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Abstract: Bearings are critical components found in most rotating machinery; their health condition
is of immense importance to many industries. The varied conditions and environments in which bear-
ings operate make them prone to single and multiple faults. Widespread interest in the improvements
of single fault diagnosis meant limited attention was spent on multiple fault diagnosis. However,
multiple fault diagnosis poses extra challenges due to the submergence of the weak fault by the
strong fault, presence of non-Gaussian noise, coupling of the frequency components, etc. A number
of existing convolutional neural network models operate on a distinct feature that is not enough to
assure reliable results in the presence of these challenges. In this paper, extended feature sets in three
homogenous deep learning models are used for multiple fault diagnosis. This ensures a measure of
diversity is introduced to the health management dataset to obtain complementary solutions from the
models. The outputs of the models are fused through blending ensemble learning. Experiments using
vibration datasets based on bearing multiple faults show an accuracy of 98.54%, with an improvement
of 2.74% in the overall effectiveness over the single models. Compared with other technologies, the
results show that this approach provides an improved generalized diagnostic capability.

Keywords: multiple faults; diagnostics; complementary; deep learning; health management

1. Introduction

Rolling bearings are used in a sizable number of machines to support and allow
relative motion between machine parts that are in contact. They are found in operation
in various industrial environments and are subjected to varied load conditions/speeds
over a long time. The tough environment in which bearings operate, poor lubrication,
manufacturing or installation errors promote single and multiple faults. Faults in bearings
can bring about downtime, large financial losses, and in some cases death, due to abrupt
failure while in operation [1–3]. To reduce or eliminate losses, accurate and reliable
diagnosis is of utmost importance.

Different approaches have been proposed for the diagnosis and prognosis of bearings.
These include model-based, data-driven and signal processing-based, knowledge-based,
active fault diagnosis, and hybrid approaches [4]. The model-based approaches are formed
from a physical representation of the process using mathematical equations [5] as well
as prior physical knowledge of the system. However, these types of models are more
demanding to build. The data-driven approach is an approach where fault information is
obtained from data collected from the system. The hybrid approach is a combination of
any of the above analytical redundancy-based diagnosis [5–7].

A huge amount of data, from which important health information of rotating machines
can be extracted, are now readily available. This means researchers and industries can
easily rely on data-driven approaches to ascertain the status of machines [6,8]. However,
the effective deployment of this approach requires careful consideration of the conditions
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to which a bearing is subjected. Some of these conditions include varied load, fluctuation
in speed, the presence of non-informative impulsive noise in the vibration signal, varied
signal-to-noise ratios, the presence of single and/or multiple faults in the vibration signal.
If the goals of predictive maintenance are to be preserved, it is necessary for the utilized
system to be flexible. Flexibility, in this context, is the ability of the diagnostic system to
give satisfactory results in a multitude of conditions/components. Therefore, a flexible
data-driven system should give reliable results for single and multiple faults.

Vibration signal analysis involves separating the collected vibration signal from the
fault characteristic signal and identifying the fault in the system by analyzing the separated
signal [9]. In the last few decades, many signal-based fault diagnosis methods have been
developed for fault feature identification [4]. The spectral kurtosis has been deployed
in fault identification based on its ability to provide an indication of the variation of
impulsiveness of a signal with frequency [10,11]. It has been useful in providing the
optimum frequency band for demodulation. Considering the bearing fault signal as
cyclostationary, cyclic spectral analysis [12] has been exploited in bearing fault detection.
This method has recorded some good results in bearing fault detection, even under a strong
masking signal, by utilizing the correlation statistics between spectral components spaced
apart by some frequency shift [13]. Bicoherence analysis, on the other hand, relies on
non-linear simultaneous interaction and quadratic phase coupling between the frequency
components in a bearing signal for fault detection. It has also been effective for bearing
fault detection, even in conditions of low signal to noise ratios [14].

However, spectral kurtosis, bicoherence analysis and cyclic spectral coherence, when
used in isolation, do not give reliable results in some scenarios. For instance, a kurtogram
can be used to select the frequency band with the highest spectral kurtosis value for demod-
ulation. When this technique is employed in industrial applications where impulsive noise
is present, spectral kurtosis may select a source different from the damage. This is because
many frequency bands may have been excited simultaneously. In transient vibratory sig-
nals, the bicoherence would only give limited diagnostic efficacy [15]. Even with a change
in the excitation frequency range, the cyclic spectral coherence will not change significantly.
This makes cyclic spectral coherence more suitable for early fault detection [16]. Other
studies, such as Gao et al. [4], have highlighted the weakness of some signal-based health
indices extraction methods. These limitations are because signal processing transforms
are mostly complementary, and not independent [17]. Complementarity requires that the
signal processing techniques can account for each other’s deficiency when solving the same
problem [18]. It is vital to the success of a flexible diagnostic system.

