable over time [35], they can be used as landmarks
for localization. It is important to notice that, if new magnetic materials are fixed in the
environment, the distribution of the magnetic intensity will change. In such a case, it is
necessary to acquire new magnetic intensity measures in the vicinity of the area, to update
the training points that changed, and to learn the mapping again. This can be done before
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the next navigation task or simultaneously by using SLAM. In this paper, we do not discuss
the solutions to these problems.

These landmarks can be used to correct odometry information [36,37] or for localiza-
tion using fingerprinting techniques.

Magnetic fingerprinting first obtains magnetic samples at known locations of the
environment. Using these training samples, a magnetic map is learned. Then, similarly
to laser rangefinders or cameras, localization is performed by comparing new magnetic
measurements to this learned map. The locations of training samples can be generated
using other sensors, such as laser rangefinders when there are no or few people in the envi-
ronment, or map generation and localization can be done simultaneously (Simultaneous
Localization and Mapping; SLAM) [23].

As magnetic changes are more spatially localized than WiFi signal changes, higher
localization accuracies are possible. Furthermore, as magnetic information is not affected
by nonmagnetic materials, it is reliable even in crowded environments [14]. This makes
magnetic fingerprinting more suitable for navigation in crowded environments than any
other of the aforementioned sensors. In this work, we employ Gaussian Processes Regres-
sion (GPR) for magnetic-based localization. GPR is an approach that has been successfully
used to learn magnetic maps [19,38,39]. GPR is a data-driven, nonparametric model, that
is fully defined by a mean and a kernel function. Mean functions for GPR are often set
to the zero function, especially when modeling disturbances [40]. Therefore, the single
most important design choice for magnetic-based localization using GPR is the adequate
selection of a kernel function. Therefore, in this research, we explore the effect of different
kernel functions on magnetic map generation and how this affects localization accuracy.

While GPR is a flexible model estimation approach, it scales poorly (with respect to
the amount of data used for training), requiring large amounts of memory when training.
For environments like the ones available on the UJIIndoorLoc-Mag dataset [41], where
the number of acquired data points on each environment is relatively small, learning can
be done using GPR without requiring prohibitive amounts of memory (Table 1 shows
learning time and memory consumption for the UJIIndoorLoc-Mag dataset). However, if
the environment to be magnetically mapped is extensive and the path taken to acquire the
magnetic data is long, the number of acquired magnetic data becomes too large. In such
a case, the required amount of memory for learning a GPR model becomes prohibitive
even for modern servers. To alleviate this problem, some WiFi-localization approaches
have proposed filtering data points and eliminating redundant access points [42] as well as
learning compact representations (to reduce the required number of dimensions necessary
to represent all the access points in the environment) [43]. Unfortunately, these approaches
cannot be applied for magnetic localization, as the problem for large-scale magnetic map-
ping is not data dimensionality (1 magnetic axis in our case, opposed to hundreds of access
points for WiFi-localization) but rather the necessary number of data points required for
accurate modeling of sharp strength distributions.

In this study, we propose the use of Sparse Gaussian Processes Regression (SGPR) to
reduce memory costs and realize magnetic mapping of a large-scale environment such as a
commercial facility.

To the extent of our knowledge, this is the first work that addresses the generation of
magnetic maps for large-scale environments using a GPR-based approach as well as the
relation between kernel functions and robot accuracy in such a case.

The remainder of this paper is organized as follows: Section 2 introduces our approach
for robot localization using magnetic disturbances. Section 4 describes the Gaussian and
sparse Gaussian processes approach used for magnetic mapping. Section 5 describes the
experiments on the localization accuracy by selecting the kernel function and the magnetic
mapping of a large-scale environment using the sparse Gaussian process. Section 6 gives
our conclusions.
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Table 1. Learning time and memory consumption when using the Gaussian process for publicly available magnetic
data [41]. The hardware used in this case is shown in Table 2.

Path # Sample

Elapsed Time (mean ± 2std) [s] Memory Consumption [MiB]

Full GP SGPR Full GP SGPR

Desktop PC DGX-1 Desktop PC DGX-1 Desktop PC DGX-1 Desktop PC DGX-1

1 540 0.26 (±0.29) 0.68 (±0.78) 1.71 (±0.71) 2.11 (±0.79) 178.379 215.223 124.738 160.602
2 356 0.17 (±0.15) 0.45 (±0.45) 1.49 (±0.36) 2.21 (±1.65) 146.918 182.457 125.832 162.594
3 876 0.66 (±0.64) 1.55 (±1.66) 2.15 (±1.14) 2.52 (±0.77) 247.039 294.352 124.336 161.336
4 859 0.65 (±0.64) 1.59 (±1.56) 1.81 (±1.45) 2.36 (±1.14) 243.086 290.250 124.945 161.465
5 362 0.15 (±0.15) 0.38 (±0.39) 1.59 (±0.96) 2.02 (±0.97) 143.902 183.395 126.637 162.480
6 224 0.08 (±0.05) 0.22 (±0.14) 1.27 (±0.23) 1.88 (±1.22) 130.973 169.520 125.418 161.199
7 211 0.09 (±0.09) 0.26 (±0.26) 1.42 (±0.41) 1.69 (±0.44) 130.016 169.371 124.629 161.844
8 246 0.12 (±0.02) 0.24 (±0.07) 4.97 (±3.16) 2.55 (±1.27) 132.621 170.117 124.910 162.012
9 196 0.08 (±0.07) 0.23 (±0.15) 1.71 (±0.56) 1.94 (±0.44) 129.906 168.516 125.336 161.133

10 223 0.08 (±0.04) 0.22 (±0.12) 5.89 (±6.95) 7.81 (±4.16) 131.219 168.621 125.074 161.285
11 287 0.10 (±0.06) 0.26 (±0.17) 3.78 (±3.47) 6.08 (±5.72) 139.516 174.492 125.156 161.816

Table 2. Specifications of computers used to calculate required time and memory usage.

