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Abstract: Optical fiber sensors (OFS) are a potential candidate for monitoring physical parameters in
nuclear environments. However, under an irradiation field the optical response of the OFS is modi-
fied via three primary mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced
emission (RIE), and (iii) radiation-induced compaction (RIC). For resonance-based sensors, RIC
plays a significant role in modifying their performance characteristics. In this paper, we numerically
investigate independently the effects of RIC and RIA on three types of OFS widely considered for
radiation environments: fiber Bragg grating (FBG), long-period grating (LPG), and Fabry-Perot
(F-P) sensors. In our RIC modeling, experimentally calculated refractive index (RI) changes due to
low-dose radiation are extrapolated using a power law to calculate density changes at high doses.
The changes in RI and length are subsequently calculated using the Lorentz–Lorenz relation and
an established empirical equation, respectively. The effects of both the change in the RI and length
contraction on OFS are modeled for both low and high doses using FIMMWAVE, a commercially
available vectorial mode solver. An in-depth understanding of how radiation affects OFS may
reveal various potential OFS applications in several types of radiation environments, such as nuclear
reactors or in space.

Keywords: fiber Bragg grating (FBG); long-period grating (LPG); Fabry-Perot (F-P); radiation effects;
optical fiber sensors

1. Introduction

Nuclear power is a potential clean energy solution to the world’s ever-increasing
energy demands [1,2]. Power-producing reactors require little in-core instrumentation;
however, accurate in-pile measurements are required to qualify new nuclear fuels or extend
the burnup of existing fuel designs. Typical commercial electronic sensors often fail under
radiation environments such as those encountered in nuclear reactors, so an alternative
approach is needed to monitor physical parameters such as temperature, strain, and pres-
sure [3–7]. Due to their high immunity to electromagnetic interference, optical-fiber-based
technologies are considered potential candidates for in-pile nuclear environments [3,6].
However, an in-depth understanding of how radiation affects optical fibers and optical fiber
sensors (OFS) is required to ensure their reliability and survivability. Early work has shown
that three types of resonance-based OFS—fiber Bragg grating (FBG), long-period grating
(LPG), and Fabry-Perot (F-P)—have been widely tested in nuclear environments [8–15].
Studies show that the survivability and performance of OFS in nuclear environments
largely depends on the chemical composition of the fibers, the nature of the irradiation,
the manufacturing conditions, and the wavelength of light used [3,16]. However, the
viability of OFS under a known radiation field is threatened due to radiation-induced
modification of their fiber optic properties via three mechanisms: (i) radiation-induced
attenuation (RIA), which increases the linear absorption due to radiation-induced defects;
(ii) radiation-induced emission (RIE), which adds noise to the useful signal through emitted
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radiation; and (iii) radiation-induced compaction (RIC), which alters the density and hence
the refractive index (RI) of the optical fibers via a knock-on process [3,6].

Radiation-induced attenuation (RIA) increases the linear absorption of the fiber mate-
rial due to radiation-induced defects [3]. RIA reduces the amplitude of the spectral response
and is caused by radiation-induced defects in silica material, resulting in modification of
the fiber absorption band. These defects are primarily a function of fiber composition, and
a significant amount of work has been performed to mitigate such defects, including study-
ing fiber composition and irradiation conditions, choosing an appropriate wavelength of
light, and optimizing manufacturing conditions. [3,5–9,17]. The fiber darkening associated
with RIA modifies the complex RI of the material in accordance with a Kramer–Kronig
relation [18], and this change in RI is uniform throughout the sensor. The change in RI
modifies the numerical aperture of the fiber, again showing up as attenuation. Hence, one
can say that RIA attenuates the signal received, without affecting the frequency response
of the sensor.

Radiation-induced compaction (RIC) occurs when radiation modifies the density of a
fiber, leading to compaction in the overall fiber structure. It has been reported that, under
fast neutron irradiation, silica tends to undergo roughly 3% density increase that results in
changing the RI by 0.5% [19,20]. This density change varies the volume if the compaction is
homogeneous [19,20]. The change in density due to RIC results in a significant spectral shift
in the response of resonance-based sensors [16]. In other words, RIC shifts the resonant
wavelength position and changes the magnitude of the propagating signal, thus corrupting
the signal response. Therefore, while RIA modifies the signal strength, RIC modifies both
the intensity and wavelength shift response. Subsequently, RIC is the primary cause of
data error that occurs in the performance of resonance-based sensors.