In collaboration with machine learning algorithms, including deep learning algo-
rithms, signal processing techniques have been used to improve the fault diagnosis process.
Deep learning (DL) algorithms can solve the difficult and challenging task of feature ex-
traction and feature selection [19]. DL methods, such as the convolutional neural network
(CNN), autoencoder, deep belief network (DBN), recurrent neural network, and generative
adversarial network, perform the tasks of feature extraction and selection independently.

Using a 1D CNN directly on 1D vibrational data would not provide good results,
as 1D CNN suffers from shift-variant problems [20]. Therefore, to achieve better results,
the vibration data were converted into 2D representation for use with a 2D CNN. This
creates a feature space which allows for the learning of complex patterns from this space
directly without resorting to manual feature engineering [21]. Verstraete et al. [22] relied
on representative images of the time-frequency domain presentation of vibration data
input to a deep convolutional neural network for diagnosis of bearing. They compared
the accuracy of three time-frequency analysis techniques: Short-Time Fourier Transform
(STFT), Continuous Wavelet Transform (CWT), and Hilbert–Huang Transform (HHT) on
their CNN architecture. Similarly, Wan et al. [23] compared the performance of different
inputs in their research by using eight distinct types of inputs namely STFT, Constant-Q
Gabor Transform, Instantaneous Frequency, Fast Kurtogram, HHT, Wigner–Ville Distribu-
tion, Fourier Synchro-squeezed Transform (FST), and CWT. Other academics have used
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statistical features for rotating machinery diagnostic systems [24–28]. Although the perfor-
mance of fault diagnosis systems depends on the feature spaces used [28], it was observed
that these feature spaces were used arbitrarily and not combined in such a way to achieve
generalization between different conditions, that the bearings may be subjected. For in-
stance, in [9] while the FFT would give unsatisfactory results with a signal whose frequency
components changes with time, the wavelet transform is known to suffer from fixed scale
resolution which would affect its real-life applications, and the HHT suffers from instability
in its signal decomposition process.

Ensemble learning can improve the performance of a diagnostic system by overcoming
some challenges of the single learner. This is achieved by exploiting the gains of diversity
between base-learners. Ensemble learning has proven to be a successful approach, which
has found application in condition monitoring. Ensemble model creation involves building
the ensemble and combining the ensemble members [29]. Diversity between the ensemble
members can be obtained by using different topologies in the constituent learners, varying
the algorithm of the base-learners, and varying the dataset. Boosting, bagging, the use of
different data sources, and the use of different preprocessing techniques are some of the
methods used to introduce variation to the dataset. Liang et al. [30] proposed the training of
a few DBNs based on different hyper-parameters to form an improved ensemble learning
for bearing diagnosis. Shao et al. [31] constructed an ensemble of deep autoencoders, where
raw vibration data were fed to 15 deep autoencoders with different activation functions
for bearing classification. Li et al. [32] assembled three diverse types of autoencoders
(denoising autoencoder, sparse autoencoder, and sparse autoencoder with linear decoder),
using inputs from raw bearing vibration data randomly obtained through bootstrapping.
Han et al. [33], proposed a dynamic ensemble of a CNN based on wavelet packet transform
for rotating machine diagnosis. Ma et al. [34] utilized FFT input in an ensemble of a
CNN, DBN and stacked autoencoders for rotor bearing diagnosis. In all of these, one
preprocessing technique was used.

In the current work, a novel aspect is that an extended feature set is used in multi-
ple fault diagnosis. Our contribution therefore includes the proposition of a diagnostic
model that relies on complementary transforms in an ensemble for multiple bearing fault
diagnosis. Three preprocessed approaches are applied on the vibration signal to obtain
bicoherence maps, cyclic spectral coherence maps, and the kurtogram. These inputs are
fed to deep learning-based models under different working conditions in a blending en-
semble architecture. The remainder of this article is organized as: Section 2 describes the
materials and methods, signal processing techniques used for preprocessing, and ensemble
learning/the specific ensemble learning approach. The results are provided in Section 3.
Section 4 deals with the discussion, while Section 5 highlights the conclusions.

2. Materials and Methods
2.1. Convolutional Neural Network

A CNN is a supervised, feed-forward deep-learning model designed for spatial
hierarchies’ automatic learning of low and high-level features. The CNN has proved
successful in many applications, such as video and image recognition, bioinformatics,
natural language processing. A typical CNN architecture is made up of the convolution
layer, pooling layer, and the fully connected layer, from which its operations are carried out.

The convolutional layer is a key layer that performs the feature extraction to obtain
the feature maps. The convolution operation is performed in this layer. It is a mathematical
operation in which the convolution kernel is applied to the input to produce an output
known as a feature map. Before training the CNN, the padding, stride, the number of the
kernels, and the size of the kernels are defined. A feature map is obtained through a sum
operation of all the results of the element-to-element products between the input tensor and
the specified filter. This process is repeated through the application of a different number
of filters and sizes to obtain a varied number and depth of feature maps that describe the
characteristics of the input tensor [35]. Appendages of a row and a column of zeros through
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zero paddings are made on the input to maintain the feature maps’ in-plane dimension
and allow the application of more layers. A filter bank is used to connect each unit of the
feature map from the convolution layer to the previous layers’ feature map. In summary,
the convolutional layer computes the dot product of the input X(i)

q−1 of the convolution

channel (by convolving) with the filter weight matrix W(i,m)
q with a weighted bias matrix

B(m)
q added and passed through an activation function such as the Rectified Linear function.