Desktop PC NVIDIA DGX-1 1

Processor Intel Core i7-9700 CPU@3.00 GHz × 8 2 Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz
RAM 32 GB (Crucial CT16G4SFD8266 × 2 3) 512 GB 2,133 MHz DDR4 RDIMM
Storage Samusung SSD 860 EVO MZ-76E500 4 4X 1.92 TB SSD RAID 0
OS Ubuntu 20.04.1 LTS Ubuntu 18.04.1 LTS

1 https://www.nvidia.com/en-us/data-center/dgx-1/?ncid=van-dgx-1 (accessed on 1 March 2021); 2 https://www.crucial.com/memory/
ddr4/ct2k16g4dfd8266 (accessed on 1 March 2021); 3 https://ark.intel.com/content/www/us/en/ark/products/191792/intel-core-i7-970
0-processor-12m-cache-up-to-4-70-ghz.html (accessed on 1 March 2021); 4 https://s3.ap-northeast-2.amazonaws.com/global.semi.static/
Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf (accessed on 1 March 2021).

2. Magnetic Navigation Method

In this work, we address robot localization in a x − y Cartesian coordinate. The
robot localization problem consists of determining a robot’s pose ([x, y, θ]) relative to a
given map of the environment. Among the several approaches that have been introduced
in the literature, we adopt the Monte Carlo Localization (MCL) algorithm [44]. MCL
is an implementation of the Bayes Filter, using a particle filter, which uses particles to
represent possible robot poses, which are distributed according to the probability density
estimation of the robot’s pose conditioned on a time-series data of believed previous poses,
robot movements, and sensor measurements. In our case, these sensor measurements
are magnetic information corresponding to the robot’s z-axis, m, as proposed in [19]. The
magnetic strengths on the x and y-axis are not used because the observed values change
depending on the robot posture. Figure 1 shows a schematic diagram of localization by the
magnetic localization.

Magnetic localization using MCL is performed iteratively by conditioning robot
poses’ belief to magnetic measurements by comparing acquired sensor data to predicted
values from a previously generated magnetic map, to then updating the belief of the
robot’s location:

1. Updating the location particles given the robot’s movement.
2. Computing the likelihood of each particle based on the most current sensor measure-

ment and the observation model

ω =
1√
2πσ

exp

(
−
(zmap − zsensor)2

2σ

)
(1)

https://www.nvidia.com/en-us/data-center/dgx-1/?ncid=van-dgx-1
https://www.crucial.com/memory/ddr4/ct2k16g4dfd8266
https://www.crucial.com/memory/ddr4/ct2k16g4dfd8266
https://ark.intel.com/content/www/us/en/ark/products/191792/intel-core-i7-9700-processor-12m-cache-up-to-4-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/191792/intel-core-i7-9700-processor-12m-cache-up-to-4-70-ghz.html
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
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where ω is particle’s likelihood, σ is the variance of the observations, zmap is the magnetic
information on the map, zsensor is observation acquired by magnetic sensor.

3. Resampling particles according to ω when necessary.

Figure 1. Travel distance estimation based on a magnetic fluctuation. The robot is given a magnetic map that stores the
magnetic intensity with respect to distance.

Particles are not always resampled as it has been reported that resampling is effective
for improving performance if executed only when the likelihood bias in the particle group
is large [45]. Specifically, we resample particles when the Effective Sample Size (ESS) of the
particles is lower than a threshold [46].

ESS is an index that estimates the number of effective particles contained in the
particles that can be used as an estimator of the bias in the likelihood of particles and is
computed as

ness =
1

∑n
i=1 ω2

i
. (2)

3. Machine Learning for Generating Magnetic Map

When using a robot to survey an area, the magnetic information is not captured as
contiguous data but as discrete data points by the magnetic sensor. Therefore, regions with
unmeasured magnetic information exist, even if we move through the entire environment.
If robots use the captured magnetic information as the map, they would not be able to per-
form localization because of these regions. Hence, we need to develop a way of generating
dense magnetic maps without unmeasured regions by interpolating magnetic information.

3.1. Gaussian Process Regression (GPR)

A magnetic map can be learned using training data acquired directly from the desired
environment using Gaussian Process Regression (GPR). GPR is a generalization of normal
distributions to functions, describing functions of finite-dimensional random variables. It
is a data-driven approach that given training points, learns the correlation between them
using a kernel function and generalizes a continuous distribution from them [47].

