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Abstract: A k-means algorithm is a method for clustering that has already gained a wide range of ac-
ceptability. However, its performance extremely depends on the opening cluster centers. Besides, due
to weak exploration capability, it is easily stuck at local optima. Recently, a new metaheuristic called
Moth Flame Optimizer (MFO) is proposed to handle complex problems. MFO simulates the moths
intelligence, known as transverse orientation, used to navigate in nature. In various research work,
the performance of MFO is found quite satisfactory. This paper suggests a novel heuristic approach
based on the MFO to solve data clustering problems. To validate the competitiveness of the proposed
approach, various experiments have been conducted using Shape and UCI benchmark datasets. The
proposed approach is compared with five state-of-art algorithms over twelve datasets. The mean
performance of the proposed algorithm is superior on 10 datasets and comparable in remaining two
datasets. The analysis of experimental results confirms the efficacy of the suggested approach.

Keywords: data clustering; data mining; k-means; moth flame optimization; meta-heuristic

1. Introduction

Data clustering methods are being widely implemented in various real-world appli-
cations such as data mining [1], machine learning [2], information retrieval [3,4], pattern
recognition [5–7], face clustering and recognition [8–10], wireless sensor networks [11],
etc. The objective of this method is to partition data objects in such a way to minimize
accumulated distances between data objects and their respective centroids. After clustering,
the data objects in a cluster should be as similar as possible with each other and should be
vastly different from the items of other clusters. A number of algorithms have been pro-
posed to solve the data clustering problem. K-means is one among the popular algorithms
to handle clustering problem. K-means algorithm is simple and efficient but the accuracy
of its result highly dependent on initially selected cluster centers, hence prone to trap in
local optima solution. Data clustering is one of the NP-hard problems and hence difficult to
solve using deterministic algorithms. Being an NP-hard problem, deterministic approaches
cause local entrapment which in turn, affects the overall performance of the algorithm.

Although the approach adopted by the k-means is being widely accepted for dealing
with the clustering problems, it is deterministic in nature except for initialization. Therefore,
to deal with data clustering problems a better approach could be expected compared
to the k-means algorithm. Alternatively, the heuristic clustering algorithms are being
widely used these days as a substitute for the conventional clustering technique. These
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heuristic clustering algorithms target their goals with the random search in the specified
search domain. These algorithms are unable to capture the exact values, but, they try
to find the values that are as close as possible to the exact solution. In this view, it is
considered as an optimization problem in which the sum of the intra-cluster distances
between the cluster center and associated data objects need to be minimized. To solve
this problem, nature-inspired algorithms are being widely used these days [12–16] along
with [17,18]. The problem of data clustering has attracted the attention of many researchers
from different domains of science and engineering and it is still an important area of
research in data mining.

Due to the involvement of non-linear objective function and large search domain in
data clustering problems, the algorithms find difficulty during the optimization process. In
such a case, the selection of an appropriate optimization algorithm for solving this problem
becomes more important. An optimization algorithm for solving data clustering problems
needs to have a balanced and proper mechanism of exploitation and exploration. Hatamlou
proposes a black hole algorithm guided approach for data clustering [19]. A cuckoo search
optimization algorithm based approach for data clustering is presented in [20]. A detailed
review of data clustering using particle swarm optimization and its variants have been
presented in [21]. Han et al. [22] proposed a modified gravitational search algorithm (GSA)
for data clustering. They have included a new mechanism in GSA for improving the global
search ability of solutions during the optimization. Apart from this, the use of chaotic
sequences instead of random numbers improves the overall performance of optimization
algorithms [23,24]. Inspired by the chaos theory, Chuang et al. [25] proposed a method
for data clustering using chaotic map and PSO. Additionally, another approach based
on the chaotic sequences is presented in [26] for data clustering. Another approach for
data clustering based on chaotic sequence harris hawks optimizer is proposed in [27]. A
chaotic number and opposition learning based method for data clustering is presented
in [28]. A levy flight-based cuckoo search algorithm for data clustering is proposed in [29].
Abdulwahab et al. [30] suggested a levy flight guided approach for data clustering. The
opposition learning-based approach is being successfully implemented in optimization
algorithms to improve diversity during the search [31]. Kumar et al. [32] proposed an
opposition learning and Cauchy operator-based scheme for data clustering. Sun et al. [33]
introduced an opposition learning and random local perturbation guided monarch butterfly
optimization algorithm for data clustering. Nasiri et al. [34] suggested a whale optimization
algorithm based approach to handle data clustering problems. The authors have validated
the effectiveness of their approach based on various comparative performance analysis.
A magnetic optimization algorithm-guided approach is presented for data clustering
in [14]. A hybrid approach based on exponential Grey Wolf Optimizer (GWO) and Whale
Optimization Algorithm (WOA) is presented in [35] for dealing with data clustering
problem. A variance-based differential evolution approach for data clustering is suggested
in [36]. Zhou et al. [37] proposed a symbiotic organism search algorithm-guided approach
to handle data clustering problems. A cuttlefish optimization algorithm based-approach
for data clustering is presented in [38]. A density-based clusterability measure is proposed
to measure the prominence of the clustering structure in the time-series data [39]. A whale
optimization algorithm based approach for data clustering is presented in [40].