This operation is shown in Equation (1). The ReLU is widely used because of its advantages
of overcoming gradient vanishing problems encountered in the backpropagation stage of
neural network training and requiring reduced calculation [36]. Other activation functions
previously in use were tangent function and logistic function.

Xm
q = ReL ∪

(
I

∑
i=1

Wq(i, m)× X(i)
q−1 + B(m)

q

)
, (1)

To reduce the number of subsequent learnable parameters and, therefore, the com-
putational complexity, the down-sampling operation is performed by the pooling layer.
The pooling layers are found between successive convolutional layers. They are used to
reduce the spatial representation of the data, thereby controlling overfitting [37]. Mathe-
matically, the pooling operation can be represented by Equation (2) below, where β

(m)
q−1 is

the multiplicative bias, and b(m)
q is the additive bias.

Xm
q = f (β

(m)
q−1down(X(m−1)

q−1 ) + b(m)
q ), (2)

The inputs to the pooling layer are divided into disjointed regions with the dimension
[M × N], where “M” is the number of mini-batches and “N”, the maximum (max) or mean
feature activations as the case may be, is used to obtain the “pooled” convolved features
over these regions [38].

The third key layer is the fully connected layer. The higher-order features produced in
the previous layers are used to create class probabilities, also known as scores.

2.2. Blending Ensemble Learning

Building an ensemble model involves choosing a suitable method for training the
accurate diverse models and selecting a suitable way of combining the output of the
base inducers. The base inducers can be combined using methods such as stack gener-
alization/blending [39], using different algebraic functions [40], non-linear combination
methods (for instance, Dempster–Shafer belief methods) [41]. Stacked generalization is an
ensemble learning approach that applies a meta-learner and out-of-fold prediction of the
training set to detect the best way of combining the base models’ outputs [42]. A variant
of stacked generalization is blending. Blending reduces information leaks and it is more
straightforward [42]. In blending, the predictions from each of the tier-zero models are fed
as training data to the meta-learner. The results are obtained from the predictions of the
meta-learner. The proposed approach in this article utilizes blending ensemble learning.
Different preprocessing techniques were used in creating the ensemble members.

The meta-learner in the proposed method is a multiclass Support Vector Machine
(SVM). SVMs are primarily two class machine learning algorithms that can be used for
solving classification and regression problems. The SVM works by creating an optimal
hyperplane separation between the datasets, with the minimum distance between the
datapoints described as support vector. A constrained quadratic optimization is solved to
achieve this objective by using the structural risk minimization. In practice, a multiclass
SVM can be built using different techniques such as one versus one, one versus all, and a
directed acrylic graph. However, the one versus one coding design for seven classes was
applied here. In this approach, the multiclass classification task is reduced to a multiple
binary classification problem, and each hyperplane is constructed from training samples of
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two classes chosen from total “K” classes. The Error-Correcting Output Code (ECOC) in
MATLAB [43] for multiclass learning was implemented in this study.

2.3. Signal Processing Techniques
2.3.1. Spectral Kurtosis and Kurtogram

R. F. Dwyer proposed kurtosis as a mathematical tool for determining in the frequency
domain, the presence and location of non-Gaussian components in a signal. Using the
Wold–Cramer decomposition, Antoni [44] described the output of a causal, linear, and
time-varying system as being a nonstationary stochastic process.

Y(t) =
∫ +∞

−∞
ej2π f t H(t, f )dX( f ), (3)

where “H(t, f)” represents the time-varying function interpreted as the complex envelope
of the process “Y(t)” at a frequency “f ”, while “dX(f)” stands for the spectral process
associated with the process. The key assumption on which spectral kurtosis is applied
is the conditional non-stationarity (CNS) of the process under consideration. Hence, the
energy-normalized fourth-order cumulant of the CNS process will give the measure of the
peakedness of the probability density function of the process at frequency “f ”. Hence, the
spectral kurtosis is defined as:

SkY( f ) =
s4Y

s2
2Y
− 2, f 6= 0, (4)

where the second-order instantaneous moment S2NY(f ) to estimate the strength of the
energy of the complex envelope of the process at frequency “f” is given by:

S2NY( f ) =
E{ |H(t, f )dX( f )|2n

∣∣∣ω }
d f

= E{|H(t, f )|2n} · S2nX , (5)

The spectral cumulant with order 2n ≥ 4 has a property that is zero for Gaussian
random processes. The spectral kurtosis for a CNS can be estimated by:

SKV( f ) =
SKY

[1 + ρ( f )]2
f 6= 0, (6)

where in Equation (6), ρ(f) = S2N(f)/S2Y(f) is the noise to signal ratio. It can be observed
that when the value ρ(f) is low, SKv is equal to SKY. Hence, the concept behind the spectral
kurtosis is to have a quantity that outputs zero values when the signal is Gaussian but
gives high values when the signal of interest is transient. Antoni et al. [45] introduced
spectral kurtosis for the analysis of rotating machine signals using some quasi-analytic
filter banks. Here, the hidden non-stationarity of a particular frequency band is obtained
by calculating the kurtosis value. The kurtogram gives an optimum combination of a
frequency/frequency resolution. The limits of the kurtogram level are based on the length
“L” of the signal “Y(t)”, which is obtained using Log2(L) − 7.

2.3.2. Bicoherence

Rotating machine faults can be related to the nonlinearity occurring in the machine
itself. Building from the deficiency of power spectrum in that, phase information is lost
during the power spectral analysis, the bispectrum analysis was introduced. Bispectrum
analysis is one of the Higher-Order Spectra (HOS) or polyspectra analysis techniques and
can be described as a double Fourier transform of the third-order moment (skewness) of a
signal. It gives a decomposition of a signal’s skewness over frequency, thereby identifying
the distribution and magnitude of nonlinear coupling between frequencies in the signal.
The bispectrum analysis gives information about the non-Gaussianity of a signal. This is
based on the principle that if a Gaussian input is fed to a linear system, the output of such
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a system will be Gaussian. HOS, in this case, will give no information. However, when a
Gaussian input is fed to a non-linear system, the output will be non-Gaussian. Bispectrum
can be computed using the direct or the indirect methods. For a vibration signal given by
y(t), the bispectrum can be calculated using Equation (7) below, as:

B( f1 , f2 ) = lim
T →∞

1
T

E[Y( f1 )Y( f2 )Y∗ ( f1 + f2 ) ], (7)

where “Y(f)” represents the discrete Fourier transform of the vibration signal, “E[.]” is the
expectation operation or statistical average of the ensemble, “*” represents the complex
conjugate, and “f1” and “f2” are independent frequencies and “T” is the duration of the
signal [46].

The bispectrum estimate depends on the energy of the signal at the bifrequency.
Hence, at bifrequency where the energy is low, the variance of the bispectrum will be
lower, and vice versa for bifrequency with high energy. A common way to resolve this
undesirable property in the bispectral estimate is to normalize the bispectrum to obtain an
approximately flat variance across all bifrequency. The result is known as the bicoherence
spectrum, and can be expressed as shown in Equation (8).

b2( f1, f2) =
|B( f1, f2)|2

E[|Y( f1) Y( f2)|2] E[|Y( f1 + f2)|2]
(8)

2.3.3. Cyclic Spectral Coherence

Cyclo-stationary processes, or periodically correlated processes, are stochastic pro-
cesses that exhibit some hidden periodicity. A typical cyclo-stationary process occurs in
rotating machinery, such as rolling bearings, when faults occur on them. The impacts oc-
curring several times are produced by these faults and are modulated by the shaft rotating
frequency [47]. This property can be used to detect faults in the rotating machine. An
nth order cyclo-stationary signal is said to be a signal “y(t)” whose nth-order statistic is
periodic. The first-order cyclo-stationary signal (CS1) is represented in Equation (9), where
My, the statistical mean, is periodic with the period T of the signal y(t), while “E” is the en-
semble average. Martin et al. [48], described them as signals with finite-amplitude additive
periodic components and consequently, they exhibit lines in their power spectral density.

My(t) = My(t + T) = E{y(t)}, (9)

The first-order cyclo-stationary signal is mostly generated by processes such as im-
balance, misalignments, and components such as flexible couplings [49]. However, for
second-order cyclo-stationary signals (CS2), the autocorrelation function, which is periodic
with time, can be calculated using:

Ryy(t,τ) = Ryy(t + T, τ) = E
{

y
(

t − τ

2

)
y
(

t +
τ

2

)}
(10)

where the time lag is represented by “τ”. Second-order cyclo-stationary signals are preva-
lent in rotating machines’ vibration. These vibrations are stochastic processes with a
periodic amplitude and/or frequency modulation.

When a two-dimensional Fourier transform is performed on the autocorrelation
function, the spectral correlation is obtained. A tool designed to describe the CS1 and
CS2 in the frequency–frequency domain is the cyclic spectral correlation, defined by
Equation (11).