Radiation-induced emission (RIE) adds noise to the useful signal through emitted
radiation [3] from defects excited by radiation or Cherenkov emissions [8]. RIE is generated
when pre-existing or radiation-induced point defects are excited by incoming particles,
causing a parasitic signal (radiation-induced luminescence or Cherenkov emissions) [21].
This parasitic signal superimposes onto the transmitted data and decreases the signal-
to-noise ratio of the fiber system. At room temperature, thermal bleaching of radiation-
induced point defects during or after irradiation partially recovers the transmission. It
was suggested that thermal annealing (close to room temperature) only untraps the charge
carriers from the defect sites, but defect sites remain unchanged and filled up again during
the irradiation [22]. For applications in which the sensor operates in the infrared domain,
the effect of RIE is neglected. RIE is generally considered in the ultra-violet (UV)-visible
wavelength spectrum [3]. As a result, we did not analyze the effects of RIE on these sensors
at the infrared wavelength.

In this paper, we numerically analyze the macroscopic effects of RIC on three resonance-
based types of sensors: FBG, LPG, and F-P. We started our simulation by looking the
effects of variation of RI on these sensors caused by gamma radiation. As the radiation
causes change in the structure of optical sensors, which results in macroscopic changes,
for example, RI change in the fiber material, the simulation indirectly also analyzes the
radiation effects on the optical structure. We obtained the values for radiation-induced
RI changes in optical fibers, as experimentally determined by Kher et al. [18]. Based on
the radiation-induced RI values in [18], we used the Lorentz–Lorenz relation to calculate
the corresponding density and length change in the optical fiber and then studied its
effects on sensor response. We used established empirical models to extrapolate the RI
variation at higher doses to predict the response of these sensors at such doses. Finally,
we hypothesized the usability of each sensor in various radiation environments. We also
included our preliminary results on how RIA affects the performance of these sensors. The
paper is divided up as follows: Section 2 describes the modeling of FBG, LPG, and F-P
sensors; Section 3 analyzes the effects of RIC on these three types of sensors at low doses;
Section 4 investigates how RIC affects these three types of sensors at high doses; Section 5
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discusses the effects of RIA on these three types of sensors; and Section 6 offers concluding
remarks based on our observations.

2. Setting up the OFS Models

To numerically investigate how radiation affects optical performance, we modeled
three types of resonance-based sensors (FBG, LPG, and F-P) using a robust and fully vec-
torial mode solver (FIMMWAVE from PhotonDesign) [23]. This simulation software can
solve a large variety of waveguides made of almost any material and any geometry as it
supports a rich number of complementary algorithms. FIMMPROP, the integrated part of
FIMMWAVE, is a tool for simulating propagation in optical waveguides. For modelling
grating based sensors, FIMMPROP uses either Eigenmode Expansion (EME) method or
rigorous coupled mode theory (RCMT). SMF-28 optical fiber parameters used for simula-
tion purposes throughout the paper are: cladding RI = 1.444 [24], core diameter = 8.2 µm,
cladding diameter = 125 µm, mode field diameter = 10.4 ± 0.5 µm, and numerical aper-
ture = 0.14. The following sections describe the base model for the three types of OFS in
this paper.

2.1. Fiber Bragg Grating (FBG)

FBG inscription in the core of the fiber using femtosecond (fs) laser radiation and
changing the refractive index of the core have found potential applications in nuclear
environments, as reported in [9,10,17,25,26]. An FBG is created by generating a periodic
RI modulation in the fiber core. In an FBG, the fundamental guided mode couples to
the counterpropagating guided mode when the following phase-matching condition is
satisfied [27]:

λB = 2ne f f ΛFBG (1)

where λB is the Bragg wavelength, ne f f is the effective RI of the core, and ΛFBG is the
grating period. The Bragg wavelength is very sensitive to any external changes in physical
parameters such as temperature and pressure. A schematic of the FBG is shown in Figure 1a,
where ncore and nclad are the RIs of the core and cladding, respectively. To design an FBG in
FIMMWAVE, we used a grating period of 0.5353 µm to obtain a Bragg peak near 1550 nm.
The effective RI we obtained for the designed FBG is 1.447714. The reflection spectrum of
the designed FBG is shown in Figure 1b with a distinct peak at 1550 nm observed.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 17 
 

 

4 investigates how RIC affects these three types of sensors at high doses; Section 5 dis-
cusses the effects of RIA on these three types of sensors; and Section 6 offers concluding 
remarks based on our observations. 