Although various optimization algorithms have already been suggested, none of them
can outperform all other algorithms in all benchmark datasets of data clustering. A general
idea of no free lunch theorem [41] states that not a single algorithm can defeat all other
algorithms in all test problems. This could be the reason behind the development of various
optimization algorithms for data clustering. The methods of exploitation and exploration
are two main aspects that need to be balanced to achieve the desired goal in reasonable
time. However, these two aspects are conflicting in nature. Excessive exploitation causes
premature convergence; while excessive exploration causes random search. A proper
exploitation method intentionally tries to search in the neighborhood of good solutions
found so far. However, exploration is supposed to capture good solutions from the different
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regions of a search domain. Therefore, an optimization algorithm designed to solve the
data clustering problem needs to have the capability of searching the solutions around
the neighborhood of good solutions and also capturing those solutions that are far away
from the poor solutions. In order to design an optimization algorithm that achieves the
aforementioned capability, the programmer has to concentrate on how to update the
position vectors of the solutions in an efficient manner.

Recently, Moth Flame Optimization (MFO) [42] for solving global optimization prob-
lems and real-world applications is proposed. The effectiveness of MFO in terms of
population diversity and convergence rate has already been justified while solving multi-
faceted problems. A new method based on the MFO for data clustering is proposed in this
paper. The competitiveness of the MFO such as fast convergence towards the global opti-
mal solution and ability to avoid local optima is utilized in this study. Our main objective
is to divide the data objects into clusters using MFO with better accuracy and complete
coverage of search space to the existing methods. In short, the novelty and contribution of
this paper are highlighted below.

• MFO based approach for data clustering is presented.
• The proposed approach is evaluated using 12 machine learning benchmark datasets.
• The quality of the solutions produced by the proposed approach is compared against

five well-known algorithms.
• Three statistical tests have been performed to measure the quality of the proposed

approach statistically.
• Based on experimental values, statistical values, and convergence curves, the efficacy

of the proposed approach is justified.

The rest of the paper is structured as follows. In Section 2, the fundamental concepts
of data clustering and the MFO algorithm is illustrated. Section 3 explains the proposed
approach in detail. In Section 4, the benchmark datasets and experimental setup are
described. The result analysis and discussion are given in Sections 5 and 6. Section 7
highlights the conclusions and future research directions.

2. Basic Concepts
2.1. Clustering

Data clustering is a method to group the given set of N data objects into K clusters.
The primary objective of clustering is that the data objects belong to the same cluster must
be highly similar, whereas the data objects must show high dissimilarity to those belonging
to different clusters [43,44]. The similarity and dissimilarity are measured using Euclidean
distance. Precisely, the sum of the square of Euclidean distances between each data object
and its associated cluster center is calculated. Hence, data clustering intents to minimize
the sum of intra-cluster distances. Formally it can be defined as follows:

Let dataset O = {O1, O2, . . . ON}T contains N data objects each with D attributes
(dimensions) i.e., Oi = {o1

i , o2
i , . . . oD

i }, for i = 1 to N. The scalar value od
i denotes the dth

attribute of ith data object Oi. In this way, the whole dataset forms a matrix of N × D order
such as

O =

O1
...

ON

 =

 o1
1 o2

1 · · · oD
1

...
...

...
...

o1
N o2

N · · · oD
N

 (1)

At the end of clustering process a set Z of K cluster formed as Z = Z1, Z2, . . . ZK. Each
object belongs to exactly one of the formed K clusters such that objects sharing the same
cluster are most similar, while objects belonging to separate clusters should be sufficiently
distinct. The produced clusters and dataset should also adhere to the following criterion:

1. Zk 6= ∅ ∀k = 1 to K
2. Zu ∩ Zv = ∅ u, v = 1 . . . K; u 6= v

3.
K⋃

k=1
Zk = O
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In order to identify clusters and their most suitable data objects, Equation (2) is used
as a fitness function in this paper to achieve the above objectives.

F(O, Z) =
N

∑
i=1

K

∑
j=1

wij||(Oi − Zj)||2 (2)

where the fitness value F(O, Z) is to be minimized. The Euclidean distance between a ith

data object, Oi and the jth cluster center, Zj is ||(Oi − Zj)||. wij is the weight associated
with data object Oi and cluster j. The value of wij is assigned to 1 if ith data object is with
jth cluster, else wij = 0.