CScor(α, f ) = lim
n→∞

1
W

E{Y( f )d[y(t)] Y( f )d[y(t+)]∗} (11)

where “f ” represents the spectral frequency of the carrier signal, α is the cyclic frequency
or modulation frequency, and “Y(f)” is the Fourier transform of the signal of duration



Sensors 2021, 21, 4424 7 of 17

“d”. Thus, for a wave signal given by “Y”, the spectral correlation can be described as
displaying the strength of “Y” that is carried and modulated at all combinations (α, f ) [50].
A normalization term can be added to Equation (12) to obtain the cyclic spectral coherence,
which is highly effective in detecting rotating machine faults:

CScoh(α, f ) =
CScor(α, f )√

CScor(0, f )CScor(0, f − α)
(12)

2.4. Structure of the Proposed Method

The proposed method is shown in Figure 1. In this approach, the ensemble building
step involved the use of three carefully chosen preprocessing techniques namely: cyclic
spectral coherence, spectral kurtosis, and bicoherence on the vibration signal. These base-
learners were combined using blending ensemble learning strategy. The entire method is
described in the following simplified steps.
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Figure 1. Proposed architecture for multiple faults of bearings.

Step 1. The vibration signal is preprocessed using complementary signal processing tech-
niques.

Step 2. Divide the data into training, validation, and testing sets.
Step 3. Choose hyperparameters and train the tier zero models.
Step 4. Obtain predictions from the tier zero models using the validation set.
Step 5. Train the meta-learner with predictions from tier zero models.
Step 6. Estimate the health conditions of the bearings using the testing set.

3. Experiments
3.1. Dataset Description

The performance of the proposed approach to multiple faults of the rolling bearing
are tested on the experimental dataset obtained from the test rig of Universidad Politécnica
Salesiana Ecuador [51], shown in Figure 2. The experimental setup consists of a 30 mm
diameter shaft on which two rolling element bearings are mounted. This set-up is driven
by an inverter-controlled motor. When loads (L2 and L3) are required in the system, they
are introduced using flywheels (F2 and F3). Condition L1 signifies a scenario where no
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flywheel or zero loads was introduced to the system. L2 and L3 represent other loading
conditions, in which two and three flywheels, respectively, were used in the setup. The
vibration dataset was acquired at three different rotational speeds of 8 Hz, 10 Hz and 15 Hz.
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Figure 2. Universidad Politécnica Salesiana test rig [52].

Accelerometers are installed on the housing of the bearings, as shown in Figure 2.
Each MATLAB structure of the vibration dataset is made up of five fields, which includes:
accelerometer one readings, accelerometer two readings, a sampling rate of 50 kHz, the
shaft rotating speed, and sampling time. The total time duration of each of the signals is
20 s. Using these conditions, the experiment was repeated over five (5) runs. Hence, seven
(7) fault classes of the bearing were obtained. For this study, two key assumptions are
made: (1) the distance between bearing 1 and bearing 2 can be smaller but not larger than
that used in this experimental setup. (2) the reverse combination of these faults were not
considered. (3) Readings from accelerometer 1 alone under the influence of bearing 2 were
used. A summary of these fault classes is presented in Table 1.

Table 1. Fault classes for the bearing.

S/No. Fault Class Bearing 1 Bearing 2

1 NorM Normal Normal

2 InrF Inner race fault Normal

3 OurF Outer race fault Normal

4 BalF Ball fault Normal

5 IrOr Inner race fault Outer race fault

6 BaIn Inner race fault Ball fault

7 OrBa Outer race fault Ball fault

3.2. Data Preprocessing

Three signal processing techniques, namely: cyclic spectral coherence, bicoherence,
and spectral kurtosis, have been chosen to leverage on their complementarity to diagnose
bearing multiple faults. In the data preparation stage of the bicoherence maps, a key
consideration is to choose a data segment that is long enough to create an asymptotically
unbiased and stable estimation, while also having a good frequency resolution [53]. In this
paper, each bicoherence map was created using a frame size of 0.8 s, with the Number of
Fast Fourier Transform (NFFT) length being 512, Hanning window applied to each of the
200 data segments, using a percentage overlap of 60. Hence, for each of the fault classes
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listed in Table 1, 225 samples are obtained for each of the signals and a total of 450 samples
from two runs of the experimental set up.

To achieve good accuracy with the cyclic spectral coherence-based convolutional
neural network, a compromise must be made between the resolution of the cyclic spectral
coherence maps and the computational cost [21]. Hence, a frame size of 0.8 s (40,000 data
points) and the highest cyclic frequency to be scanned as 300 Hz was used to create each
of the 450 cyclic spectral coherence maps. A lower sampling point will ensure that the
computation time is less; however, the accuracy of the model will be drastically reduced.

The spectral kurtosis was another technique used to preprocess the vibration signal.
Udmale et al. [54] confirmed that the maximum decomposition level of the kurtogram
revealed more frequency information, because the plane (f, ∆f) becomes finer with an
increase in the decomposition level. However, this maximum level of decomposition is
determined by the length of the signal used. In this paper, a frame size of 0.8 s with a
maximum decomposition level of 8 was used to create 450 kurtogram from two runs of
the machine. Irrespective of the preprocessing technique deployed, the entire images were
224 × 224 pixels.

