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Abstract: In the context of real-time control systems, it has become possible to obtain temporal
resolutions of microseconds due to the development of embedded systems and the Internet of Things
(IoT), the optimization of the use of processor hardware, and the improvement of architectures
and real-time operating systems (RTOSs). All of these factors, together with current technological
developments, have led to efficient central processing unit (CPU) time usage, guaranteeing both the
predictability of thread execution and the satisfaction of the timing constraints required by real-time
systems (RTSs). This is mainly due to time sharing in embedded RTSs and the pseudo-parallel
execution of tasks in single-processor and multi-processor systems. The non-deterministic behavior
triggered by asynchronous external interrupts and events in general is due to the fact that, for
most commercial RTOSs, the execution of the same instruction ends in a variable number of cycles,
primarily due to hazards. The software implementation of RTOS-specific mechanisms may lead to
significant delays that can affect deadline requirements for some RTSs. The main objective of this
paper was the design and deployment of innovative solutions to improve the performance of RTOSs
by implementing their functions in hardware. The obtained architectures are intended to provide
feasible scheduling, even if the total CPU utilization is close to the maximum limit. The contributions
made by the authors will be followed by the validation of a high-performing microarchitecture,
which is expected to allow a thread context switching time and event response time of only one clock
cycle each. The main purpose of the research presented in this paper is to improve these factors
of RTSs, as well as the implementation of the hardware structure used for the static and dynamic
scheduling of tasks, for RTOS mechanisms specific to resource sharing and intertask communication.

Keywords: nMPRA architecture; hardware RTOS; rapid reaction to stimuli; fast context switch;
resource multiplication

1. Introduction

In general, an operating system (OS) is responsible for managing the hardware re-
sources of a computing system and the applications it hosts. A real-time operating system
(RTOS) implements many similar functionalities (especially those for high end embedded
devices), but is especially designed to run applications with a very precise synchroniza-
tion and evolution over time and with a high degree of reliability and security. Usually,
this behavior is important for automation systems where a program delay could cause
a security hazard (for hard real-time systems (RTSs)) and also downtime can be costly.
In order for an OS to be considered real-time, it must have a maximum time (e.g., worst
case execution time—WCET) for each critical operation it supports (implements). Among
these operations we mention are scheduling and dispatching and OS functions calls. To be
considered “real-time”, an OS must have a known maximum time for each of the critical
operations it performs (or at least be able to guarantee that maximum most of the time).
Some of these operations include OS calls and interrupt management. As a classification,
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OSs that can guarantee an absolute maximum time for these operations are commonly re-
ferred to as “hard real-time”, while operating systems that can only guarantee a maximum
of most of the time are called “soft real-time”. In practice, each RTOS solution specifies
different performance characteristics, and as a result, the user must carefully investigate
these characteristics and test whether they are suitable for the needs of his application,
especially since the determination of WCET times depends on how the application is orga-
nized. Airbag and video streaming applications are extreme examples of hard real-time
and soft real-time. For the first, a small timing error can make the difference between life
and death, and for the second, the sporadic loss of frames can be unnoticed, i.e., it has
no devastating consequences. An important issue is that of correctly programming an
application in the context of an RTOS. Proper programming can guarantee the execution of
a software with a temporary evolution and a consistent synchronization. In this regard,
RTOS offers programmers a high degree of prioritization of tasks and provides mechanisms
to verify compliance with important deadlines. From the implementation point of view,
we can classify RTSs as without RTOS; with RTOS fully implemented in software or imple-
mented in software/hardware (usually hardware accelerators are used for different typical
RTOS components, either externally usually in a field programmable gate array (FPGA)
or internally as coprocessors or separate hardware blocks); or with RTOS implemented
in hardware, HW-RTOS (minimally implements the scheduler and dispatcher, resource
sharing mechanisms, synchronization mechanisms, communication mechanisms between
threads, and interrupt management). A natural question is: when do we use one of these
implementations? The choice is dictated primarily by the application’s requirements for
latency (response time), jitter, compliance with deadlines and their criticality (hard real-
time—zero degrees of tolerance, firm real-time—unacceptable quality reduction, or soft
real-time—accept quality reduction and this reduction is acceptable), the ability to easily
calculate WCET, solving priority inversions, the need to use or not a rich set of application
programming interface (API) functions (productivity in programming), the degree to which
the application is oriented toward intensive computing up to input/output operations, etc.

To feel the gap from software to hardware implementation, consider the following
example. Let us see how to handle a signal event in an RTOS software and in a HW-RTOS
(HW_nMPRA_RTOS in this case) when the signal is sent to a higher priority thread.

For RTOS software: If we are working, for example, with Keil RTX5, we call an RTOS API
function of type retValue = osThreadFlagsSet (tid_mbe1ThreadCycle, FLAG_TIMER4_SLOT),
where tid_mbe1ThreadCycle is the thread identifier and FLAG_TIMER4_SLOT is the name
of the flag. Some action: tests to see where the event setting comes from (Interrupt Service
Routine (ISR) or thread); tests the parameters and the state of the object and if there are
no errors; sets the flag with an atomic operation; records the processing of the object and
returning from the interrupt (if applicable); test if the thread for which the flag was set
is waiting for this event, and if so, this thread becomes higher priority than the thread
that called the function or was preempted by the interrupt that called the function; saves
the current state of the called or aborted thread; and restores the state of the thread that
received the flag because it was waiting for it and launches it. As it is complicated, it
requires atomic operations and many instructions.