2. Setting up the OFS Models 
To numerically investigate how radiation affects optical performance, we modeled 

three types of resonance-based sensors (FBG, LPG, and F-P) using a robust and fully vec-
torial mode solver (FIMMWAVE from PhotonDesign) [23]. This simulation software can 
solve a large variety of waveguides made of almost any material and any geometry as it 
supports a rich number of complementary algorithms. FIMMPROP, the integrated part of 
FIMMWAVE, is a tool for simulating propagation in optical waveguides. For modelling 
grating based sensors, FIMMPROP uses either Eigenmode Expansion (EME) method or 
rigorous coupled mode theory (RCMT). SMF-28 optical fiber parameters used for simula-
tion purposes throughout the paper are: cladding RI = 1.444 [24], core diameter = 8.2 µm, 
cladding diameter = 125 µm, mode field diameter = 10.4 ± 0.5 µm, and numerical aperture 
= 0.14. The following sections describe the base model for the three types of OFS in this 
paper. 

2.1. Fiber Bragg Grating (FBG) 
FBG inscription in the core of the fiber using femtosecond (fs) laser radiation and 

changing the refractive index of the core have found potential applications in nuclear en-
vironments, as reported in [9,10,17,25,26]. An FBG is created by generating a periodic RI 
modulation in the fiber core. In an FBG, the fundamental guided mode couples to the 
counterpropagating guided mode when the following phase-matching condition is satis-
fied [27]: 𝜆஻ = 2𝑛௘௙௙Λி஻ீ  (1)

where 𝜆஻ is the Bragg wavelength, 𝑛௘௙௙  is the effective RI of the core, and Λி஻ீ is the 
grating period. The Bragg wavelength is very sensitive to any external changes in physical 
parameters such as temperature and pressure. A schematic of the FBG is shown in Figure 
1a, where 𝑛௖௢௥௘ and 𝑛௖௟௔ௗ are the RIs of the core and cladding, respectively. To design an 
FBG in FIMMWAVE, we used a grating period of 0.5353 µm to obtain a Bragg peak near 
1550 nm. The effective RI we obtained for the designed FBG is 1.447714. The reflection 
spectrum of the designed FBG is shown in Figure 1b with a distinct peak at 1550 nm ob-
served. 

 
 

(a) (b) 

Figure 1. (a) FBG schematic, where 𝑛௖௢௥௘, 𝑛௖௟௔ௗ, and Λி஻ீ  are the RIs of the core, cladding, and grating period, respec-
tively; (b) the reflection spectrum of the designed FBG for Λி஻ீ= 0.5353 µm and grating strength (∆𝑛) = 10ିସ. Figure 1. (a) FBG schematic, where ncore, nclad, and ΛFBG are the RIs of the core, cladding, and

grating period, respectively; (b) the reflection spectrum of the designed FBG for ΛFBG= 0.5353 µm
and grating strength (∆n) = 10−4.
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2.2. Long-Period Grating (LPG)

LPGs have also been tested in nuclear environments [12,13,28]. An LPG is similar to
an FBG except that it has a larger grating period (100–1000 µm as opposed to 0.1–1 µm).
In LPG, light coupling occurs between the fundamental core mode and a number of co-
propagating cladding modes. Depending on the phase-matching condition, such coupling
results in a number of discrete attenuation bands in the transmission spectrum [29,30]. The
wavelength at which coupling takes place is called the “resonance wavelength” and is
given by [30]:

λR = (ne f f ,co − nm
e f f ,cl)ΛLPG (2)

where λR is the resonance wavelength, ne f f ,co is the effective RI of the guided core mode,
nm