2.2. Moth Flame Optimization (MFO)

The MFO [42] is a swarm-based optimization algorithm to solve global optimization
problems. This algorithm depicts moths intelligence used to navigate in nature which is
known as transverse orientation. The algorithm assumes moths and their positions to
be candidate solutions and problem’s variables, respectively. Moths can fly in multidi-
mensional search domains with changing their position vectors. Like other optimization
algorithms, MFO initializes candidate solutions randomly within the boundary range
as follows.

Sp = l̂ + β.(û− l̂) (3)

where Sp(1 ≤ p ≤ P) is the pth solution and P is the population size. β is a random
number in (0, 1). l̂ and û represent the lower and upper bounds for the problem taken
under consideration and . is a point-by-point multiplication. The population i.e., set of all
solutions are represented in P× D size matrix form as follows.

M =


S1,1 S1,2 · · · · · · S1,D
S2,1 S2,2 · · · · · · S2,D

...
...

...
...

...
SP,1 SP,2 · · · · · · SP,D

 (4)

where D the number of variables, represent the dimension of the problem taken under
consideration. After random initialization, each solution is evaluated using fitness function
and stored in a matrix of size P× 1 as follows.

FM =


FS1
FS2

...
FSP

 (5)

where FSp is the fitness value of pth solution. Another component in MFO algorithm
is flames. Similar to the moths, flames are also matrix of size P × D and represented
as follows.

F =


F1,1 F1,2 · · · · · · F1,D
F2,1 F2,2 · · · · · · F2,D

...
...

...
...

...
FP,1 FP,2 · · · · · · FP,D

 (6)

The fitness of each flame is evaluated and stored in a matrix of size P× 1 as follows.

FF =


FF1
FF2

...
FFP

 (7)
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Here, it is important to note that both moths and flames are solutions. The difference is,
moths represent the candidate solutions and work as search agents to capture the optimal
solution. On the other hand, flame keeps the top solutions searched so far and ensures that
the best solution is never lost.

Moths progress in search space is controlled through logarithmic spiral function,
which simulates moth’s transverse orientation navigation. The positions of the pth moth Sp
is updated using following function:

L(Sp, Fq) = Dp.ebt.cos(2πt) + Fq (8)

where Dp represents the distance between the pth moth and qth flame, t is a random number
that varies from −1 to 1, and b is a constant used to define the shape of the logarithmic
spiral. Here, Dp is calculated as follows.

Dp = |Fq − Sp| (9)

where Sp and Fq are the pth moth and qth flame, respectively. The process continues until
the termination condition is met. In the next Section, MFO guided approach for data
clustering is presented.

3. Moth Flame Optimization for Data Clustering

The Moth-flame optimization algorithm is one of the nature-inspired algorithms to
solve optimization problems. Since data clustering is one of the NP-hard problems, MFO is
a viable candidate to solve it. MFO is a stochastic algorithm and can produce an optimal
or near-optimal solution efficiently. It is also designed in such a way that it avoids local
optima and converges towards a globally optimal solution. This motivates us to employ
MFO for identifying clusters of data objects in the given datasets.

As mentioned in definition of clustering problem, the number of clusters K is prede-
fined, finally represented as Z = Z1, Z2, . . . ZK. Each cluster Zk, k = 1 to K, preserves its
centre. In order to find optimal solution of clustering problem using MFO algorithm, each
moth corresponds to K cluster centres. Let M = {S1, S2, . . . SP)}T is the set of P moths, the
pth moth Sp is represented as

Sp =


Sp1
Sp2

...
SpK

 =


s1

p1 s2
p1 · · · sD

p1
s1

p2 s2
p2 · · · sD

p2
...

...
...

...
s1

pK s2
pK · · · sD

pK

 (10)

where, Spk is the centre of kth cluster in the pth moth. Precisely, Zpk = Xi, ∀ k = 1 to K, i.e.,
[s1

pk, s2
pk, . . . sD

pk] = [x1
i , x2

i , . . . xD
i ], ∃! i ∈ [1, P], a unique data object of the dimension D from

the dataset. In general, the set of moths is represented in the form of matrix of the order
(PK× D) as:
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M =



S1
...

Sp
...

SP

 =



S11
...

S1K
...

Sp1
...

SpK
...

SP1
...

SPK



=



s1
11 s2

11 · · · sD
11

...
...

...
...

s1
1K s2

1K · · · sD
1K

...
...

...
...

...
...

...
...

s1
p1 s2

p1 · · · sD
p1

...
...

...
...

s1
pK s2

pK · · · sD
pK

...
...

...
...

...
...

...
...

s1
P1 s2

P1 · · · sD
P1

...
...

...
...

s1
pK s2

pK · · · sD
pK



(11)

The proposed approach models the clustering as a minimization problem where intra-
cluster distance work as objective function as mentioned in (2). The fitness of each moth is
computed and stored in PK× 1 order column vector FM.

FM =



FS1
...

FSp
...

FSP

 =



FS11
...

FS1K
...

FSp1
...

FSpK
...

FSP1
...