What is happening in HW-RTOS (HW_nMPRA_RTOS): An osThread–FlagSet like
function must send a signal or an interrupt software event. We analyze the first solution.
When a thread wants to activate a signal, a 32-bit value with the Signal bit 1L is written in
the grSSMR0 (Signal Synchronization and Message Register File) register and will receive a
1-bit signal value from the grSSMR0 register or a 0-bit signal value that represents a failure
(most likely indicating no free SSMR, see Section 4.4). If the operation is successful, in
the next machine cycle after the write operation the destination thread has the signal and
message event set to 1L. If the destination thread was waiting for this signal and is higher
than the thread that sent the signal, then in the next machine cycle, the wait Rj instruction
ends and the program counter (PC) loads with the start address of the handler to manage
this event. Everything is done in one to two cycles depending on the position of the event
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relative to the rising clock of the clock (about one cycle if it is very close to the rising edge of
the clock, about two cycles if the rising edge of the clock has just passed). Depending on the
implementation, one or two additional machine cycles may occur. This example illustrates
the advantage of hardware implementation. Of course, the price of this advantage is paid
by the cost of hardware complexity. Additionally, in-depth research has been performed
on the processors used in RTS and RTOS architectures, and the results indicate that some
or all of the components need to be incorporated into the hardware due to its ability
to increase parallel processing and, therefore, to reduce the response time of embedded
systems. Results in this regard have been published in [1,2]. The latency introduced by
RTOS implemented in the software is given by intensive switching of thread contexts (also
depends on the type of applications), API execution time that depends on dispatching,
generating periods with interrupts disabled (e.g., when scheduling in supervisor mode,
critical regions, etc.), the time required to handle queues (insertion, removing, sorting, and
determining the highest priority) that are closely related to typical OS structures such as the
Task Control Block, number of queues, and OS clock management (tick). In addition, due to
the variable number of accesses that generate overhead, a jitter is created and consequently
a WCET that is difficult to define. HW-RTOS by parallel processing can be improved in the
sense of reducing the time given by the latency generated by RTOS.

There are situations in which the rapid response of a sensor must be accompanied by
the following path: sensor⇒microcontroller⇒ actuator, just as fast and often deterministic
(with a WCET that can be determined or measured). In such situations, the overhead
given by software RTOS is one of the reasons why a fast (or optimal) response is more
difficult to obtain and less deterministic. The response of the software running on the
microcontrollers must deal with signals from different sensor types and less internal
mechanisms (hardware/software) in order to guarantee the best signals processing time.

One of the current trends in RTS is the migration to increasingly complex processor
architectures with more predictable execution and isolation of thread contexts, thereby
achieving safer and more efficient applications. Due to the complexity of industrial and
automotive applications and response times, problems such as “motor will not move
smoothly”, “control precision is poor”, and “network performance is slow” occur when
using RTOS implemented in software [1]; consequently, it has been timely to design and
validate RTOS hardware functionality in highly compute-intensive embedded systems,
thus enabling more efficient CPU time management.

Programmable logic technology based on a FPGA is a fundamental component of
a lot of hardware design and can be extremely useful in microprocessor architecture
research. Affordable FPGA circuits with a high number of logical gates [3] are used as
hardware support for the implementation and testing of proposed concepts [4]. The real-
time aspects of some RTSs are critical in fields such as aviation, automotive, robotics, and
movement command and control. For these systems, predictability is a very important
feature. The ability to develop RTOS hardware accelerators, hardware schedulers, or
HW-RTOS alongside RTOSs will allow rapid response times (low latencies) to external
stimuli and events, i.e., asynchronous events, and controllable deterministic behavior in
both simulations and practical demonstration deployment using FPGA technology [5]. The
objectives of the innovative solutions described in this paper are to design and validate a
high-performance nMPRA (multi pipeline register architecture, where n is the degree of
multiplication) and nHSE (hardware scheduler engine for n threads) microarchitectures
by implementing RTOS-specific functions in hardware, minimizing the kernel latency. In
this context, the nMPRA concept and nHSE module provide an innovative solution with a
kernel latency to events of one or two processor cycles, which is a significant improvement
over the software solutions of RTOSs or software/hardware hybrid implementations.
nMPRA is a custom architecture with multiple (n) pipeline registers. The purpose of
this project was to design, implement, test, and validate an innovative concept named
HW_nMPRA_RTOS (a unified acronym for nMPRA, nHSE, and RTOS API), which uses



Sensors 2021, 21, 4500 4 of 31

and extends concepts regarding the multiplication of CPU data path resources, the nHSE
as scheduling module, and the hardware implementation of an RTOS.

Why do we consider that HW_nMPRA_RTOS includes an HW-RTOS? The part called
hardware RTOS ensures priority scheduling. Static scheduling algorithms, such as Mono-
tonic Rate and Round Robin, can be easily implemented, but in the future dynamic schedul-
ing, algorithms such as Earliest Deadline First (EDF) [1], etc., can also be implemented. This
is possible because the priority of a hardware instance of a thread (instPi) is programmable;
there are two (interchangeable) priority correspondence tables—thread identifier. The
hardware instance for thread 0 (instP0) has access to all architecture resources and can
write the unused table with a new set of priorities after which it can switch it to active.
The wait Rj instruction (or an equivalent instruction depending on the architecture chosen
for implementation) can synchronize the thread with seven events (time, deadline 1, 2,
watchdog timer (WDT), mutex, signal and message, and interrupt event), which allows
implementation using a single instruction (after a preconfiguration) to obtain time-type
functions, to gain access to critical resources by automatically acquiring a mutex, or to
synchronize or communicate with other threads using signal and messages or interrupt
events. All these are basic facilities for simple programming of a real-time application for a
low embedded device without additional software. When we refer to the low embedded
device, we have in mind the category from the ARM (Advanced RISC Machines) classifica-
tion called Cortex-Mx. With several C inline functions that include some instructions in the
assembler, specific RTOS software functions can be obtained. The notion of RTOS refers
in this paper to the kernel. A networking stack and many I/O functionalities are usually
provided as middleware (see Keil ARM) or as separate libraries. Implementing them in
hardware could have an unjustifiable cost.