e f f ,cl is the effective RI of the mth order cladding mode, and ΛLPG is the grating period.
The resonance wavelengths are dependent on the grating period and RIs of the fiber core
and cladding. The LPGs are very sensitive devices (even compared to FBG), i.e., a small
change in the physical parameters can cause a large shift in the resonance wavelength.
LPGs are typically used to sense temperature, pressure, and external RIs [31,32]. We chose
an LPG with a grating period of 348 µm in order to achieve at least one resonance dip
close to the 1550 nm wavelength, for which several sources and detectors are commercially
available. The schematic and transmission spectrum of the designed LPG are shown
in Figure 2a,b, respectively. For a uniform grating, the cladding modes featuring only
circularly symmetric field couples to the core mode. Analysis of cladding mode resonance
and coupling coefficients shows that low-order even modes (e.g., 2, 4, and 6) contain very
little power in the fiber core, whereas low-order odd modes (e.g., 1, 3, and 5) have a peak
localized in the core [33]. As a result, the coupling between the low-order even modes and
the fundamental core mode of the fiber is expected to be very weak. In our designed LPG,
the core mode couples to five odd-number cladding modes (LP0,3, LP0,5, LP0,7, LP0,9, and
LP0,11), thus supporting the cladding mode analysis discussed in [33]. Please note that the
resonance wavelength for coupling to the LP0,11 cladding mode is situated at 1550 nm.
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Figure 2. (a) LPG schematic, where ncore, nclad, and ΛLPG are the RIs of the core, cladding, and
grating period, respectively; (b) transmission spectrum of the designed LPG for ΛLPG = 348 µm and
grating strength (∆n) = 6 × 10−4.

2.3. Fabry-Perot (F-P)

F-P sensors feature several potential applications for nuclear environments, due to
their insensitivity to radiation [14,15,34].

An F-P interferometer consists of two reflective surfaces surrounding a cavity. In an
intrinsic F-P interferometer, the fiber, mirrors, and cavity are made within a single fiber.
In contrast, in extrinsic F-P interferometer (EFPI) sensors, the cavity (containing either a
different medium or air) is situated between a fiber tip and an external reflecting mirror. A
schematic of an EFPI is shown in Figure 3a. The interferometric fringes of the simulated
F- P sensor with a cavity length of 200 µm are shown in Figure 3b. Please note in all the
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designs of FBG, LPG, and F-P simulated in the paper, the same fiber parameters values as
described in Section 2 were used.
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Figure 3. (a) Schematic of an EFPI, where I0, IR, and LC are the incoming light, reflected light, and
cavity length, respectively; (b) interferometric fringes obtained due to interference within the cavity
length LC = 200 µm.

3. Numerical Analysis of How RIC Affects OFS at Low Doses

To study how RIC affects OFS at low doses, we applied the change in RI values that
resulted from the RIC observed by Kher et al. [18] (see Table 1) to our simulation models.
Kher et al. derived the gamma-ray-induced RI change of a single-mode fiber by observing
the resonance wavelength shift in an LPG. They used CO2 laser to inscribe the LPG.
However, please note that inscription techniques of gratings play a crucial role in sensing
different physical parameters in radiation environment. It is well known that radiation
significantly affects the basic characteristics of FBG sensors such as peak wavelength and
spectral width, and the amplitude and magnitude of these changes largely depend on
the grating type and fabrication technique [8]. Similar to FBG, radiation also changes
the structural parameters of LPG; again, it depends on the inscription technique, grating
type, and composition of fibers [13,28,35]. It has been reported that fs-etched compared to
conventional UV irradiated gratings can survive for a long time in radiation environment
without significant degradation of gratings parameters [8–10]. In this section, we present
our simulation results regarding how RIC affects the aforementioned sensors, based on
these observed changes in the RI.

Table 1. Radiation-induced RI changes in a B/Ge codoped fiber reported by Kher et al. Adapted
with permission from ref. [18]. Copyright 2013 IEEE.

Dose (kGy) Refractive Index Change (∆ncore)