In our case, we define (X, m) as the training data, where m ∈ Rn×1 is a vector of n
magnetic samples m (only the z-axis component of the magnetic field) acquired in the
environment, and X ∈ Rn×2 is the matrix of the corresponding x− y locations, where the
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samples were obtained. xp Under the GPR formulation, each data pair (xi, mi) is assumed
to be drawn from a process with i.i.d Gaussian noise, and any two output values, mp and
mq, are assumed to be correlated by a covariance function based on their input values xp
and xq, so that

cov(mp, mq) = k(xp, xq) + σ2
nδpq (3)

k(xp, xq) is a kernel function, σ2
n is the variance of the i.i.d Gaussian noise, and δpq is one

only if p = q and zero otherwise.
Then, the expected values of unknown data point x∗, conditioned on training data

(X, m) can be estimated as,

pGPR(m∗|x∗, X, m) ∼ N (EGPR[m∗], varGPR(m∗)), (4)

where,

EGPR[m∗] = kT
∗ (K + σ2

n In)
−1m, (5)

varGPR(m∗) = k∗∗ − kT
∗ (K + σ2

n In)
−1k∗, (6)

where K = cov(X, X) is the n× n covariance matrix between all training points X; k∗ = cov(X, x∗)
is the covariance vector that relates the training points X and the test point x∗; k∗∗ = cov(x∗, x∗)
is the variance of the test point; and In, is the identity matrix of rank n. Therefore, predic-
tions from a GPR are fully defined by the acquired training data and the selected kernel
function. Since there are various types of kernel functions, kernel selection is the single
most important design choice given available training data.

3.2. Sparse Gaussian Process Regression (SGPR)

The previously described GPR formulation can flexibly predict the function for a given
input using Equation (5). On a closer inspection of this equation, it can be observed that the
expected value can be obtained by performing the following procedure on the input data:

1. Compute the vector k∗ and matrix K + σ2
n In and store them in memory.

2. Compute the inverse matrix (K + σ2
n In)−1 and store it in memory.

3. Calculate kT
∗ (K + σ2

n In)−1m and store it in memory.

It is known that the inverse matrix calculation in Procedure 2 has the highest memory
consumption and the highest order of arithmetic operations in performing these calcula-
tions, O(N3), which is of the order of arithmetic operations, if the calculation takes 1 s
for N = 1k, it takes 8 s for N = 2k, and 1000 s for N = 10k, which is about 17 min. This
bottleneck has been cited as a drawback and impracticality of GPR for addressing problems
with a large number of training data. To solve this problem, various methods have been
proposed to reduce the number of required computations and improve efficiency [48].

In this study, we use the inducing variable method, which is one of the major methods
previously proposed to address the aforementioned GPR drawbacks. In the inducing
variable method, M (M < N) inducing variables are introduced to approximate the GPR
covariance matrix, compressing it to M×M matrices. By doing so, we can reduce the order
of memory consumption toO(NM + M2) and the order of computation toO(NM2 + M3).

3.2.1. Subset of Data Approximation (SoD)

A different approach is the partial data method. This partial data method is the basis
of the inducing variable method described above. From the N input data points, M input
points (M < N) are selected to represent the distribution of all data well, and only these
M input points are used for training. Therefore, the inverse matrix calculation of N × N
originally required can be reduced to M×M to obtain the predictive distribution of the
Gaussian process regression. In situations where the selected sub-data consisting of M
input data points are well representative of the total data, the same level of accuracy can be
obtained at a much lower computational cost O(M3) than O(N3).
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3.2.2. The Inducing Variables Method

In the inducing variable method, M (M < N) virtual input points called inducing
input points Z = (z1, ..., zM) are appropriately placed within the definition of the func-
tion f (·).

This partial data is then used to efficiently estimate the function values at the test data
points. SoD does not use the other (N −M) data points but can maintain accuracy as if
using all the data.

The output value f (zm) at inducing point zm is called inducing variable um = f (zm),
which is summarized in a vertical vector u with respect to m = 1, ..., M. By using inducing
input points, the predictive distribution of the unknown function f (x) can be obtained.
There are various approaches to obtain inducing variables; in this study, we adopt the
Fully Independent Training Conditional (FITC) method [49]. Unlike other approaches,
FITC is a method that predicts the distribution by also considering the calculation of the
variance. Since the magnetic navigation method also calculates the likelihood using the
variance of the predicted distribution in the Gaussian process, a method that approximates
the calculation of the variance may affect the localization accuracy.

The Gaussian process described in Section 3.1 uses the following covariance matrix
for inverse matrix calculation, etc.

KGPR =

(
KNN kN∗

kT
N∗ k∗∗

)
(7)

In contrast, the covariance matrix in FITC takes the following form

KFITC =


k1 O

. . . kNM

O kn

kT
NM kMM

 (8)

Comparing this covariance matrix with Equation (7), the (N × N) covariance ma-
trix of the prior distribution f in the original Gaussian process, KNN , is replaced by zero
in Equation (8), ignoring all of its nondiagonal components, and the diagonal compo-
nents kn = k(xn, xn) (n = 1, ..., N) are left. By ignoring all the N(N − 1) nondiagonal
components in this way, the computational complexity can be greatly reduced when N
is large.

As a result, FITC is able to predict the distribution for the unknown data point x∗ by
the following equation.

pFITC(m∗|x∗, X, m) =
∫

p( f∗|u)p(u|y)du = N (EFITC[m∗], varFITC(m∗)) (9)

where k̂∗ = K∗u, K̂ = Kuu and

EFITC[m∗] = k̂T
∗ΣkT

MΛ−1m, (10)

varFITC(m∗) = k∗∗ −Q∗∗ + k̂T
∗Σk̂∗, (11)

Σ = (K̂ + kT
MΛ−1kM)−1, (12)

Λ = diag(K−Q + σ2
n In), (13)

Q = k̂T
∗ K̂−1k̂∗. (14)

As described above, SGPR using the inducing variable method, which is a computa-
tional modification of GPR, can achieve significant reductions in memory consumption
and computational complexity, as shown in Table 3.
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Table 3. Memory and computational cost for each computational process in GPR and SGPR. N is input data points, D is
input dimensions, and M is inducing points.