In this paper, it has been considered that the description of RTOS mechanisms helps the
real-time application programmer to correctly understand the hardware facilities available
to them to get a real-time response to some events generated by sensors, and be able to
make correspondence easier with APIs provided by software implemented RTOS. For
example, the implementation of hardware RTOS has a unique and fast execution time to
search in lists (it does not depend on the position in the list, changing the position in a list,
etc., because everything is done in parallel for all items in the list).

The contributions made by the authors in this paper consist of presenting original
methods to reduce latency for events handled by HW_nMPRA_RTOS, reducing the jitter
effect by designating a unified space of priorities for tasks and events to be handled by the
nHSE, and augmenting the processor execution level. The specific derivative contributions
of this research project consist in System on Chip (SoC) implementation of nMPRA and
nHSE at the level of MIPS32 coprocessor 2 (COP2), the scheduler registers being explained
in detail in the specifications of the nMPRA processor. The HW_nMPRA_RTOS concept
together the practical results presented in this paper have been designed using the MIPS32
Release 1 ISA. Microprocessor without Interlocked Pipelined Stages (MIPS) provides
the user with a system of coprocessors for extending the functionality of the basic CPU.
Coprocessor 2 is available to the user. The degree of novelty and relevance of the proposed
architecture is demonstrated by the results published in the prestigious IEEE TVLSI [6] and
Electronics [7] journals.

After a brief introduction, Section 2 analyzes other similar projects published in the
literature. Section 3 is dedicated to the proposed CPU architecture, and Section 4 de-
scribes the hardware scheduler concept and validates the results of the HW_nMPRA_RTOS
implementation. Section 5 focuses on discussions regarding the integration of the CPU
using FPGA resources and compares similar architectures, and Section 6 describes the
programming paradigms for nMPRA. Section 7 presents the final conclusions.

2. Related Work

The nMPRA concept appeared for the first time in [8], which defined it as custom-
designed Multi Pipeline Register Architecture. The remarkability of the architecture is



Sensors 2021, 21, 4500 5 of 31

reflected in the name itself by specifying that the pipelined registers are multiplied, which
allows the hardware context of the thread being executed to be saved, making it easier to
stop an instance of the pipeline at any time and to change the context in a single clock cycle.
The multiplication of hardware resources is (partly) illustrated in [7].

A solution with general purpose register (GPR) multiplication and resources dedicated
to each thread is provided in [9], for example, and in the block diagram of the precision-
timed (PRET) microarchitecture [10]. The multiplication of pipeline registers is applied
in [11], although it is simple and multiplies only the instruction fetch (IF) and instruction
decode (ID) pipeline registers. Returning to [8], although MPRA is not clearly defined,
the HSE module is described. As a novelty, a unified space of priorities is proposed for
both interrupts and threads, which allows some threads to be prioritized over interrupts.
Special instructions are proposed for HSE programming, which may create inconvenience
when compiling (these must allow for the expansion of ISA (instruction set architecture)).
The scheduling of threads can be based on RM (rate monotonic) or EDD (earliest due date)
algorithms with programmable task priorities. A single timer is proposed for all threads,
but in this case, comparators and adders are needed, which complicates the hardware. The
solution of using an autoreload counter for each thread using a common clock is simpler
and represents a feasible option. In [12], the authors proposed organizing the GPR in the
form of several banks of general registers for general use, but it was subsequently not
possible to demonstrate the usefulness of this extension, which was conceived as a local
stack that would not require the repetition of push and pop in the stack memory. In [6],
the HSE was fully redefined, and a more elaborate solution was tested and subsequently
validated. The term MPRA has been replaced by nMPRA, where n is the number of
hardware support instances for the execution of n software execution threads, and HSE has
been replaced by nHSE because it will be scheduled for n execution threads that will be
run on n instances of nMPRA. Only one nMPRA hardware instance is active at any given
time. An instance of nMPRA execution contains logical combinational blocks of the five
pipeline stages (IF, ID, EXECUTE (EX), DATA MEMORY (MEM), and WRITE BACK (WB)),
which are common resources shared by all nMPRA instances, as well as those from the
private hardware resources associated with the software thread that is being instantiated
(GPR, pipeline, and PC; status and control register file; flag file; work registers and/or
counters [7]). A more detailed description of the architecture can be found in [6] with the
appropriate terms that represent the architecture at that time.

Real-time embedded systems are those systems that provide a correct answer within a
predetermined time interval. In critical real-time applications, obtaining a correct response
after the deadline is insufficient and can no longer be taken into account [13]. In [14],
the authors propose a CPU implementation based on the RV32IM ISA five-stage pipeline
recommended for hard RTSs. The performances of the uRV Core project are oriented
towards determinism of execution over performance, having a minimum set of control and
status registers (CSR), the performances being guaranteed with Coremark 1.0 benchmark.
The PULP (parallel ultra-low power) platform was developed to explore new and efficient
architectures for ultra-low-power processing [15]. The main objective of this project was
to develop an open and scalable research platform. The specific objectives of the project
were to increase energy efficiency as well as to meet the computing requirements of IoT
applications that require flexible processing of data streams generated by multiple sensors,
such as accelerometers and low-resolution cameras. For this purpose, the authors proposed
an innovative microcontroller and a multi-core platform characterized by outstanding
low energy consumption and large-scale adaptable performance. The Merasa project [16]
was developed to obtain a processor architecture that can be successfully used for hard
RTSs. The main feature of this project is task execution predictability for a simultaneous
multithreading technique, in which both hard real-time (HRT) and non-real-time (NHRT)
threads are executed at the same time. The XMOS processor presented by May in [17] has a
scalable and flexible architecture. The pipeline execution uses the entire central processing
unit, even if the number of active execution threads is less than four. The proposed kernel
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used in Meakin [18] was designed to implement the entire MIPS instruction set. Other
than XUM-specific extensions, MIPS specifications are strictly implemented. Since XUM
involves the study of multi-core processing, at the end of implementation in the FPGA
chip, the authors obtained several CPU cores and an interconnection network available on
a parallel architecture.