FSPK



(12)

Flames F = {F1, . . . Fq . . . FP}T and corresponding fitness FF = {FF1, . . . FFq . . . FFP}T

matrices are populated with sorted moths positions and their respective fitness in ascending
order with respect to fitness. Here ∀q, q = 1 to P, Fq = St such that St ∈ M and <
FF1, FF2 . . . FFP > are sorted in ascending order.

Moths iterative update their positions according to logarithmic spiral function defined
in Equation (8) in turn update flames to retain top P solutions in ascending order until
termination condition met.

3.1. The Procedure

The following steps are derived from the above discussion for the proposed MFO
based clustering algorithm. It is assumed that dataset X of dimension D with N data objects
is in place and available for processing. The number of clusters K is also initialized with a
suitable integer.

Step1 Initialization: Populate the position of moths M randomly with P candidate
solutions, i.e., M = {S1, S2, . . . MP}T . Each candidate solution Sp includes K centres
of dimension D.

Step2 Moths Fitness Computation: Compute the fitness value of each moth initialized
in step 1 using (2) and store it in a column vector FM = {FM1, FM2, . . . FMP}T .
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Step3 Flames Generation: Store the moths fitness values column vector FM in sorted
form in flames fitness column vector FF = {FF1, FF2, . . . FFP}T . Generate the flames
F = {F1, F2, . . . FP)}T , by placing the individual moth corresponding to their fitness
value in FF respectively.

Step4 Update Moths Position: Each pth Moth’s positions Sp is updated using the pth

flame Fp and logarithmic spiral function.
Step5 Update Flames: Flames and their corresponding fitness are updated by taking top

P positions from previous flames and updated moth position.
Step6 Test Termination Condition: If the termination condition is satisfied, the algorithm

terminates. Otherwise, go to Step 4 for the next iteration.

The proposed MFO based clustering algorithm is summarized in Algorithm 1.

Algorithm 1 MFO based Clustering Algorithm.
Input:

(i) O = D dimension dataset with N data objects

(ii) K = Number of clusters

Output:

(i) Z = Set of K clusters {Z1, Z2 . . . ZK} of data objects

Begin

1: Initialize

P = population size

MaxIter = maximum number of iterations

∀P
p=1Sp = Each Moth with K random cluster centre

2: itr = 1

3: while itr < MaxItr do

4: for p = 1 to P do

5: for i = 1 to N do

6: Calculate the Euclidean distance of each data object Oi to cluster centres of Sp

7: Assign Oi to nearest cluster centres of Spk, k= 1 to K

8: Calculate the fitness using (2)

9: end for

10: end for

11: Populate Flames F and their fitness FF

12: Update Moths positions using Flames and logarithmic spiral function mentioned in 8

13: end while

14: Assign Z = F1

15: return Z

End

3.2. Analysis of Time Complexity

In this subsection, time complexity and space complexity are presented in terms of
big-oh notation. In this work, the common parameters for all approaches are the number
of independent runs R, population size P, and the maximum number of iterations Maxitr.
For the proposed approach, a careful observation indicates that the time complexity will be
O(Maxitr× P× N). Here, N is the number of data objects in a benchmark dataset taken
under consideration. Hence this number varies with respect to the dataset. Therefore, based
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on common parameters, the time complexity of the proposed approach is O(Maxitr× P).
On the other hand, space complexity is the total amount of memory space used by the
benchmark dataset and other variables during the program execution. Simple variables
such as P, Maxitr etc. need constant space as the size of these data types is constant.
Therefore, simple variables add a space complexity of O(1). However, to store the randomly
initialized and intermediate populations in the memory, it needs O(P× K× D). Here, K is
the number of clusters present in a benchmark dataset, whereas D is the number of features
in a benchmark dataset. P is the population size.

4. Experimental Setup

The quality of the solutions of the proposed algorithm was compared against Black
Hole Algorithm (BHA) [19], Multi-Verse Optimizer (MVO) [45], Harris Hawks Optimizer
(HHO) [46], Grey Wolf Optimizer (GWO) [47], and K-means algorithm [44]. The param-
eters of BHA, MVO, HHO, GWO, and k-means algorithms were set according to their
corresponding references [19,44–47], respectively. In this study, three parameters were
common for all the approaches. The values of these common parameters were considered
as follows:

• Population size = 50
• Maximum iterations = 1000
• Independent runs = 20

The details of benchmark datasets used in this study are given in Tables 1 and 2. All
the employed datasets used multivariate real valued features for characterizing individual
objects.

Table 1. Shape datasets.

Name #Instances #Features #Classes Year of Publication Constructor Dataset Objective

Flame 240 2 2 2007 L. Fu and E. Medico DNA microarray data
Jain 373 2 2 2005 A. Jain and M. Law Consensus function
R15 600 2 15 2002 C.J. Veenman et al. Maximum variance clustering
D31 3100 2 31 2002 C.J. Veenman et al. Maximum variance clustering

Aggregation 788 2 7 2007 A. Gionis et al.
Aggregating set of clusterings

into single one
Compound 399 2 6 1971 C.T. Zahn Detecting and describing gestalt clusters
Pathbased 300 2 3 2008 H. Chang and D.Y. Yeung Robust path-based spectral clustering

Spiral 312 2 3 2008 H. Chang and D.Y. Yeung Robust path-based spectral clustering

Table 2. UCI datasets.