Calculation Process Memory Consumption Order Computational Order

GPR

Covariance vector : k∗ O(ND) O(ND)

Covariance matrix : K O(N2D) O(N2D)

Inverse matrix of K : K−1 O(N2) O(N3)

Matrix product : kT
∗K−1m O(N) O(N2)

SGPR

Covariance matrix : KMM , KMN O(NM + M2) O(NM + M2)

Diagonal matrix : Λ O(N) O(N)

Matrix : QMM O(M2) O(NM2)

Inverse matrix : Q−1
u O(M2) O(M3)

4. Kernel Function for High-Accuracy Localization
4.1. Kernel Function

Kernel functions are key components in GPR that affect the interpolation result of
magnetic maps [50]. In this work, we analyze seven different kernel functions and their
effect on magnetic maps and magnetic-based localization on GPR and SGPR.

For this analysis the following kernel functions were chosen:

(1) Radial Basis Function (RBF) Kernel

k(xp, xq) = σ2
f exp

(
− r

2l2

)
(15)

(2) Exponential Kernel
k(xp, xq) = σ2

f (1 +
√

3r) exp(−
√

3r) (16)

(3) Matern 3/2 Kernel

k(xp, xq) = σ2
f

(
1 +

√
3r
l

)
exp

(
−
√

3r
l

)
(17)

(4) Matern 5/2 Kernel

k(xp, xq) = σ2
f

(
1 +

√
5r
l

+
5r2

3l2

)
exp

(
−
√

5r
l

)
(18)

(5) Exponential + Cosine Kernel

k(xp, xq) = σ2
f (1 +

√
3r) exp(−

√
3r) +

π

4
cos
(πr

2

)
(19)

(6) Exponential + Matern 3/2 Kernel

k(xp, xq) = σ2
f (1 +

√
3r) exp(−

√
3r) + σ2

f

(
1 +

√
3r
l

)
exp

(
−
√

3r
l

)
(20)

(7) RBF + Exponential + Matern 3/2 Kernel

k(xp, xq) = σ2
f exp

(
− r2

2l2

)
+ σ2

f (1 +
√

3r) exp(−
√

3r) + σ2
f

(
1 +

√
3r
l

)
exp

(
−
√

3r
l

)
(21)

where r expresses a distance between two vectors (xp, xq), r = |xp − xq|.
Figure 2 shows an example of the interpolation results of Gaussian process regression

using each kernel function.
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The Radial Basis Function (RBF) kernel is a kernel function commonly used for
machine learning in GPR and support vector machines; while kernel functions (2) to (4) are
less commonly used, we wanted to thoroughly verify their effects on magnetic mapping.
In addition, as the linear combination of kernel functions also yields valid kernel functions,
we considered some linear combinations of kernels (kernels (5) to (7)).

Figure 2. Differences in variance among the seven types of kernel functions proposed this time. r is the Euclidean
distance of the input, r = |xp − xq|. (a) RBF Kernel (b) Exponential Kernel (c) Matern 3/2 Kernel (d) Matern 5/2 Kernel
(e) Exponential + Cosine Kernel (f) Exponential + Matern 3/2 Kernel (g) RBF + Exponential + Cosine Kernel.

4.2. Experiments and Discussions

To verify the effect of the different maps generated in the previous section, we con-
ducted an experiment using the robot shown in Figure 3 [51,52]. This robot has two
independent wheel drives with an outer shape of 70 × 68 × 119 cm3 and 98 kg of weight.

Figure 3. “MAUV”, the hardware used in the experiment. (a) MAUV with the cowl. The cowl was developed considering
the requirements of a service robot for transporting people while ensuring safety [51]. (b) MAUV without the cowl.
(c) Appearance and specifications of the magnetic sensors “3DM-DH”.
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Odometry information was collected from each wheel-encoder and magnetic informa-
tion was collected using a 3-axis magnetic sensor (3DM-DH) shown in Figure 3. However,
for localization purposes, only the data collected from its z-axis was employed. Sensor
specifications are detailed in Figure 3.

The magnetic sensor was mounted 34 cm forward from the center of the robot’s drive
shaft with its z-axis in the ground direction. Sensor placement was selected to avoid
magnetic disturbances from other electronic devices mounted on the robot (the sensor was
placed at least 15 cm away from any other device), as these would adversely affect the
quality of the magnetic information acquired.

To obtain accurate pose information for our training datasets, we also installed a
laser rangefinder (UXM-30LXH-EWA) in front of the robot. It is important to note that
the laser rangefinder was only used while obtaining training data and not while using
magnetic-based localization.

We conducted our experiments on the second floor of Utsunomiya University’s Robotics,
Engineering, and Agricultural-technology Laboratory (REAL) . Figure 4 shows this environment.

Figure 4. “REAL” and “HICity”, environments used in this experiment. (a,c) show the geometric map and the trajectory of
the robot; when it measures magnetic information it is superimposed with a purple line. (b,d) show the environment in this
experiment.