Research carried out in the field of microprocessor architecture proposes concepts
that integrate both RTOSs functions and the task scheduler, which are fully or partially
implemented in hardware. Thus, scheduling algorithms as well as inter-task synchroniza-
tion and communication mechanisms are integrated into the hardware, guaranteeing a
typical RTSs response time. In these projects, the software still has the task of switching the
thread contexts. This paper proposes the implementation in hardware of nHSE and RTOS
mechanisms, as well as the switching of contexts based on thread resources multiplication.
These achievements have the advantage of minimal time to handle events attached to the
processor instances, leading to low power consumption and overall performance.

3. nMPRA and nHSE Overview

With the expansion of nMPRA architecture and facilities, in this paper, we redefine the
system based on the architecture illustrated in Figure 1. The private resources of threads,
referred to as HW_thread_i with i = 0, . . . , n − 1, are as follows:

• GPR (for MIPS32 and RISC-V, there are 32 general-purpose 32-bit registers, for ARM
16 general 32-bit registers, etc., to which it is possible to add other registers available
to the programmer, such as the current program status register (CPSR) for ARM, PC
for RISC-V, Hi and LO multiplication registers for MIPS32, etc.);

• Pipeline registers (for example, MIPS32 includes the IF/ID, ID/EX, EX/MEM, and
MEM/WB pipeline registers);

• Status and control registers (e.g., RISC-V CSR, ARM control register, RTOS-associated
registers implemented through hardware, etc.);

• Condition and status indicators, work registers, and counters. In the design stages,
which are essentially dependent on the chosen BASELINE (BL_NAME) (which may be
an implementation of a MIPS32, Cortex-Mx, RISC-V, PowerPC, etc.), the presence of flip-
flops, work registers, and counters in the shared common area (HW_COMMON_CPU)
that are not saved in pipeline registers must be replicated at the level of each HW_thread_i
(see Figure 2, where instPi is the static identifier of the nMPRA instance, and en_pipe_instPi
is the resource selection signal for instance i). All of these files depend on the BL, the
type of architecture (MIPS32, Cortex-Mx, RISC-V, PowerPC, etc.) and the concrete
implementation (HW_nMPRA_RTOS can be implemented in the form of a coprocessor,
e.g., MIPS32 (COP2); RISC-V CSR; etc.).

The hardware that has the common attributes in Figure 1 are as follows:

• The resources needed to deploy RTOS-specific components in hardware (HW_nMPRA_RTOS);
• Multiplexers (or factory switches) for coupling the hardware resources of a thread with

the pipeline stages (with a major influence on the working speed of the nMPRA execu-
tion instance, power consumption, FPGA clock distribution, and resource utilization);

• The common logical part of the pipeline stages (IF, ID, EX, MEM, and WB) for a
five-stage pipeline architecture.

The architecture can comprise 2–8 pipeline stages and 2–32 threads or even more
if necessary (we do not recommend this). Figure 2a presents a resource multiplication
solution with multiplied memory elements. All entries are common, and the memory bits
have the same clock signal, but at some point, only one set is active because the flip-flop
validation entries are connected to the output of a decoder (only one output is active at a
time if the decoder is validated, i.e., the E entry is active, which means that there is at least
one nMPRA instance running), as shown in Figure 2b.
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If the E validation entry is inactive, all instances are IDLE, and none of them are
active. From a hardware perspective, an nMPRA instance is a complete processor, which
we denote by instPi with i = 0, . . . , n − 1, implemented on a specific BL (with a certain
ISA architecture) and a specific implementation of it. A single thread runs on an nMPRA
instance, i.e., the instance whose private resources are embedded in the hardware instance.
At some point, nMPRA executes a single instance. We can then write the following:

instPi = HW_thread_i + BL_name (PIPELINE_STAGE)
+ HW_nMPRA_RTOS(TYPE) + MUX (PIPELINE_STAGE)

(1)

where the components are defined as follows:
instPi: Instance i for nMPRA;
HW_thread_i: Private hardware resources for thread i;
BL_name (PIPELINE_STAGE): Name of the baseline with the number of pipeline

stages used;
HW_nMPRA_RTOS (TYPE): RTOS implemented in hardware for n threads, where

TYPE = coprocessor, block that uses CSR, standalone, etc.;
MUX: Resource multiplexers shared by threads, dependent mainly on the number of

pipeline stages.
The BL used for implementation in this study is the XUM project (R1) described in [19]

with sources in [20], which is a MIPS32 processor; HW_nMPRA_RTOS uses coprocessor 2
with a five-stage pipeline. There is another implementation that uses the RISC-V archi-
tecture called uRV with sources in [21] and a four-stage pipeline. The CSR block was the
design basis for HW_nMPRA_RTOS. For these architectures, the nMPRA instances can be
written as follows:

inst_Pi = HW_thread_i + BL_MIPS32v5_XUM(5)
+ HW_nMPRA_RTOS(COP2) + MUX(5)

(2)

inst_Pi = HW_thread_i + BL_RISCV32IM_uRV(4)
+ HW_nMPRA_RTOS(CSR) + MUX(4)

(3)

In the nMPRA specifications, the following prefixes are defined:
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• Control registers (cr_), which contain specific instPi with thread-level access;
• Local registers (lr_), which are part of the private address space of each instPi;
• Global registers (gr_), which are part of the global nMPRA address area and can be

accessed by all instPi;
• Monitoring registers (mr_), which can be accessed either locally or globally.

Other rules are mentioned in the description of each register. Control and monitoring
registers are usually local registers. Global registers are always prefixed with gr_, regardless
of their role (status or control). All nMPRA instances are identical, except instP0, which
has certain additional facilities: for example, it is the active instance after RESET, it has
access to some of the other instances’ registers, and it always has an execution priority of
0, which is the highest priority in the system. Other facilities are specified in this paper
when appropriate.