Name #Instances #Features #Classes Year of Publication Constructor Dataset Objective

Iris 150 4 3 1936 R.A. Fisher To predict class of iris plant
Glass 214 9 7 1987 B. German To define the glass in terms

of their oxide content
Yeast 1484 8 10 1991 Kenta Nakai Predicting the cellular local-

ization sites of proteins
Wine 178 13 3 1988 M. Forina et al. Using chemical analysis to

determine the origin of wines

5. Results Analysis

The experimental results of algorithms for benchmark datasets are given in Tables 3 and 4.
These tables represent the quantitative values described with Equation (2). The statistical
metrics best, worst, mean and standard deviation of achieved objective values by partic-
ipating algorithms are compared. Since the performance of metaheuristic randomized
algorithms are not deterministic, best and worst values in different runs may reasonably
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represent upper and lower performance bounds respectively. The mean may represent the
center of all objective function values obtained in multiple runs. In addition to that stan-
dard deviation helps to understand the performance consistency of algorithm. Lower the
standard deviation, more consistent the performance of algorithm around mean. Table 5
represents the relative average rank of the algorithms considered in this study. This ta-
ble indicates that the proposed approach outperformed all other approaches considered
in this study. Whereas, the k-means algorithm observed the worst performance in all
benchmark datasets.

Iman-Davenport [48], Friedman [49], and Holm [50] tests were carried out to demonstrate
the effectiveness of the algorithms in solving the data clustering problem. Tables 6 and 7 show
the experimental values of Iman-Davenport and Friedman tests for the Shape and UCI
datasets, respectively. The rejection of the null hypothesis for both cases confirmed that
there was a significant difference in the performances of the algorithms. Therefore, a post
hoc test (Holm test) was performed to show the efficacy of the best performing algorithm
against the rest of the algorithms. Tables 8 and 9 represent the experimental results of the
Holm test for Shape and UCI datasets, respectively. The rejection of the null hypothesis
for k-means and MVO algorithms indicated that the proposed approach was statistically
better than these algorithms. The null hypothesis was not rejected for GWO, HHO, and
BHA which indicated that the performance of these algorithms was comparable with the
proposed approach. However, Table 5 shows that the proposed approach was better than
GWO, HHO, and BHA.

Table 3. Comparison of objective values of MFO, BHA, MVO, HHO, GWO, k-means algorithms.

Dataset Criteria MFO BHA MVO HHO GWO K-Means

Best 770.09978 769.9661518 770.4754577 769.9927543 770.132897 778.2235737
Worst 790.112976 799.8706082 883.7379944 881.5972455 862.9405109 882.2962778

Flame Mean 770.312682 770.0151324 820.6166847 773.1715904 774.9724323 825.0039174
Std 0.934345 0.048796151 25.9021804 2.197184147 3.456581526 32.9362996

Best 2574.2421 2574.241619 2587.729382 2574.24163 2574.596821 2649.716145
Worst 2895.455517 2872.057675 3317.743133 3243.435326 3351.013971 3348.696543

Jain Mean 2578.583781 2575.625939 2783.852076 2609.24115 2604.748372 2898.773998
Std 5.434534 1.216412722 152.227768 50.99513097 46.7066178 190.2690739

Best 281.130101 587.7144266 692.2279482 518.9798792 555.9717927 766.9066841
Worst 838.491757 882.9244343 914.6624615 912.7932725 933.2892028 901.9060829

R15 Mean 334.6612324 686.732183 830.124701 680.9312354 676.6880723 839.092725
Std 23.321267 34.76318932 59.42568736 54.95447158 56.28049001 38.30256467

Best 3736.584896 5242.218307 5896.654083 4882.938027 5136.104753 5894.744809
Worst 6637.059685 6420.08449 6606.096812 6675.235841 6768.271523 6706.157344

D31 Mean 4133.73861 5658.97124 6215.426144 5440.848598 5600.169046 6411.356336
Std 109.343697 121.1404795 172.050326 210.6444026 213.5167965 201.3093209

Best 2715.302689 2953.63615 3290.011686 2800.375925 2876.078555 3309.472801
Worst 3718.291098 3840.375256 3939.087978 3952.609942 3959.489207 3995.872968

Aggregation Mean 2789.291202 3158.484101 3672.354272 3080.247639 3112.108684 3731.786921
Std 2.53496107 89.73403431 165.7279226 146.4400151 159.5026523 183.3215657
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Table 3. Cont.