3.3. Training, Validation, and Testing Sets

The dataset was divided into training, validation, and testing sets. The test set was
obtained from run 3 of the machines while the training and validation sets were drawn
from run 1 and run 2 of the machines. Table 2 shows the composition of the training,
validation and test sets used. One of the challenges of a small sample training size is
overfitting. This problem can be overcome using a combination of methods, including data
augmentation, to ensure more diversity [55] of the training dataset. Rotation, horizontal
and vertical translation data augmentation techniques were implemented on the training
dataset. The rotation augmentations were carried out by safely rotating the images on an
axis between a range of −15◦ and 15◦. Bias in position was tackled by introducing a range
of random horizontal and vertical translations of −3 and up to 3 pixels. CNN-1, CNN-2,
and CNN-3 models were trained on generically preprocessed inputs based on spectral
kurtosis, cyclic spectral coherence, and bicoherence using MATLAB with learning rates
of 0.0005, 0.0005, and 0.001, respectively. The structure of the tier-zero models is listed in
Table 3.

Table 2. Composition of the training, validation, and test set.

Model CNN-1 CNN-2 CNN-3 Run **

Training * 342 342 342 1 and 2

Validation 108 108 108 1 and 2

Testing 108 108 108 3
* Data augmentation was used, ** run of the machine.

Table 3. Structure of the tier-zero models.

Layer Description CNN-1 CNN-2 CNN-3

1 Input 224 × 224 × 3 224 × 224 × 3 224 × 224 × 3

2 conv_1 8 × 3 × 3 × 3 8 × 5 × 5 × 3 16 × 5 × 5 × 3

3 maxpool_1 3 × 3 3 × 3 3 × 3

4 conv_2 16 × 3 × 3 × 8 16 × 5 × 5 × 8 16 × 5 × 5 × 16

5 maxpool_2 3 × 3 3 × 3 3 × 3

6 conv_3 32 × 3 × 3 × 16 32 × 5 × 5 × 16 32 × 5 × 5 × 16
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Table 3. Cont.

Layer Description CNN-1 CNN-2 CNN-3

7 maxpool_3 3 × 3 3 × 3 3 × 3

8 conv_4 64 × 3 × 3 × 32 64 × 5 × 5 × 32 64 × 5 × 5 × 32

9 dropout 10% 30% 10%

10 fully Connected fully Connected fully Connected fully Connected

11 SoftMax 1 1 1

12 class output 7 7 7

3.4. Network Outcomes

Most often, an empirical comparison is carried out by applying algorithms on vari-
ous datasets and evaluating the performance of the classifiers that the algorithm(s) have
produced [56]. Hence, to fully evaluate the efficiency of the individual models and that of
the ensemble model, different performance metrics were used. These metrics are briefly
defined here as:

1. Overall accuracy: This is a metric that gives the overall effectiveness of a classifier.
Accuracy is given by Equation (13):

Overall accuracy =
Correct Predictions

Total Predictions
× 100, (13)

2. Recall: This performance metric estimates the probability of a classifier to identify
positive labels. Recall is also known as sensitivity or true positive rate.

Recall =
True Positives

True Positives + False Negatives
× 100, (14)

3. Precision: This is the ratio of correctly classified positive samples to the number of
samples which the network labels as positive. This metric is also referred to as the
positive predictive value of the network. It is mathematically given in Equation (15):

Precision =
True Positives

True Positives + False Positives
× 100, (15)

4. F1 Score: The F1 score is the harmonic average between the precision and the recall.
The F1 score is given by Equation (16):

F1 Score = 2 × Precision × Recall
Precision + Recall

× 100, (16)

5. False Negative Rate: This is also known as the missed detection rate. It the probability
that a true positive will be missed by the test.

False Negative Rate =
False Negatives

True Positives + False Positives
× 100, (17)

6. False Positive Rate: The false positive rate or the false alarm rate is expressed in
Equation (18).

False Positive Rate =
False Positives

True Negatives + False Positives
× 100, (18)
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4. Results and Discussion
4.1. Results from Individual Network

The results from the individual learners indicate varied performance from the different
tier-zero classifiers. The validation accuracy of these were 96.83%, 96.16% and 93.52%, for
CNN-1, CNN-2, CNN-3, respectively. Taking a representative confusion matrix, as shown
in Figure 3a, the rows represents the output class or predicted class while the column is the
target class. The bottom row of the same figure shows the true positive rate and the false
negative rate. However, the column at the far right indicates the precision and the false
positive rate.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

overall test accuracy of 95.80%, as shown in the bottom right cell of Figure 3b. From Table 
4, it is noticed that the amount of positive predicted value was 0.9592. The actual positive 
in the dataset, otherwise known as the sensitivity, was estimated to be 0.9577, while the 
F1 score for this classifier was 0.9584. Class NorM was noticed to have a false alarm rate 
of 1.8%, while the false negative rate was 0.9%. 

  
(a) (b) 

Figure 3. Confusion matrixes of: (a) CNN-1 model; (b) CNN-2 model. 