4. Real-Time Operating System Implementation in nMPRA

The RTOS implementation in nMPRA, called HW_nMPRA_RTOS, also includes the
nHSE described in [6]. HW_nMPRA_RTOS performs the basic functions of an RTOS
implemented in hardware with exceptional reaction times that range from a machine cycle
to less than three machine cycles (in rare cases), depending on the situation. Even for a
processor operating at 20 MHz, delays can range from 50 to 150 ns, i.e., a very fast response.
Increasing the frequency, e.g., to 100 MHz, translates the time range to 10–30 ns (this is
the delay without execution time of before and after instructions.) For microcontrollers
operating at 200 MHz frequencies that use a specialized and optimized RTOS software, the
thread-switching time is at least a few microseconds if there is hardware support at the
microarchitecture level for quick thread switching.

For HW_nMPRA_RTOS, the following functional requirements are defined:

• The nHSE defined in [6] is implemented (which contains event generation logic, a
static scheduler, and a dynamic scheduler support);

• Manage:

◦ Access to shared resources using mutexes;
◦ Synchronization and communication between threads using signals/message events;
◦ External interrupts (managed as events);
◦ Control and monitoring registers.

• Monitor:

◦ Time events;
◦ The running and idle times of each instPi and BL_nMPRA as a whole;
◦ The identifier of the instPi that is running (instPi_ID).

• It is optional to implement a dynamic scheduling algorithm (e.g., Round Robin).

Figure 3 shows the block diagram for HW_nMPRA_RTOS. It comprises the following
functional modules:

• Static and dynamic scheduler (nHSE);
• Event management logic;
• Interrupt event controller (for p interrupt-type events);
• Controller for mutex, signals, and message events (for m mutexes and s signals/messages);
• Clocks and counters;
• Local, control, and monitoring registers;
• Baseline interface (BL_MIPS32v5 or BL_RISCV32IM).

These modules are described in the following subsections.
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4.1. Event Management Logic

The operation of the system shown in Figure 4a (where the “/” sign indicates a bitwise
complement value) is as follows. If one or more of the seven mentioned events occurs and
at least one is validated, then the instilEvi signal is activated. If the mr_stop_instPi signal is
activated (only nMPRA instP0 can enable/disable it), then the instPi_Evi signal is activated.
If no higher priority nMPRA instance is active (/instP0_Ev0, . . . , /instPi − 1_Evi − 1), the
signal instPi_rdy that is connected to the data entry of the D flip-flop is activated and will
be stored by the first positive edge of the nMPRA clock, activating the instPi_ready signal,
which, in turn, is part of the logic that generates the instPi_ID that is ready for execution
and has the highest static priority (lowest number).
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The clearing of the event may result in the nMPRA processor losing control because,
in the next clock cycle, the signal instPi_ready deactivates and stops the respective instPi.
As a result, if the instPi execution is to continue, then the lr_run_instPi signal must be
activated before the event is reset.

It can then be disabled automatically or by soft writing 0 to the lr_run_instPi bit (see
crTRi register). The block scheme is shown in Figure 4b. The functional block presented
in Figure 4 is intended to manage the input events originally presented in [6], which are
defined as follows:

• Global, which can be used by any instPi:

◦ Interrupt events—evIi_j;
◦ Events generated by mutexes—evMi_k;
◦ Events generated by synchronization and message sending (signals/messages)—

evSMi_l or, briefly, signals;

• Local, specific to each individual instance instPi:

◦ Event generated by WDT—evWDTi;
◦ Event generated by the timer (tick)—evTi;
◦ Event generated by deadline 1—evD1i;
◦ Event generated by exceeding deadline 2—evD2i.

where

i = 0, . . . , n − 1, n = maximum number of instPi of nMPRA);
j = 0, . . . , e − 1, e = maximum number of interrupt events;
k = 0, . . . , m − 1, m = maximum number of mutexes; and
l = 0, . . . , s − 1, s = maximum number of signals.

For FPGA deployment, there is a restriction that specifies that three-state circuits can
only be used at the level of the external pins of the circuit. As a result, the original scheme
in [6] must be adapted. In this respect, we discuss the signal instPi_ready. These signals can
be used as alias signals for en_pipe_instPi (see Figure 3). The instPi_ready signal is only
active among those instPi instances that are ready to run at that time, and it has the highest
priority in the system (lowest identifier). At this point, instPi_ID must be created as log2 n
based on instPi_ready signals (see Figure 4.b). Another problem is that, when no nMPRA
instances are ready to run, the signal en_pipe_instPi (see Figure 3) must be inactive. To
do this, the situation must be noted when all instPi instances are not attached to an active
event or are not self-executable. This is the IDLE state of the nMPRA finite-state machine
(FSM), so no instances are active, and no threads are running.

This paper proposes an improved variant of the scheme that is presented in Figure 4a
by including an additional signal that detects the state in which no nMPRA instance is ready
for execution, namely, the signal idle_nMPRA (0L = IDLE). As a result of the introduction
of this signal, the identifier of instPi has n + 1 bits as the highest bit to indicate whether
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(i.e., 0) or not (i.e., 1) an instPi is active. The block diagram of the module that manages the
ready-to-run status of an nMPRA instance (logical event management block in Figure 3) is
shown in Figure 4b.

Next, the registers necessary for the implementation of HW_nMPRA_RTOS, including
local, control, and monitoring registers (Figure 3), are presented. Thus, for the proper
functioning of the nHSE, the following registers must be defined:

crTRi is the thread register (cr_), which is the event validation register (Table 1) that
allows the event to generate (or not) the signal instPi_ready to the first positive edge of the
clock (a local register that can also be read by instP0). It is a register that serves to validate
(1) or inhibit (0) an event. After the CPU is reset, all bits are 0 (except the bit lr_run_instPi,
which is 1L, for i = 1, . . . , n).

Table 1. The meaning and location of bits for the crTRi register.