Magnetic information was acquired by making round trips around the experimental
environment while pushing the robot. Sensor information: odometry, range data, and
magnetic information were stored in the log file using the Robotics Operating System
(ROS). Pose locations for the training datasets were generated using the front-mounted
laser rangefinder and graph-based SLAM using Google’s cartographer [53]. Using this
training dataset, a magnetic map was created for each of the seven kernel functions
discussed in Section 4.1 using Python’s GPy library (SheffieldML/GPy: Gaussian processes
framework in Python. https://github.com/SheffieldML/GPy (accessed on 1 March 2021)).

1. REAL : 5, 10, 20, 30, 40, 50
2. HICity : 10, 50, 100, 500, 1K, 2K

https://github.com/SheffieldML/GPy
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4.2.1. Magnetic Maps

Figure 5 shows the magnetic maps generated by each kernel function. In these figures,
the color bar shows the strength of the magnetic intensity, and the black dots show the
magnetic strength training data points.

Figure 5. Magnetic map in the experimental environment. The strength is indicated by the color bar on the RGB scale.
(a) RBF Kernel (b) Exponential Kernel (c) Matern 3/2 Kernel (d) Matern 5/2 Kernel (e) Exponential + Cosine Kernel
(f) Exponential + Matern 3/2 Kernel (g) RBF + Exponential + Cosine Kernel.

As the most commonly used kernel is the RBF kernel, we use it to assess the other
kernel functions.

1. Exponential kernel
The Exponential kernel generates magnetic maps that are considerably smoother than
those generated by the RBF Kernel. Smoother maps have been shown to improve
localization accuracy when combined with MCL [34]. However, the maps generated
by this kernel seem to be too smooth, which could limit the ability of the localization
algorithm to differentiate between nearby points (as both have similar intensities),
lowering its potential localization accuracy.

2. Matern 3/2 kernel
Contrary to the exponential kernel, the Matern 3/2 generates maps that accentuate
magnetic disturbances (higher peaks and valleys), while still generating smooth maps.
As it can be observed, compared to the RBF kernel, several peaks are combined into
larger ones.

3. Matern 5/2 kernel
Similar to the Matern 3/2 kernel, the Matern 5/2 kernel also generates maps that
accentuate magnetic disturbances. However, it does not tend to combine peaks, show-
ing the same patterns as the RBF Kernel. Compared with the RBF kernel and Matern
3/2 kernel, it is hard to assess which would yield higher localization accuracies,
hence the requirement to test the actual localization accuracy that can be achieved
with them.

4. Exponential + Cosine kernel
The Cosine kernel has periodicity in one dimension, but when combined with other
kernels, the result does not show such periodicity. The main idea when testing the
Exponential + Cosine kernel was to see if the training found some periodicity in the
data. As can be seen, when compared with the Exponential kernel, this kernel has



Sensors 2021, 21, 3972 12 of 22

no significant differences. This means that no such periodicities were dominant in
the data.

5. Exponential + Matern 3/2 kernel
As both the Exponential and the Matern 3/2 kernels showed similar maps, we com-
bined them to see if their combination would increase localization accuracy. As
expected, the resulting maps are smooth and somewhat in the middle between the
exponential and Matern in terms of the height of its peaks and valleys.

6. Exponential + Cosine + RBF kernel
The RBF, Exponential, and Cosine kernels were combined to see if the addition of
several kernels would improve localization accuracy.

4.2.2. Localization Accuracy Using Different Magnetic Maps

To compare the localization accuracy when using different kernel functions, an experiment
dataset was collected at a later date. Using the same robot and ROS, experiment data was
logged and the ground truth locations of the robot were computed using Google’s cartographer.

Experiments were performed by replaying the logged data in real-time, and localiza-
tion accuracy was computed using the magnetic localization system explained in Section 2.

Localization accuracy was computed as the root mean squared error (RMSE) between
localization predictions by the MCL and the recorded ground truths. As an example,
Figure 6 shows the result of the localization experiment obtained with the RBF kernel. In
the same way, experiments are performed for the other six kernel functions, and RMSE is
calculated for each. Table 4 shows the average localization accuracy of 100 different runs
performed for each magnetic map.

Figure 6. Example of localization result. Compare the results of odometry-only localization and
magnetic navigation method localization for the specified path indicated by the blue dots with those
indicated by the yellow and green dots.

From these experiments, we can see that both the Matern 3/2 and the Matern 5/2
kernels improved localization accuracy (average) compared to the most commonly used
RBF kernel. With the Matern 3/2 having a slightly higher average but lower maximum
errors, compared to the Matern 5/2. The standard deviations from both kernels are also
considerably lower than that of RBF, showing that they are more stable.

The Exponential kernel showed the worst performance (both by itself and when
combined with the cosine kernel). Therefore, it is considered that the Exponential kernel is
not suitable for magnetic localization.

Interestingly, when the exponential kernel was combined with the Matern 3/2 kernel,
while the average performance was worse than the Matern kernel by itself, it got the lowest
maximum errors (1.86 m). This indicates that while the Exponential kernel does seem to
yield lower localization accuracies, it does improve stability.
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Table 4. Results of localization experiments. The results of this experiment summarize the calculation of the mean and
standard deviation as well as the minimum and maximum values from 100 localization experiments.