6.5 0.21 × 10−4

10.4 0.25 × 10−4

102 0.60 × 10−4

1049 1.60 × 10−4

1540 1.85 × 10−4

3.1. RIC Effects on FBG

The radiation-induced RI changes shown in Table 1 are applied in the FBG model to
observe their effects on the FBG spectra. Please note that we added the RI change values
to the grating portion (in both high and low RIs). Figure 4 plots the Bragg wavelength
changes due to RIC at various doses. We observed that increasing the dose resulted in a
redshift in the Bragg peak, since increased RI shifts the Bragg wavelength to the longer
wavelength side, as per Equation (1). A high dose (1540 kGy) provides the largest Bragg
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peak amplitude in comparison with a no-dose condition—something unusual for an FBG
under a radiation field. It was reported that increasing the radiation dose degrades the
amplitude of the Bragg peak, due to the significant attenuation caused by radiation-induced
color-center generation [3,6,26]. If the attenuation effects are not considered, Figure 4 would
indicate that an increasing RI change resulting from the radiation dose is accompanied
by an increase in the amplitude of the Bragg peak, since we are independently analyzing
the RIC effect. While our preliminary simulation results showed a redshift of the Bragg
wavelength as a function of increasing doses, this contradicted the experimental findings
reported in [17,26,36]. In the next section, we discuss another key aspect—one that involves
RIC effects and considers the length change—for accurately predicting the resonance shift
behavior in FBG.
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3.2. RIC Effects on FBG Considering Length Change

While our simulation results for FBG demonstrate a redshift of the Bragg wavelength
(λB) due to the radiation-induced RI change, experimental results reported in [17,26,36]
showed a radiation-induced blueshift of λB. Comparing the simulation results to the
experimental work reported in [17,26,36] suggests that additional parameters must be
considered for simulating our designs.

In our earlier simulation, we did not consider material density variations due to
changes in the RI, as described by the Lorentz–Lorenz relation [16] given by:

n2 − 1
n2 + 2

=
4π

3
Nα =

4π

3

(
ρNA

M

)
α (3)

where n, ρ, NA, M, and α are the RI, density of the material, Avogadro number, molecular
weight, and electronic polarizability, respectively.

A change in density modifies the volume of the fiber material and, hence, the FBG/LPG
grating period as well as the cavity length for the F-P interferometer. The density change
relates to the volumetric change and can be represented by the following expression:

ρ2 − ρ1

ρ2
=

v1 − v2

v1
= Cv (4)

where ρ1, v1, ρ2, v2, and Cv are the initial density, initial volume, final density, final volume,
and volumetric compaction, respectively. Considering the isotropic change in volume,
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the relationship between volumetric compaction (Cv) and linear compaction (Cl) can be
expressed by the following equation:

Cl = 1 − (1 − Cv)
1/3 (5)

A linear compaction is required to observe the effect of the length (or grating period)
change caused by radiation on the resonance-based sensors. The changes in density and
length due to radiation-induced RI change values were calculated using Equations (3)–(5),
and the calculated results are shown in Table 2. Along with the radiation-induced RI
change, we added the grating period change (linear compaction) to our FBG model in
order to see their overall effect on the FBG spectra.

Table 2. Calculated values of density and length compaction (based on the RI values) using Equa-
tions (3)–(5).

Dose (kGy) ∆ncore
∆ρ
ρ1

(%) Cv(%) Cl(%)

0 0 0 0 0
6.5 0.21 × 10−4 0.00403 0.00403 0.00134

10.4 0.25 × 10−4 0.00479 0.00479 0.00159
102 0.60 × 10−4 0.01152 0.01152 0.00384

1049 1.60 × 10−4 0.03071 0.03069 0.01023
1540 1.85 × 10−4 0.03551 0.03549 0.01183

Figure 5 shows the Bragg wavelength shift as a function of dose when both the
radiation-induced RI and length changes were considered for simulation. It is observed
that, this time, the Bragg wavelength sees a blueshift with increasing doses.
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While the increase in the RI produces a redshift of the Bragg wavelength, the com-
paction of length (reduced grating period) provides a competing blueshift. As the FBG
grating period is generally very small (0.5353 µm in our design), even a small change in
length caused by radiation induces a significant blueshift in the Bragg wavelength. Figure 5
reveals that the length-change effect on the Bragg wavelength compensates for the RI effect,
producing a zero Bragg wavelength shift up to 102 kGy. At higher doses (1049–1540 kGy),
the compaction effect on the Bragg wavelength dominates; as a result, the Bragg wave-
length shifts towards the shorter wavelengths, thus supporting the experimental results
reported in [17,26,36]. Please note that in [17,26,36], Nuetron-irradiation-induced shift was
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reported. However, both gamma and neutron irradiation alter the RI of the host fiber,
although their mechanisms for changing the RI are different [37].