31 30, . . . , 8 7 6 5 4 3 2 1 0

0 0, . . . , 0 lr_run_instPi lr_enSMi lr_enMi lr_enIi lr_enD2i lr_enD1i lr_enWDi lr_enTi
rw rw rw rw rw rw rw rw

Value after CPU RESET
0 0, . . . , 0 1 0 0 0 0 0 0 0

lr_enTi = 1/0 Enable or disable the event generated by the timer (preferably a periodic event); lr_enWDi = 1/0 Enable or disable the
event generated by the WDT; lr_enD1i = 1/0 Enable or disable the event generated by the critical limit (deadline) 1; lr_enD2i = 1/0
Enable or disable the event generated by the critical limit (deadline) 2; lr_enInti = 1/0 Enable or disable events caused by interrupts;
lr_enMi = 1/0 Enable or disable events generated by mutexes; lr_enSMi = 1/0 Enable or disable events generated by signals and messages
(synchronization and communication between tasks); lr_run_instPi = 1/0 Enable or disable program execution on instPi.

crEVi is the event register (cr_), which indicates the activated (1) or not (0) of an event
(Table 2). After the CPU is reset, all bits are 0L (except for the bit lr_run_instPi, which is 1L).

Table 2. The meaning of the bits for the crEVi control register.

31 30, . . . , 8 7 6 5 4 3 2 1 0

0 0, . . . , 0 lr_run_instPi evSMi evMi evIi evD2i evD1i enWDi evTi
rw rw rw rw rw rw rw rw rw

evTi = 1/0 OR The event generated by the timer; evWDi = 1/0 OR The event generated by the WDT; evD1i = 1/0 OR The event generated
by the deadline 1; evD2i = 1/0 OR The event generated by the deadline 2; evIi = 1/0 OR Interrupt type events; evMi = 1/0 OR Events
generated by mutexes; evSMi = 1/0 OR Signal events; lr_run_instPi = 1/0 OR Copy of the homologous bit from crTRi.

cr0MSTOP is the master stop register; this is a master register for stopping instPi
execution, and it is valid only for instP0 (Table 3). After the CPU is reset, all bits are 0L.
The occupation of the register depends on the number of instPi.

Table 3. The significance of the bits for the cr0MSTOP register.

31 30, . . . , 4 3 2 1 0

mr_stop_instP31 mr_stop_instPi, i = 4, . . . , 30 mr_stop_instP3 mr_stop_instP2 mr_stop_instP1 –
rw rw rw rw rw rw

mr_stop_instPi (i = 1, . . . , 31) = 1/0 instPi is validated or stopped.

Switching from one instance to another occurs, as mentioned above, very quickly
(e.g., one or two nMPRA cycles). Synchronization with one of the desired events can be
performed using the generic assembly instructions wait Rj or wait Rj, events. If there are
events already pending and validated by the Rj register, the wait instruction does not block
the nMPRA instance that is running it. When the wait instruction is completed, the Rj
register contains pending events that are validated by the wait instruction. If this is not the
situation and the bit lr_run_instPi is 0L, then the wait Rj blocks the nMPRA instance on
which it is running. Upon returning from the wait instruction, the Rj register stores pending
events that have been validated by the wait instruction via the Rj register (see Table 1).
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Figure 5 shows the tests performed to measure the kernel latency in the case of an
event assigned to instP0, which is the highest priority event according to crEPRi (the
register for prioritizing events at the instPi level, corresponding to crEVi). Based on FPGA
design methodology and optimization techniques, Figure 5a illustrates the post-synthesis
simulation from the design and debugging stage of the HW_nMPRA_RTOS concept at a
working frequency of 33 MHz. Based on CPU harvard architecture, the dual-port on-chip
memory was designed with IP Block Memory Generator 8.4 and clocked by IP Clocking
Wizard 5.2. The simulator can also view the nHSE registers proposed in this paper. The
integrated simulator Vivado 2018.2 Design Suite (Xilinx, Inc., San Jose, CA, USA) was
used to test the data path and nHSE registers, and the project was routed, placed, and
validated in the FPGA using the Virtex-7 development kit. At the T1–T2 time period,
the context switching between instP3 and instP0 is performed, the latter being higher
priority based on the nHSE mrPRIinstPi register, each instPi having its own hardware
context that does not need to be saved. Figure 5b illustrates the test performed for the
practical measurement of the kernel latency corresponding to the nHSE scheduler, i.e.,
the change in the output of the FSM states that generates the next transition through the
nHSE_FSM_state[7:0] signals (Figure 3). Thus, tests were run to confirm that the hardware
scheduler has a jitter of one clock cycle plus 13.63 ns, the time needed to trigger the evIi
event (ExtIntEv[0] external interrupt captured by Channel A), but it can be any of the events
(evTi, enWDi, evD1i, evD2i, evMi, or evSMi) specified in Table 2. Thus, the latency of the
thread context switch in one clock cycle was simulated and tested, where the Channel D
signal measures the transition of the signal en_pipe_instP0. The practical implementation
of HW_RTOS_nMPRA in the FPGA validates the simulation, so the kernel latency for
handling an event of the type evIi is only 74.23 ns (the trigger time of the signal ExtIntEv[0]
plus the two clock cycles needed for the hardware scheduler and the thread context switch).