Dataset Criteria MFO BHA MVO HHO GWO K-Means

Best 1060.674781 1150.328041 1279.985246 1104.072942 1120.609246 1361.339487
Worst 1541.948974 1575.296587 1604.72384 1664.861515 1654.681553 1678.228393

Compound Mean 1094.9423 1248.529445 1423.281446 1246.770747 1273.87772 1493.276887
Std 13.2355642 35.63566319 79.71609294 66.55744532 71.96053364 86.13103684

Best 1424.899542 1427.872936 1492.322506 1425.176917 1429.842419 1553.128473
Worst 1723.311224 1676.139045 1901.140798 1857.587734 1897.234909 1893.710862

Pathbased Mean 1430.903602 1447.009762 1683.491592 1497.152685 1477.009539 1703.054894
Std 1.6570813 7.767526694 109.5463984 44.80756305 38.18020827 83.51041425

Best 1807.54755 1807.510795 1832.06375 1807.595765 1808.281132 1896.181926
Worst 2015.011175 1926.563714 2163.452999 2094.070221 2107.31257 2149.720749

Spiral Mean 1810.02073 1809.074549 1963.454005 1820.774656 1824.186315 1996.155056
Std 2.168093216 0.663986887 70.079482 10.71573663 17.47221358 73.8703224

Table 4. Comparison of objective values of MFO, BHA, MVO, HHO, GWO, k-means algorithms.

Dataset Criteria MFO BHA MVO HHO GWO K-Means

Best 254.5686207 344.1858768 427.2765574 302.6048772 360.4325397 482.794362
Worst 607.015981 579.4491593 657.6790272 653.2463069 682.8121634 668.037993

Glass Mean 286.3971108 394.6702904 563.6985645 375.0501591 441.7389961 592.7121853
Std 8.5864965 14.97574454 37.57437297 29.06851845 44.90562621 50.8694328

Best 96.6566922 102.1609776 141.6280996 105.4454434 91.06876813 155.9380716
Worst 187.7141075 196.0131392 231.7066358 220.9449828 186.6739426 215.8188002

Iris Mean 99.54558066 111.6727822 177.7656738 128.8472893 104.0780971 189.2905571
Std 0.04642567 2.418165686 18.17189821 9.40506885 9.580750806 19.36588562

Best 6176852.759 6877262.007 9811505.667 7416306.523 7788077.075 10335482.5
Worst 10526429.84 9127679.781 11418117.43 11754852.48 11731706.85 11731057.25

Wine Mean 6569678.631 7404560.759 10694275.29 8018085.743 8206163.788 10942626.63
Std 103291.3436 116859.092 411754.8747 253702.4043 229142.0161 351269.2404

Best 297.404773 399.60419 472.7558453 344.6453467 368.171845 528.3446203
Worst 642.528356 627.3754381 772.8618998 757.8158265 730.7458876 753.5334223

Yeast Mean 346.0571754 421.1546863 577.9115552 380.0538835 414.0104515 634.6032704
Std 1.325687567 4.639095791 53.82131146 13.81732081 35.1425062 55.9518587

Table 5. Average ranking of MFO, BHA, MVO, HHO, GWO, k-means algorithms based on mean of
objective values.

MFO BHA MVO HHO GWO K-Means

Shape Dataset 1.375 2.5 4.875 3 3.25 6
UCI Dataset 1 3 5 2.75 3.25 6

Table 6. Statistical results based on mean of objective Values for shape datasets.

Test Name Statistical Value p-Value Hypothesis

Iman-Davenport 27.69026 <0.00001 Rejected
Friedman 31.92857 <0.00001 Rejected
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Table 7. Statistical results based on mean of objective values for UCI datasets.

Test Name Statistical Value p-Value Hypothesis

Iman-Davenport 24.99996 <0.00001 Rejected
Friedman 17.85714 0.003131 Rejected

Table 8. Holm’s test statistical results based on mean of objective values for Shape datasets.

i Algorithms Statistical Value p-Value α/i Hypothesis

5 K-Means 4.94433 <0.00001 0.01 Rejected
4 MVO 3.74165 0.000183 0.0125 Rejected
3 GWO 2.00446 0.045027 0.0167 Not Rejected
2 HHO 1.73719 0.08237 0.025 Not Rejected
1 BHA 1.20267 0.22913 0.05 Not Rejected

Table 9. Holm’s test statistical results based on mean of objective values for UCI datasets.

i Algorithms Statistical Value p-Value α/i Hypothesis

5 K-Means 3.77964 0.000157 0.01 Rejected
4 MVO 3.02371 0.002497 0.0125 Rejected
3 GWO 1.70084 0.088981 0.0167 Not Rejected
2 BHA 1.51186 0.130585 0.025 Not Rejected
1 HHO 1.32287 0.185902 0.05 Not Rejected