The CNN-3, bicoherence-based model, had an F1 score of 0.9245, precision of 0.9257, 
recall of 0.9233 and a test accuracy of 92.33%. The confusion matrix for this model in Fig-
ure 4 showed that the NorM class had a false positive rate of 7.3% and a false negative 
rate of 6.5%. Hierarchically, the CNN-2 performed better than CNN-1 and CNN-3 models. 
The results presented in Table 4 show that the proposed method has the highest accuracy. 

 
Figure 4. Confusion matrixes of CNN-3 model. 

Figure 3. Confusion matrixes of: (a) CNN-1 model; (b) CNN-2 model.

CNN-1 had a test accuracy of 94.60% on the 756 test dataset. It achieved a recall
of 0.9458, precision of 0.9474 and F1 score of 0.9467 on the test dataset. Considering the
NorM class in Figure 3a, the false positive rate was 4.5%, while the false negative rate was
0.9%. CNN–2 showed good modeling of inherent complex correlation in the dataset, with
an overall test accuracy of 95.80%, as shown in the bottom right cell of Figure 3b. From
Table 4, it is noticed that the amount of positive predicted value was 0.9592. The actual
positive in the dataset, otherwise known as the sensitivity, was estimated to be 0.9577,
while the F1 score for this classifier was 0.9584. Class NorM was noticed to have a false
alarm rate of 1.8%, while the false negative rate was 0.9%.

Table 4. Performance of the models.

Model Test Accuracy (%) Precision (%) Recall (%) F1 Score

CNN-1 94.60 94.74 94.58 0.9466

CNN-2 95.80 95.92 95.77 0.9584

CNN-3 92.33 92.57 92.33 0.9245

Averaging 98.02 98.10 98.02 0.9806

ECNN-DT 97.50 97.54 97.49 0.9751

Proposed Method 98.54 98.57 98.54 0.9855
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The CNN-3, bicoherence-based model, had an F1 score of 0.9245, precision of 0.9257,
recall of 0.9233 and a test accuracy of 92.33%. The confusion matrix for this model in
Figure 4 showed that the NorM class had a false positive rate of 7.3% and a false negative
rate of 6.5%. Hierarchically, the CNN-2 performed better than CNN-1 and CNN-3 models.
The results presented in Table 4 show that the proposed method has the highest accuracy.
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4.2. Results from Ensemble Learning Methods

A common method for combining base models is averaging. Averaging has the ad-
vantage of reducing variance in the predictions based on the understanding that the based
models will not make similar errors in their predictions [57]. It involves the generation
and training of a specific number of models separately and combining them through the
computation of the mean of the predicted class scores. The predicted class scores can be
represented by a matrix “N × K”, where “N” is the number of samples and “K” is the
number of classes. That is, the average from the predicted class scores of the three classi-
fiers are estimated and the input pattern is assigned to the class with the maximum score
among this mean [58]. The simple averaging is given mathematically by Equation (19).
A comparison of the overall accuracy of the individual models and averaging in Table 4
shows a 2.20% increase in the latter’s accuracy and the best of the individual model.

µc(y) =

(
1
T

T

∑
t

dt,c(y)

)
, (19)

where 1/T is the normalization factor, µc(y) is the maximum of total predicted class scores,
dt,c(y) predicted score of individual classifiers to a class.

To study the effect of training with a different tier-one algorithm (meta-learner) on the
overall results, the decision trees were introduced in the architecture as an alternative to
the SVM. Decision trees are a well-known method and are fast to train [42]. The result from
this modified blended ensemble model (ECNN-DT) was also better than the individual
base models. However, it was noted that this approach for the representative class NorM
produced 2.7% false positives and 0.9% false negatives. These rates were higher when
compared with the proposed method. Figure 5a shows further details of the ECNN-DT
and the proposed method.
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Deep learning approaches have been proposed by other researchers for multiple faults
diagnosis of rotating machines. The overall effectiveness of solutions by these authors
using a multiple fault dataset are compared with our results and presented in Table 5. It
indicates that overall, the proposed methods performed better.

Table 5. Performance comparison with other deep learning approaches.

Authors Approach Rotating Components Used Results
Accuracy (%)

Han et al. [33] Multi-level wavelet packet fusion in
dynamic CNN Bearings and Gear 96.48 (Case 1)

91.30 (Case 2)

Lu et al. [24] Hierarchical CNN Bearing 92.60

Ma et al. [34] Ensemble deep-learning Rotor and Bearing faults 98.09

Yu et al. [59] Autoencoders Gear and Bearings 95.50 (Avg.)