The kernel latency value of 60.6 ns is computed from when the evIi event is active to
the moment when HW_nMPRA_RTOS fires to the first instruction of the handler routine.
In [22,23], these design and testing situations are addressed, and several solutions are
proposed. In [23], a solution is presented for an extreme case in which all seven types
of events are validated and already pending. In the first example, the priority is set by
software, and all seven indicator bits are tested sequentially. The priority is chosen by the
software programmer, and the event with the lowest priority may have significant delays in
its processing. A faster solution involves associating an event number, on the basis of which
an offset is calculated, in a table with jumps (or calls) to program sequences for the event
handler. Additionally, in [23], a hardware solution is proposed that uses a priority encoder
for interrupt events, and the number of interrupts with the highest priority is saved in a
register whose output is decoded, with the output of the decoder selecting a register that
contains the event handler address. This event handler routine at the end must activate the
lr_run_instPi bit in the crTRi register (to keep the instance in a ready-to-run state), delete
the bit corresponding to the active event in the crEVi, and transfer the control back to the
main loop of the thread on the corresponding HW_nMPRA_RTOS instPi. The method
does not require stack saves/restores (which may exist, depending on the application).
When calling the wait Rj instruction (or the equivalent of the instruction according to the
BL), the current context is not considered to be important. In [22], the authors proposed
prioritizing the seven events, and a similar direct transfer to the event handler routine is
presented in [23].
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(a) Simulation related to HW_nMPRA_RTOS FSM, crTRi, and crEVi registers and assignment of instPi priorities. (b) Trigger
the evIi event = 13.63 ns (Channel B), changing the FSM state = 43.93 ns—from ExtIntEv[0] (Channel A) to nHSE_FSM_State
(Channel C) and context switch to instP0 = 74.23 ns—from ExtIntEv[0] to set en_pipe_instP0 (Channel D).

Regardless of how control is transferred, the priority rule is the same as that for an
interrupt controller (nested vector interrupt controller (NVIC), such as ARM): an event
at the same priority level or lower cannot suspend the current event handler. Thus, the
response to events can also be delayed by event handlers that are already running on the
instance to which it is assigned. Even on the same instance of nMPRA, there is a global
prioritization of interrupt, mutex, and signal/message events. The solution in [22] also
proposes a register called crEPRi for selecting priorities for the seven types of events, and it
has three bits for each type of event. These solutions are convenient because they allow
quick access to the handler so that it can treat the event as quickly as possible. However, a
more practical solution that moves trap cells from additional registers to program memory
is proposed later in this paper, because, for a thorough understanding, mechanisms for
implementing interrupts, mutex, and signal/message events should be discussed.
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4.2. Static and Dynamic Scheduler

The implementation of the hardware scheduler engine, illustrated in Figure 6, is
simple for static scheduling; as long as the signal scheme instPi_ready, i = 0, . . . , n − 1
is as presented in Figure 4. When sel_sched_dyn is 0, the priority encoder generates the
binary code for the highest priority instPi. For static scheduling, the static instPi_ID is
equal to the identifier of the static priority IDPri_i = instPi_ID (i = 0, . . . , n − 1, where
0 is the highest priority, and n − 1 is the lowest priority). This code, multiplexed with
instPi_ID for dynamic scheduling, is decoded to generate the en_pipe_instPi selection
signal of resources in the HW_thread_i module for the activation of the nMPRA instance
(see the DECODE module in Figures 3 and 6). Table 4 shows the truth table for an example
with eight nMPRA instances, resulting in logical equations for idsPri3, idPri2, idPri1, and
idPri0. The schema in Figure 6 provides support when sel_sched_dyn = 1L for dynamic
scheduling in the sense that each nMPRA instance may receive another priority.
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Table 4. Truth table for the identifier encoder (i.e., priority) for eight nMPRA instances.
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For this purpose, memory (or a set of registers, which can also be double buffered for
a synchronous update) is provided to translate IDPri_j with j = 1, . . . , n to any instPi_ID
with i = 1, . . . , n, except that IDPri_0 is always equal to instP0_ID. To do this, it is necessary
to add the hardware support shown in Figure 7, which generates the instP_readyi signals
in Figure 6. The dynamic scheduler, implemented either in software and executed on
nMPRA’s instP0 or in hardware, must manage the Translation Table for the Interface of
Identifiers, abbreviated TTIID.
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The priority of instPi_ID has values from 0 to n − 1, where 0 denotes the highest
priority identifier and n − 1 denotes the lowest priority identifier. The TTIID correlates the
instPi_ID whose priority has been defined in the mrPRIinstPi register, i = 1, . . . , n − 1. The
hardware must ensure that every time the CPU executes a write operation in these dynamic
priority registers of nMPRA instances, the TTIID is updated (this can also be double
buffered). This is possible because the value of the new priority must be communicated
to the writing function, and the register number assigned to the instance for setting the
priority is found in the register encoding or in the memory address used, depending on
the deployment.

The scheduler type is selected only at the instP0 level of nMPRA, whose structure is
found in Table 5. The structure of the priority selection register of an nMPRA instance is
presented in Table 6.

cr0CPUID: Register with information about CPU resources. This register is wired
to RESET.

Table 5. Bit significance for the cr0CPUID register.

31 30, . . . , 4 3 2 1 0

CPUID31 CPUIDi, i = 4, . . . , 30 CPUID3 CPUID2 CPUID1 CPUID0
rw rw rw rw rw rw

CPUID 4−0 Indicates the number of instPi; CPUID 6−5 Indicates the CPU version; CPUID 8−7 Indicates the dynamic scheduler version,
00 = static scheduler (sel_sched_dyn = PUID7 + PUID8, see also Figure 6), otherwise the dynamic scheduler is implemented through
software or with an external FPGA. At RESET PUID7 = CPUID8 = 0; CPUID 9 = 1/0 It has or not the events priority encoder; CPUID 10 = 1/0
It has or not the interrupts priority encoder; CPUID 11 = 1/0 Has direct trap cells to the event handler.
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mrPRIinstPi (dynamic priority register): Register for dynamic priority. It does not
exist for instP0. After resetting, all bits are 0L (static priority is active). It is only accessible
by instP0 or a dynamic hardware scheduler.

Table 6. Bit meaning for the mrPRIinstPi register.

31 30, . . . , 4 4 3 2 1 0

PriD4 PriD3 PriD2 PriD1 PriD0
0 0 rw rw rw rw rw

PriD4, . . . , 0 = 0 Priority is static; PriD4, . . . , 0 6= 0 Represents the dynamic priority of the task (between 1 and n − 1, where n is the number
of instPi.