RBF Exponential Matern 3/2 Matern 5/2
Exponential

+
Cosine

Exponential
+

Matern 3/2

Exponential
+

Cosine + RBF

Ave (±2std) [m] 0.616 (±1.01) 0.715 (±0.869) 0.578 (±0.638) 0.495 (±0.558) 0.788 (±1.46) 0.693 (±0.667) 0.619 (±0.654)
Min [m] 0.295 0.340 0.301 0.266 0.286 0.317 0.293
Max [m] 3.07 3.18 1.96 2.13 4.09 1.86 2.32

5. SGPR for Generating Large-Scale Magnetic Map

For autonomous movement using the magnetic navigation method, it is necessary
to first obtain the magnetic intensity of the entire environment by sensing the magnetic
intensity throughout the environment and then create a magnetic map by interpolating
using GPR. In an environment such as the experimental environment shown in the previous
Section 4, the number of magnetic intensities acquired does not need to be large, due to its
size, so the magnetic map can be created by GPR without running out of memory. However,
even in an indoor environment, for example, in a commercial facility such as a shopping
mall, it is common that the environment is a large area, and the magnetic map cannot be
created using GPR formulation as the computer would run out of memory. Therefore, we
conduct magnetic mapping experiments using SGPR formulation described in Section 3.2.

As shown in Table 3, SGPR is a more efficient method than GPR, reducing the memory
cost and computational complexity of computing the inverse of the covariance matrix.

SGPR prevents memory shortage for large datasets, which may occur in the GPR
during magnetic mapping, enabling magnetic mapping of large areas.

In this section, we describe the experiment conducted for creating a magnetic map
using SGPR and the robot localization experiment using the created magnetic map. We also
verify whether the magnetic map using SGPR is effective for the autonomous movement
using the magnetic navigation method.

5.1. Mapping

The robot used in the experiment and the method of acquiring the magnetic intensity
is the same as in Section 4 (Section 4.2 for detailed explanation). In addition to the indoor
environment of Section 4 (REAL), a new experimental environment in Haneda Innovation
City (HICity) is employed. HICity is a commercial facility next to Haneda Airport in Tokyo,
Japan. Magnetic maps are created using the magnetic intensities acquired in both locations.

The total number of acquired magnetic intensity data points in each environment was
5301 for REAL and 22,260 for HICity. The mapping is done using three different methods:

1. GPR.
2. GPR with clustered data (KM-GPR).
3. SGPR.

In KM-GPR, k-means was used to create subsets of the data points; a map for each
subset was then learned using an independent GPR). For all cases, the amount of memory
consumption and the time required to create a map for each method are investigated
and compared.

The kernel function used is the Matern 5/2 Kernel, which was found to be optimal for
improving accuracy in Section 4. The inducing points are selected in consideration of the
number of magnetic intensity data acquired in each environment as follows, and mapping
experiments are conducted for each inducing point.

5.1.1. Memory Consumption

We will verify the memory consumption during magnetic map creation in each
experimental environment. The Gaussian process for magnetic mapping was programmed
using the GPy library as in Section 4.2. The memory consumption is measured using the
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memory_profiler Python library (pythonprofilers/memory_profiler: Monitor Memory
usage of Python code. https://github.com/pythonprofilers/memory_profiler (accessed
on 1 March 2021)). The memory_profiler can measure the memory usage of a process as
time-series data. In this verification, we measure the memory usage from the time the
magnetic data required for training is loaded from a text file to the time the GPy library is
used for training. The training data is the same for all three mapping methods. By using the
above experimental method, we can compare the memory used in each creation method.

REAL, with 5301 magnetic data points, had the largest memory consumption (9.762 GiB)
for mapping by KM-GPR (see Figure 7). GPR consumed the same amount of memory
(4.049 GiB) as the first subset of KM-GPR, and it was able to create the map without any
further increase. In SGPR, the memory consumption was the largest when the input data
was read in for all patterns of inducing variable points, and only about 200 MiB was
consumed during training.

Figure 7. Graphs of memory consumption for each method in REAL’s magnetic mapping for GPR, KM-GPR, and SGPR
with 5, 40, and 50 inducing points are shown. (a) Graph showing all methods, (b) enlarged graph of SGPR, and (c) enlarged
graph of GPR.

In the case of HICity with 22,260 magnetic data points, the memory consumption was
the largest (59.822 GiB) when GPR was used to create the map (see Figure 8). In the case
of KM-GPR, which consumed the largest amount of memory in the magnetic mapping of
REAL, it was possible to map without consuming a huge amount of memory (8.856 GiB)
even though the input data was large. Even in the case of 2K inducing variable points,
which is the largest number of inducing input points, SGPR was able to create maps with a
smaller memory consumption (5.315 GiB) than GPR and KM-GPR. A server for big data,
such as the NVIDIA DGX-1, can realize mapping with GPR.

https://github.com/pythonprofilers/memory_profiler
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Figure 8. Graph of memory consumption for each method of magnetic mapping in HICity. GPR, KM-GPR, and SGPR
with 10, 1K, and 2K inducing points are shown. (a) Graph showing all the methods, (b) enlarged graph of KM-GPR, and
(c) enlarged graph of SGPR with 10 inducing points.

As the robot is expected to be used in commercial facilities, our goal is to achieve stable
operation through repeated autonomous movement experiments in real environments.
This is required even in the presence of disturbances such as crowds, and we believe that
it is necessary to conduct a series of actual experiments in the field. To conduct more
experiments with the magnetic navigation method in a real environment, we need a system
that can move autonomously immediately after mapping with a robot equipped with a
PC that does not have high specifications. In such a case, magnetic map creation using
SGPR is considered to be effective because due to its reduced memory consumption it can
be used on portable computers.