Figures 1–6 show the convergence curves of algorithms for benchmark datasets taken
under consideration. These curves show that the convergence rate of the suggested ap-
proach was much better than other approaches. Comparing algorithms using the rate of
convergence allowed us to analyze how quick they captured the optimal solution.
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Figure 1. Variation in the best fitness values of algorithms for datasets (A): Flame, (B): Jain with respect to iterations.
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Figure 2. Variation in the best fitness values of algorithms for datasets (A): R15, (B): D31 with respect to iterations.
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Figure 3. Variation in the best fitness values of algorithms for datasets (A): Aggregation, (B): Compound with respect to
iterations.
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Figure 4. Variation in the best fitness values of algorithms for datasets (A): Pathbased, (B): Spiral with respect to iterations.
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Figure 5. Variation in the best fitness values of algorithms for datasets (A): Glass, (B): Iris with respect to iterations.
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Figure 6. Variation in the best fitness values of algorithms for datasets (A): Wine, (B): Yeast with respect to iterations.

6. Discussion

To further strengthen the results mentioned in the previous section, Tables 10–21
represent the best centroids for D31, R15, Jain, Flame, Aggregation, Compound, Path-
based, Spiral, Glass, Iris, Wine, and Yeast datasets, respectively obtained by the suggested
approach. In these tables, C1, C2, · · · , CK represent the best centroids obtained by the
proposed approach, whereas F1, F2, · · · , FD represent the feature/attribute number of
the dataset taken under consideration. Based on these centroids, the best value of the
sum of fitness values of the respective benchmark dataset in Tables 3 and 4 can be vali-
dated. By assigning each data object of a benchmark dataset to the respective centroid in
Tables 10–21, the best values in Tables 3 and 4 are ideally expected. This can be understood
as, by putting all the 240 data objects of the Flame dataset to one of the centroids between
the two centroids that are presented in Table 13, the best value of the fitness function found
by the MFO algorithm for the Flame dataset should be 770.09978. If this value (770.09978)
is not found, then either the best value (770.09978) reported in Table 3 or the best centroids
reported in Table 13 or both allocations are wrong. This method can be applied to validate
the best value of the remaining benchmark datasets.
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Table 10. The best centroids for D31 obtained by proposed approach.

Sr No. F1 F2

C1 20.74266809 27.59365568
C2 25.50196489 24.19312765
C3 11.57011301 8.50840516
C4 25.82211536 26.17793719
C5 27.37201232 10.57384902
C6 22.08486665 5.496210514
C7 23.58523731 8.888237338
C8 22.37594806 11.79535569
C9 4.83205804 26.81225277
C10 27.50193421 17.28098473
C11 15.01686978 27.19744896
C12 6.353870768 16.21830889
C13 16.35650612 9.106767944
C14 9.968810869 23.65566343
C15 9.153853041 14.9149635
C16 23.13295757 16.05797592
C17 8.101549272 10.37341231
C18 20.47807037 18.998876
C19 4.965093478 20.47535923
C20 26.53577694 17.86530094
C21 26.03937471 14.99664186
C22 25.47861108 6.28135661
C23 12.82474767 19.1136306
C24 15.19151476 22.86896706
C25 17.80680556 12.9098126
C26 19.90521872 23.37912391
C27 17.72660498 25.58120323
C28 11.71645567 14.69915113
C29 4.624749983 10.32233599
C30 27.65379495 21.47346273
C31 15.7736913 21.06158524

Table 11. The best centroids for R15 obtained by proposed approach.

Sr No. F1 F2

C1 4.189631608 12.80375838
C2 14.09450165 5.001272186
C3 8.337048918 9.062858908
C4 4.101436934 7.52179159
C5 13.97254731 14.93207276
C6 12.79155218 8.05529297
C7 8.230614736 10.92315677
C8 16.41253705 9.985521142
C9 8.646224944 16.24662551
C10 11.02097643 11.58322744
C11 9.551563967 12.06489806
C12 11.92041063 9.712070237
C13 9.967326937 10.10242535
C14 9.645716964 7.980621354
C15 8.663770617 3.772581562
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Table 12. The best centroids for Jain obtained by proposed approach.

Sr No. F1 F2

C1 17.03102423 15.16831711
C2 32.58459725 7.124899903

Table 13. The best centroids for Flame obtained by proposed approach.

Sr No. F1 F2

C1 7.206597929 24.16493517
C2 7.301802789 17.84894502

Table 14. The best centroids for Aggregation obtained by proposed approach.

Sr No. F1 F2

C1 21.42567886 22.85728939
C2 7.716573617 8.772216185
C3 32.40196366 22.05208852
C4 33.15470428 8.782254392
C5 8.938930788 22.91640128
C6 14.65416199 7.059473024
C7 20.82265142 7.249080316

Table 15. The best centroids for Compound obtained by proposed approach.

Sr No. F1 F2

C1 18.77723869 18.83342046
C2 32.64318475 16.28179213
C3 37.48781021 17.33548448
C4 10.65769689 19.33852537
C5 18.67265227 9.510696233
C6 12.61754072 9.616177793

Table 16. The best centroids for Pathbased obtained by proposed approach.