3.3. RIC Effects on LPG

Here, we analyze how RIC affects the spectra of LPG. This is accomplished by in-
serting the radiation-induced RI values from Table 1 into our design. We assume no
radiation-induced change in the pure silica-based cladding RI. It has been reported that
pure-silica-based cladding composition has been shown to be resistant to gamma up-to
1 MGy due to the absence of precursors of radiation induced color centers like NBOHC
and E’-centers [38]. Since no radiation-induced change in the cladding RI is considered,
the resonance wavelength is expected to shift significantly due to the large effective RI
difference between the core and cladding (ne f f ,co − nm

e f f ,cl). As with FBG, the RI change
values due to radiation were added to the grating portion. Figure 6 shows the transmission
spectrum for the designed LPG when only the RI change due to radiation was considered
in the simulation. Please note that, throughout the paper, we only considered the resonance
wavelength shift of the LP0,11 cladding mode. The resonance wavelength is seen to shift
from 1550 to 1588.08 nm when the accumulated dose is increased from a no-dose condition
to 1540 kGy. This is due to the dependency of the resonance wavelength on the differential
RI between the core and cladding. The simulation results show good agreement with the
experimental results reported in [18], where the researchers demonstrated a redshift of the
resonance wavelength with increasing doses.
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Figure 6. RIC effects on the transmission spectrum of the designed LPG along with the resonance
wavelength shift (∆λR) for the LP0,11 cladding mode when dose is increased from 0 to 1540 kGy.

3.4. RIC Effects on LPG Considering Length Change

Figure 7 shows the combined effect of the radiation-caused RI and length changes on
the spectra of the designed LPG. It is seen from Figure 7 that the resonance wavelength shift
is slightly smaller than when the length change was not considered (Figure 6), due to the
competing blueshift effect induced by the length change effect. Since the grating period of
the designed LPG is 348 µm, a small change in the grating period due to the radiation does
not significantly affect the resonance wavelength. Furthermore, the resonance wavelength
shift of LPG under gamma radiation was observed, which cannot be attributed to changes
in grating period [18]. As a result, the effect of the RI on the LPG spectra dominates over
the length compaction effect, and the resonance wavelength shifts towards the longer
wavelength for increasing doses.
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3.5. RIC Effects on F-P

Here, we focus on how RIC affects F-P sensor performance. We designed an EFPI
in which the cavity is comprised of an air medium. We considered one end surface of
the cavity to be metal and the other to be the fiber facet. Because of the air cavity, the
radiation-induced RI change to the fiber did not affect the wavelength characteristics of the
fringes. As a result, the free spectral range (FSR)—namely, the spectral distance between
two adjacent fringe peaks—remained constant with increasing doses (Figure 8).
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3.6. RIC Effects on F-P Considering Length Change

It is necessary to consider the radiation-induced length change to observe how RIC
affects the designed F-P sensor, even though the cavity medium is air. For simulation
purposes, we considered a roughly 50-µm-long fiber segment exposed to radiation beyond
the fixing point, for example, as in [15], and compaction was calculated for that length.
The responses of the sensor can differ, depending on the choice of cavity length as well
as the fiber length exposed to a radiation field. For example, F-P sensors with different
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lengths of lead-in fibers were intentionally exposed to radiation, and compaction was
assessed on the fiber tips in [15]. The calculated length change taken from Table 2 was
used to simulate the F-P sensor. Figure 9 shows the fringe pattern and FSR of the designed
F-P sensor at different doses. We observed no change in the fringe position, owing to a
similarly negligible change in the effective cavity length. Of the three types of sensors
studied in regard to low-dose effects, the F-P sensor was found to be the most robust to
radiation. Thus, F-P sensors can be considered a potential candidate for measuring physical
parameters in nuclear environments when the accumulated dose reaches 1540 kGy.
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Figure 9. RIC effects on the interferometric fringes of the designed F-P when the dose is increased
from 0 to 1540 kGy, where FSR is the spectral distance between two adjacent fringe peaks for a
given radiation.