Previous experiments have addressed memory consumption in the learning phase.
For magnetic navigation, we also need to create a magnetic map. In our case, we create two
grid maps per environment. One storing predicted mean magnetic intensity values and
another storing predicted variance of the predictions for each grid of the free area of the
grid map. Therefore, after the learning phase, we predict mean and variance values using
the learned model, storing them in a text file. The memory consumption for creating such
text files was also verified. The mapping environment and hardware used was DGX-1 with
HICity. We compared GPR and the SGPR with 2K inducing points. Figure 9 shows the
memory consumption for training and mapping the magnetic intensity distribution. Since
GPR uses all the training and test data for prediction, the memory consumption during
prediction as well as training is high, which caused memory errors on the program side,
and we could not completely create the map. Unlike GPR, SGPR uses inducing points and
test data, which reduces the amount of computation required to make a prediction. This
allows the process from training to prediction to be done at reduced memory cost, with
a peak memory consumption of 60.79 (GiB).We were able to achieve magnetic mapping
without memory errors.
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Figure 9. Graph of memory consumption for magnetic mapping of HICity using DGX-1.

5.1.2. Generating Time

Table 5 shows the results of the time taken to create the magnetic map. In the case of
desktop PC, it took about 75 [s] for REAL in GPR, and in HICity, magnetic mapping could
not be done due to forced termination of the program caused by insufficient memory. The
proposed method can reduce the time required for REAL, and HICity can overcome the
memory shortage and create a magnetic map except for the case of 2000 inducing points.
Therefore, it can be said that the proposed method, SGPR, contributes to the reduction
of memory cost and is effective for creating magnetic maps in large areas. Using DGX-1,
REAL’s magnetic mapping with GPR took 127.6 (s), and HICity took 2315.4 (s). The DGX-1
is used to handle processes that consume huge amounts of memory rather than processing
speed. Therefore, the processing time is larger than that of a desktop PC.

Table 5. Result of time when generating magnetic map (data:mean(±2×std)(s)). All the results are calculated as the mean and standard
deviation of the 10 experimental results.As for the magnetic mapping in HICity, the time could not be measured in the case of GPR and
2K inducing variable points due to the forced termination of the program by insufficient memory.

REAL

Hardware 5 10 20 30 40 50 GPR

Desktop PC 2.61 (±2.32) 4.55 (±1.28) 7.27 (±2.82) 10.9 (±0.72) 14.5 (±0.26) 17.7 (±0.52) 75.0 (±5.89)

DGX-1 18.78 (±22.9) 29.30 (±17.34) 43.71 (±18.54) 58.26 (±0.98) 67.36 (±5.72) 77.77 (±1.72) 127.6 (±20.31)

HICity

Hardware 10 50 100 500 1K 2K GPR

Desktop PC 15.4 (±4.90) 78.7 (±0.66) 166.4 (±1.04) 1197.3 (±11.4) 2753.3 (±22.7) - -

DGX-1 63.8 (±22.46) 228.1 (±2.65) 456.7 (±4.66) 2670.3 (±6.77) 5426.4 (±11.7) 11358.1 (±761.5) 2315.4 (±66.9)

The above results are discussed. HICity has 22,260 magnetic data points, which is
almost four times more than REAL. In the case of creating a magnetic map using the
Gaussian process from more than 20,000 magnetic data points, the number of components
in the inverse matrix calculation in GPR is 4.955× 108. When creating a magnetic map
of an environment larger than HICity, the amount of magnetic information that can be
obtained is likely to be even larger, forcing the calculation of an inverse matrix with an even
larger number of components. This is not only limited to desktop PCs; even the NVIDIA
DGX-1, which has considerable memory resources (512 GB), also had difficulties creating
the desired magnetic maps. On the other hand, SGPR uses only the diagonal component
for inverse matrix calculation, which is equal to the number of magnetic data, so the
inverse matrix component required for magnetic mapping of HICity is only 2.226× 104. In
summary, magnetic mapping using SGPR is a method that is more effective and contributes
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to reducing memory consumption when target environments are more vast and more
magnetic information is acquired.

5.2. Effect to Localization

We verify the accuracy of the magnetic navigation method for localization using the
magnetic map created by the proposed method. The experimental environment is REAL.
We evaluate the accuracy of the localization method by comparing the localization results
of the magnetic maps created by the GPR and the proposed method. The experimental
results are shown in Figure 10. The results show that the navigation using the magnetic map
created by the proposed method deviates from the path by about 1 [m] due to a decrease in
estimation accuracy, as shown in Figure 10d. However, for other routes (Figure 10e,f), no
significant deviation was observed as in the case of GPR (Figure 10b,c) and no degradation
in estimation accuracy was observed. Therefore, it can be said that the magnetic map created
by the proposed method is effective for the magnetic navigation method.

Figure 10. Experimental results of localization. Magnetic map created by GPR and SGPR is displayed as a two-dimensional
color map, and each specified route and the trajectory of localization are superimposed. (a–c) and (d–f) show the results of
localization for each specified route using the maps created by GPR and SGPR, respectively.