Sr No. F1 F2

C1 18.82903757 30.45142379
C2 11.48394236 15.73097
C3 26.16808047 16.08878767

Table 17. The best centroids for Spiral obtained by proposed approach.

Sr No. F1 F2

C1 22.64471503 22.66591643
C2 11.172831 16.53101706
C3 22.08495457 10.76472807
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Table 18. The best centroids for Glass obtained by proposed approach.

Sr No. F1 F2 F3 F4 F5 F6 F7 F8 F9

C1 1.531719668 13.06173613 3.510979859 1.394173337 72.84637382 0.162494133 8.41076102 0.025666476 0.007523229
C2 1.52797292 12.80840956 0.246399681 1.609315064 73.83969663 0.245748967 11.78973298 0.462253331 0.257117154
C3 1.52040748 13.35918127 0.219397152 2.308129393 70.18963569 6.207528249 6.479935975 0.152869685 0.03330514
C4 1.533244544 13.8560578 3.047071044 1.202271091 70.60025867 3.494911842 7.093112782 0.306091421 0.059719952
C5 1.512538966 13.84305467 2.912665802 0.875799374 72.00128777 0.047687008 9.335062282 0.08408769 0.032376928
C6 1.5112 14.43925402 0.008206 2.085299146 73.35680382 0.457194235 8.521081118 1.11995061 0.005501446
C7 1.513266442 12.92439889 2.072428469 0.29 72.17879752 0.585345503 9.906258882 0.045962136 0.026599321

Table 19. The best centroids for Iris obtained by proposed approach.

Sr No. F1 F2 F3 F4

C1 5.01229979 3.40333071 1.471677299 0.235472045
C2 6.732802141 3.067395056 5.623784792 2.106790702
C3 5.934098654 2.797688794 4.417324546 1.41492155

Table 20. The best centroids for Wine obtained by proposed approach.

Sr No. C1 C2 C3

F1 39,986.76285 43,544.94447 20,030.90947
F2 28,115.519 15,541.15111 13,971.82923
F3 45,777.07237 35,143.40404 31,390.39269
F4 28,154.45346 21,489.64815 33,270.71013
F5 21,025.39322 25,555.71232 19,697.48292
F6 16,405.36654 46,363.61618 27,124.14348
F7 16,940.6724 35,341.31586 22,796.4139
F8 37,050.85547 18,628.032 29,821.29914
F9 19,508.26413 31,543.63104 24,125.44547
F10 32,628.78338 23,408.28137 15,972.93531
F11 10,576.51405 31,095.9809 29,682.27216
F12 14,613.20707 45,340.52047 34,586.81203
F13 16,507.21954 37,817.65194 10,303.62763

Table 21. The best centroids for Yeast obtained by proposed approach.

Sr No. F1 F2 F3 F4 F5 F6 F7 F8

C1 0.757337919 0.142268616 0.827461959 0.001450393 0.527740868 0.771304322 0.630304293 0.383528402
C2 0.781314193 0.71779793 0.419456881 0.377730495 0.560817461 0.015464843 0.511164619 0.170202938
C3 0.496325357 0.491261885 0.499102561 0.234178288 0.500528038 0 0.504793757 0.25014915
C4 0.131413932 0.34929326 0.393064657 0.841116915 0.704378018 0.212988264 0.518108105 0.444142521
C5 0.957824847 0.549712612 0.456841891 0.964282073 0.540272009 0.393364094 0.288371843 0.448492104
C6 0.147129502 0.724553473 0.474471507 0.175108699 0.571043788 0.746038613 0.534680335 0.185879771
C7 0.430257651 0.47424918 0.534401249 0.225056925 0.500017048 0 0.478658653 0.655020513
C8 0.371314927 0.342973839 0.518372939 0.135213842 0.521916885 0.016021841 0.545742633 0.275096267
C9 0.292646344 0.132663231 0.270567884 0.035813911 0.505437432 0.366876625 0.08142005 0.187474957
C10 0.411909662 0.491403883 0.541493781 0.519251596 0.546134059 0.000446405 0.4844054 0.113730494

7. Conclusions and Future Research Directions

Various optimization algorithms based on natural phenomena have been used to
solve complex problems. Moth flame optimization algorithm is one of them that uses
the navigation behavior of moths at night. In this paper, a moth flame optimizer guided
approach is suggested for data clustering. The effectiveness of the suggested method
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is validated using twelve standard benchmark datasets. Various comparisons using the
experimental values have proved the effectiveness and competitiveness of the suggested
method. The proposed approach achieves better accuracy and complete coverage of search
space in comparison to the existing methods.

In the future, research can be carried out to solve some other real-world problems
of clustering such as optimal controller selection in wireless sensor networks, controller
placement problems in a software-defined network, clustering in image segmentation by
using the proposed approach. The suggested approach can also be extended to solve
multiobjective optimization problems.
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