4. RIC Effects on OFS at High Doses

As discussed earlier, radiation alters the RI by means of compactions and creating
diferetnt types of defects in the host fiber. Several works have observed the gamma-
radiation-induced change in RI values in MGy doses [39–41], which are shown in Table 3.
It is seen that the change in RI is not consistent with the accumulated doses since several
factors, such as dose rate, composition of fibers, and irradiation temperature, can affect
the RI change. So far, we have considered radiation effects at lower doses. To study the
effects on OFS at high doses, we used the radiation-induced density values from Table 2
and fitted the relative density vs. dose plot using a power law fit (see Figure 10). Using the
fitting constant values, we calculated the density, RI, and length changes for the sensors at
higher doses of up to 7 MGy via the following power law equation [37]:

∆ρ

ρ1
= ADC (6)

where A is the material-dependent constant and C is another constant [37]. Based on
fitting parameters, we determined the values of A and C to be 0.00002059 and 0.3847,
respectively. By inserting the values of the fitting constants into Equation (6), the RI and
length compaction were calculated for doses of 1.6, 5, and 7 MGy. The extrapolated data
calculated by our approach is shown in Table 4. To validate our extrapolation, we found
three experimental works within MGy regime with their modified change in RI [37–39]
within the core shown in Figure 11 along with our extrapolated data (star marker). The
details of the three experimental works are given in Table 3.
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Table 3. Gamma-radiation-induced RI change in different compositional fibers at MGy dose.

Type of Fiber Dose Rate Total Dose ∆ncore Refs.

Telecom grade N/A 1.6 MGy ∼ 10−4 Gusarov et al. [39]
SMF-28 23 kGy/h 5 MGy 1.7 × 10−3 Kniazewski et al. [41]

Ge, N doped 20 kGy/h 7 MGy 3 × 10−4 Brichard et al. [40]
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Table 4. Calculated values for higher doses, as obtained by inputting the fitting constant values from
Figure 10 into Equation (6).

Dose ∆ncore
∆ρ
ρ1

(%) Cv(%) Cl(%)

1.6 MGy 1.87 × 10−4 0.03589 0.03587 0.01196
5 MGy 2.91 × 10−4 0.05580 0.05577 0.01859
7 MGy 3.31 × 10−4 0.06357 0.06353 0.02118
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It can be seen that our extrapolated data is consistent with the RI change reported by
Gusarov et al. [37] and Brichard et al. [38], while the data provided by Kniazewski et al. [39]
for 5 MGy is within the order of magnitude of our prediction. We limit our work to MGy
as we only found experimental validations within MGy levels. Please note that there
are different factors that alter the optical and mechanical properties of the fiber exposed
to gamma radiation, which has been discussed in the Section 1. In the next subsections,
we analyzed the effects of both RI and length change at these MGy doses for the three
sensor types.

4.1. RIC Effects on FBG

The effects of RIC on the FBG spectra at high doses, which are similar to those observed
at low doses, are shown in Figure 12, wherein, as is consistent with earlier observation,
we see a significant blueshift in the Bragg wavelength when increasing the dose from 0 to
7 MGy. As the radiation-induced changes in length compaction and RI are significant at
high doses, the Bragg wavelength shows a large blueshift of 0.039 nm. At high doses, the
length compaction effects on the Bragg wavelength completely dominate the RI effect by
producing a blueshift.
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4.2. RIC Effects on LPG

The effect of RIC on LPG at high doses is shown in Figure 13. It is seen that, as the dose
increases from 0 to 7 MGy, the resonance wavelength shifts significantly towards longer
wavelengths. As mentioned in Section 3.2, a small radiation-induced RI change creates a
large effective RI difference (ne f f ,co − nm

e f f ,cl) between the core and cladding modes. Table 4
shows that the radiation-induced RI change is large enough to produce a 86.14 nm redshift
of the resonance wavelength at a dose of 7 MGy. Although the radiation-induced length
compaction is large at high doses, it has little effect on the resonance wavelength shift. This
is because, compared to the grating period of the designed LPG, it is still very small. For
a better understanding of how radiation affects LPG, it is important to consider the RI
change in the coupled cladding modes from the phase matching curve in order to correct
the excessive shift of the resonance wavelength [42].
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4.3. RIC Effects on F-P

The effect of RIC on the spectrum of the F-P interferometer at high doses is shown
in Figure 14. Even at high doses, no change of fringe spacing can be observed. As the
exposed length utilized to observe the compaction effect was only 50 µm in our designed
F-P sensor, the radiation-induced length compaction remains very small compared to the
cavity length of 200 µm. The cavity length will change significantly—and hence the FSR as
well—if the length exposed to the radiation is large and the compaction is assessed using
that large length.
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4.4. RIC-Induced Temperature Error