Li et al. [32] EWV + thresholds + BAS Bearings 96.92

Shao et al. [60] Deep autoencoder feature learning Bearing and Gear 87.80

Sri et al. [61] Multiple Classifiers and Data
Fusion/CWT/CNN Mixed gearbox fault 98.0

Proposed Method Proposed Method Multiple faults bearings 98.54

4.3. Discusion

Multiple faults diagnosis of bearings is a challenging task. Hence, the development
of a diagnostic system for reliable decision making is important. Such systems save
resources by reducing downtime, missed detection and false alarms. In this article, CNNs,
which constitutes the base learners, are used in a blending ensemble learning strategy for
fault detection. A key aim of our approach is to exploit complementary preprocessing
methods, the blending ensemble learning strategy and deep learning approach in bearing
diagnostics. The blending ensemble learning strategy helps to improve the effectiveness of
the overall model.
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4.3.1. Effect of Preprocessing Approaches

The choice of parameter for the preprocessing methods are of great importance. This
is reflected in part through the overall performance of each of the networks. Selecting
the appropriate segment size is vital to the success of the bicoherence estimation and the
subsequent models. The level of decomposition chosen for the spectral kurtosis affects the
accuracy of the CNN-1 model. Experimental observations have shown that the maximum
level of decomposition provides a better result for the kurtogram-based CNN model. Due
to the computation time required in creating the cyclic spectral coherence maps and the
demand for high accuracy, the choice of the frame size is important. The frame size is
indirectly proportional to cyclic frequency resolution. A small frame size will result in a
poor resolution and contribute to reducing the performance of the model.

It is observed that the CNN-3 had the highest false positive and false negative rates.
This can be attributed to the weakness of this preprocessing method. With the complex
spectral components present in the multiple fault signal, the bicoherence does not present
the cross correlation between the complex order spectral components of this type of
signal [15].

4.3.2. Discussions on the Ensemble and Individual Approaches

The models were evaluated by conducting experiments and comparing the results
of the based learners independently. Further results from strategies such as averaging,
ECNN-DT, and some previous works on multiple faults are compared based on the false
positive rate and the false negative rate. In the experiments, data augmentation methods
such as rotation, the range of horizontal translation, and the range of vertical translation,
were implemented. The augmented training set was used to train the different individual
CNN models.

Different performance metrics are presented in Table 4 and in Figure 5 for use in
ascertaining the performance of the proposed diagnosis system. To maximize the gains of
the health monitoring system, it is important to develop a model that minimizes both the
false positive rates and the false negative rates. That way, the healthy or NorM bearings
will not be replaced due to the diagnostic system wrongly indicating that it is faulty.
Additionally, truly faulty component(s) will not be missed by the system.

A comparison of the confusion matrix for each of the independent CNN models that
constitutes the base learners indicates a false positive rate for the NorM class as 0.9%, 0.9%
and 6.5% for CNN-1, CNN-2, and CNN-3, respectively. This shows that out of the 108 test
samples that made up the actual NorM bearings condition, CNN-1 presented 0.9% as
having an outer race faults in Bearing 1, while CNN-2 showed 0.9% of the actual NorM
bearing conditions as having outer race fault in Bearing 1 and inner race fault in Bearing
2. There was an increase in the false positive rate for CNN-3. The actual NorM bearing
condition in this case was incorrectly classified. The false negative rates of CNN-1, CNN-2,
and CNN-3 were recorded as 4.5%, 1.8% and 7.3%, respectively. The implication is, if the
individual models are deployed individually for multiple fault diagnosis of bearings, a
good amount of funds will be wasted in replacing actual good bearings.

The blended ensemble learning results are shown in Figure 5b. It is noticed that for
the proposed model (ECNN-SVM), the false positive rate and false negative rate for NorM
condition was 0%. This means that in all the test samples, none of the NorM bearing
conditions were wrongly classified as faulty. Equally, none of the faulty bearing conditions
were missed detected to be NorM. Hence, this increases the confidence of the diagnostic
system. The results in Figure 5a show that the choice of the blender is also important to the
success of this methods.

5. Conclusions

In this article, multiple fault diagnosis was conducted using vibration signal. The
proposed solution was based on extended features achieved through three preprocessing
methods. The models were fused in a homogenous blended ensemble learning method.
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This helped to effectively map information obtained in the feature space to the bearing
fault space. When compared with individual models, the proposed method achieved
better results. Hence, the overall effectiveness of the proposed method increased by 2.74%
when compared to the best individual model. The results from this method showed 0%
missed detection rate, 0% false alarm rate for the NorM class and 0.45% increase in overall
effectiveness, compared with contemporary multiple fault diagnostic methods. An impact
of this is that valuable resources will not be wasted in changing components which are not
faulty and could contribute to eliminating catastrophic failures.

Using different pre-processing techniques is expected to improve the flexibility of
the framework to new faults that will be projected into the proposed feature spaces and
are expected to be detected by the CNN. Although this algorithm has not been tested di-
rectly with a complex systems dataset, results from the literature have indicated that cyclic
spectral analysis, when used alone for fault isolation, showed good results for complex sys-
tems [50,62]. Future work is planned for this framework to be tested on more complex cases
such as eccentric shafts, and the application of this method to uncontrolled environments.
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