In localization in the magnetic navigation method, the likelihood calculation is per-
formed using Equation (1). In this equation, zmap and σ are the mean and variance,
respectively, stored in each grid of the magnetic map calculated when predicting by the
Gaussian process. The magnetic maps generated by GPR and SGPR, shown in Figure 10,
show differences in the distribution of the magnetic intensity when viewed in a small
area. However, the overall pattern of changes in magnetic intensity is similar, with large
interpolations in areas of high magnetic intensity and small interpolations in areas of low
magnetic intensity. Therefore, the magnetic navigation method, which uses the pattern of
magnetic intensity disturbance as a landmark for localization, can be said to be capable
of localization even when using a magnetic map based on SGPR, which is similar to the
actual distribution of magnetic intensity. The variance stored in each grid is represented by
a color map as shown in Figure 11. From this figure, we can see that the magnitude and
distribution of the stored variance are different between GPR and SGPR. However, as can
be seen from the color shading, the value of the variance stored in the magnetic map by
SGPR is about 0.1 at most, which is not extremely large. Thus, the magnetic map of SGPR,
which captures the pattern of changes in magnetic intensity and has less difference in the
magnitude of the variance value compared to GPR, is considered to be an effective map for
localization by the magnetic navigation method.
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Figure 11. Color map of the variance stored in REAL’s magnetic map. (a) using GPR, (b) using SGPR with five inducing
variable points. The white lines represent the trajectories of the three magnetic sensors mounted on the robot during the
acquisition of magnetic information.

6. Conclusions

In this paper, we introduced a navigation method for autonomous mobile robots that
use magnetic information, aiming for robust localization in crowded environments. The
magnetic information is obtained by measuring the intensity of the geomagnetic field,
which is not affected by nonmagnetic objects such as humans and is stable over time.
Localization is performed by using the disturbance of the intensity as a landmark. The
Gaussian Process Regression framework is used to create a magnetic map that stores the
magnetic intensity in the environment, which is necessary for the navigation method. This
regression method is capable of interpolating data with Gaussian distributions and predicts
the intensity distribution of magnetic data acquired as points and uses it as a map.

However, Gaussian Process Regression requires O(n3) and O(n2) in terms of compu-
tational and memory costs, respectively, so it is difficult to handle large amounts of data.
As a method to reduce the cost of each of these, we use an approximate method of calcula-
tion using the inducing variable method called the Sparse Gaussian Process Regression.
Magnetic mapping was performed using this method, and the mapping time and memory
consumption were investigated in comparison with Gaussian Process Regression.

As a result, we found that the memory consumption can be significantly reduced, and
a large number of inducing variable points were set up for highly accurate interpolation,
i.e., more accurate magnetic mapping.

However, this is a case of applying the method to hardware such as the NVIDIA
DGX-1, which handles processes that consume huge amounts of memory, and is capable
of high-speed processing. We also conducted a localization experiment for the magnetic
navigation method using a magnetic map created using a sparse Gaussian process. As a
result, the magnetic map with a rather small number of inducing variable points (five) was
quite coarse, but the map roughly captured the pattern of change in intensity. In conclusion,
magnetic mapping by the sparse Gaussian process enables us to map a vast environment
even on a desktop PC, and it is also useful for magnetic navigation methods.

As a future issue, although the mapping for two environments, an indoor environment
and a large commercial facility with an open deck, was conducted in this paper, we believe
that this method is effective for other environments as well. In addition, as shown in
Figure 3, this experiment was conducted using a robot with a large wheel diameter that is
less prone to errors such as slipping during autonomous movement. However, there are
not many general autonomous mobile robots with such a large wheel diameter, and it is
not clear whether the map can cover errors during navigation.

On mapping, we have selected kernel functions for Gaussian processes (GPR), but
the kernel functions selected for GPR have been used for SGPR and the optimal kernel
functions for SGPR have not been selected. Although unrelated to magnetic mapping,
several previous studies have explored the selection of kernel function to improve GPR
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and SGPR predictions [54,55]. Therefore, the selection of the kernel function in SGPR to
improve the localization accuracy in the magnetic navigation method should be considered
in the future.

It is also important to note that regardless of the models used for learning the map,
autonomous navigation may fail if magnetic objects that do not exist during magnetic
mapping are present during autonomous navigation. The magnetic navigation method
is based on matching the magnetic map created in advance with the magnetic intensity
observed during navigation. Therefore, if the measured magnetic intensity in navigation
differs greatly from the magnetic map, localization may fail.

In the case of relatively small magnetic bodies such as smartphones, the effect on
localization is considered to be small because the magnetic properties are not so strong as
to significantly change the magnetic intensity in the environment.

However, automobiles and robots with large bodies have ferromagnetic materials
such as engines and motors, which may have a large impact on the magnetic intensity in
the environment.

To address this issue, previous research detected the presence of automobiles by
measuring the geomagnetic field fluctuation caused by the automobiles [56,57]. In these
studies, the intensity of the geomagnetic field fluctuating near the automobile was observed
to be around 8 µG for a distance between the magnetic sensor and the automobile of 50 m
and around 1 µG for a distance of 100 m.

By considering the amount of variation different types of objects can cause at different
distances, it is possible to determine the possible affected areas, to avoid them. For
example, areas where automobiles are expected to be located, such as parking lots, should
be avoided.

In the case of narrow roads or environments where the robot cannot make such an
action plan, it is recommended to temporarily switch to localization without using mag-
netic intensity, using only odometry, and then to move autonomously using the magnetic
navigation method again after breaking through the magnetic fluctuation region. After
returning to the magnetic navigation method, the errors that occurred during the tempo-
rary autonomous movement using odometry can be corrected, and stable autonomous
movement is considered to be possible.
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