The temperature sensitivities of SMF-28-based FBG and LPG sensors are 10 and
92 pm/◦C, respectively [9,16,29,31]. For F-P sensors, depending on their structure, the
sensitivity can differ: 13.6 pm/◦C [43], 1.56 and 1.87 nm/◦C [44], 5.2 nm/◦C [45], and
11.86 and 19.55 nm/◦C [46]. Radiation-induced shift in wavelength of fiber sensors causes
temperature error if these sensors are used for temperature sensing. Table 5 shows the
temperature errors of these three types of sensors at different doses. Please note that the
temperature error for the F-P sensor was calculated by considering the lowest sensitivity of
13.6 pm/◦C. We observe that, in LPG, a small change in core RI due to radiation induces
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a significant wavelength shift and hence the radiation-induced temperature error, most
probably as a result of not considering the radiation-induced RI change of the coupled
cladding modes. For FBG and F-P, even at high doses the radiation-induced temperature
error is quite small, as is acceptable in nuclear environments. We calculated errors based on
the wavelength shift for all sensors. While the maximum error in temperature measurement
for FBG is 3.9 ◦C, it is only 0 ◦C for F-P. Based on the wavelength shifts of the three types
of sensors, the F-P sensor seems to show the most radiation-resistant response under
high-radiation environments, both at low and high doses.

Table 5. Radiation-induced temperature errors in FBG, LPG, and F-P sensors at higher doses.

Dose
Temperature Error

FBG LPG F-P

1.6 MGy 2 ◦C 414 ◦C 0
5 MGy 3.7 ◦C 732 ◦C 0
7 MGy 3.9 ◦C 936 ◦C 0

5. RIA Effects on OFSs

In this section, we present the independent effect of RIA on the three types of OFS.
RIA darkens fibers under radiation environments, and is heavily dependent upon dopants
and defects [3,16,17]. Each different fiber composition will produce a different RIA effect.
However, the overall trends remain consistent for any type of fiber. The RIA values
obtained in [47,48] are shown in Table 6, and these were used when designing sensors in
FIMMWAVE. To compute the effect of RIA, we inserted into our sample FBG, LPG, and F-P
models (discussed in Section 2) the loss values from Table 6, as obtained from [47,48]. To
observe how RIA affects FBG and F-P, we assumed that a 5-m length of fiber was exposed
to radiation.

Table 6. RIA values obtained from [40,41].

Dose (kGy) Dose Rate (rad/min) Loss (dB/km) Loss (cm−1)

0 0 0 0
1 0.01 2.1 0.00009
1 0.1 2.96 0.00012
66 333 48 0.00208
85 167 50 0.00217

The intensity was then calculated using different radiation values for these sensors.
The RIA effects on the three types of sensors are shown in Figures 15 and 16. The amplitude
of the reflected light in FBG (Figure 15a) and F-P (Figure 16) is seen to reduce with increasing
RIA, as expected. The LPG sensor responded to increasing RIA with a larger dip in its
transmitted spectrum (improved contrast), whereas no change in contrast occurred for
FBG and F-P as a result of RIA. We believe this is because the sensor lengths for FBG and
F-P are very small compared to that of LPG. In the case of FBG, there was no contrast
variation, since RIA affects the Bragg and sidelobe peaks equally. It is also apparent from
Figures 15 and 16 that RIA only reduces the signal strength, without affecting the resonance
wavelength position. Future work is needed to include the effects of both RIC and RIA and
compare them against experimental results.
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6. Conclusions

The RIC effects on the three types of OFS have been explored at both low and high
doses. We modeled the base design for the three types of OFS and plotted their correspond-
ing spectra under no-dose conditions. Next, we showed numerically how a radiation-
induced change in RI and length affect the spectra of sensors at doses of up to 1540 kGy.
Upon observation of wavelength shift due to radiation, FBG, LPG, and F-P showed a
wavelength shift of 0.02, 37.5, and 0 nm at a dose of 1540 kGy, which corresponded to a tem-
perature errors of 2◦, 407◦, and 0 ◦C, respectively. The temperature errors indicated that the
F-P sensor has a radiation-insensitive response among the three discussed resonance-based
sensors. Next, we calculated the change in density, RI, and linear compaction at high doses
based on the values at low doses using power law equation. Then, the calculated values
were used in our model to study the effects of RIC at up to 7 MGy. Even at high doses, the
F-P sensor showed no shift of wavelength and hence no error in temperature measurement,
making it the best candidate for a nuclear environment, followed by FBG and then LPG.
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