The dynamic priority scheduler must be implemented at the level of instP0 because it
is the only instance that can stop all other instPi, which can write in the PRIinstPi register,
which has access to the mechanisms for generating time, deadline, and WDT events of
all nMPRA instances, as well as other useful functions. Enabling the dynamic priority
scheduler can also be used to resolve issues related to priority inversion (i.e., priority ceiling
protocol) or change the priority depending on the device status (normal, test, and service),
among other functions. Usually, “low end embedded” does not provide special mecha-
nisms for resource starvation, this being more specific to high-performance multi-user sys-
tems, i.e., those that work with groups of threads. However, because nMPRA_HW_RTOS
has dynamic priorities and timers, for example, the aging scheduling technique can be used.
Previous implementations have often used static scheduling, possibly by using the static
scheduling algorithm RM. In [24], a specific implementation of a double priority algorithm
is presented, whose purpose is to ensure that the RTOS remains functional, even if there is
a transition from normal to another state (diagnosis, service, and test) during its operation.
This change can lead to situations in which some tasks are delayed for an unacceptably
long time, with possible unintended consequences. The algorithm ensures that each task
is executed, even for those states that are different from the normal state, by changing a
task with a priority that exceeds the amount of T-time in the normal state and placing it in
one of the queues iq (queue with hanging threads) or ltq (queue with long threads) based
on the length of the load execution. After the change disappears, the algorithm reverts to
normal time-triggered operation. In this study, the logical structure for the scheduler was
re-evaluated and modified by using the TTIID table, which connects the scheduled priority
for instPi to the correct static identifier of that instance (see also Figures 6 and 7).

4.3. Module for the Hardware Management of Mutexes

Mutual exclusion is an important aspect of access to shared resources. The scheme
proposed in [6] is partly set out in Figure 8. Here, Figure 8a represents m registers for m
mutexes, which together form the mutex register file (MRF). A register contains the value
of the mutex (0 = mutex free, 1L = mutex occupied) on the first bit and the static identifier
of the owner (nMPRA instance number) on the next bits (dlog2 ne). These registers can
be accessed by any instance of nMPRA, so it is a resource shared by all instPi. At the
level of each instance, there is a scheme similar to the one illustrated in Figure 8a that
allows the generation of an evMi event (see Figure 4) whenever an expected mutex is
free. Each instPi of nMPRA can decide which mutex to consider using lr_en_Mi0, . . . ,
lr_en_Mim − 1 signals. These signals are stored in local registers called enable mutex
registers (EMRi). There may be one or more EMRi registers depending on the number of
mutexes implemented in the MRF. To synchronize with the processor clock, the type D
flip-flop that stores the information on the positive edge of the CPU_clock is used. The
attempt to write 1L on the mutex (the static identifier of the instPi on which the thread
is running is automatically written) is successful if, after the CTC2 (copy control word to
coprocessor 2—MIPS32) instruction is executed, 1L followed by the static identifier of the
instPi to which the thread has written remains in the register used for writing the mutex bit.
Otherwise, the mutex is busy. The mutex register can be read with a CFC2 (copy control
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word from coprocessor 2). If the mutex is busy, it can remain in the loop and wait for the
mutex to be released. This solution is not recommended because it blocks the execution of
lower (numerical greater) priority threads, and it reaches starvation if the mutex has been
blocked by a thread with a lower priority than the running instPi (priority inversion). It is
preferable to enter the blocked state by activating the lr_en_Mij signal (it is thread i that
runs on instPi and mutex j), validating lr_enMi in the crTRi register and then running the
generic instruction wait Rj, for example CTC2 Rj, crTRi for COP2 MIPS32 (Rj if it is a MIPS
GPR). Upon entering the program sequence to handle this event, it is recommended to first
delete the lr_en_Mij bit from the EMR (because lr_en_Mij is used to determine the highest
priority instance that wants to take over the mutex). Afterwards, it is possible to try again
to take the desired mutex.
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The EMR registers are local and are found at the level of each instPi. After resetting
the Mutex bit (MRFi) corresponding to the released mutex, the instPi_ID that executes
the CTC2 instruction updates the mutex register automatically. After execution, in the
register (indicated in the CTC2 instruction), the Mutex bit will be 0L, followed by the
instance identifier that is executing the instruction, if the MRF and the running instance
identifiers coincide. The Mutex can be released only by the owner. A major design problem
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is that an instance can be stopped at any time by a higher priority instPi that is ready to
run. Both instances can be in a state that allows them to access the mutex at the same
time. Moreover, there may still be a higher priority instance accessing the same mutex,
for example. The mutex applies to the higher priority nMPRA instance, so a queue is
created in which instances are ordered by priority. Recall that thread i is running on
instPi. The nHSE_inhibit_CC nHSE signal can inhibit thread context switching in certain
critical situations, as is the case with atomic accesses. For example, being accessed by
all instPi, the mutex lock and release operations must be performed indivisibly with the
help of nHSE_inhibit_CC internal nHSE signal. Depending on the number of mutexes,
the HW_nMPRA_RTOS can have one or more EMR registers at the level of each instPi, as
shown in Figure 8a.

Figure 8b presents the kernel latency for mutex implementation (∆t = 561.6 ns) ob-
tained by using the PicoScope 6404B oscilloscope by Pico Technology (St Neots, UK). The
nHSE logic for mutexes was tested when the evMi (Table 2) event validated by the lr_enMi
bit (Table 1) was set.

The hardware parallel search based on combination logic in Figure 8a enables the
activation of the event evM0 (Figure 6) attached to instP0, thus generating the selection
signal en_pipe_instP0 and the resources in the module HW_thread_0. The benchmark code
to evaluate the synchronization mechanism is presented in [7]. The mutex implementation
scheme automates the processes of blocking, waiting, and unblocking. In addition, a signal
can be created in the system that indicates that all mutexes are occupied (busy_Mutexes).
An important implementation aspect is that the occurrence of the evMi event does not
guarantee access to the mutex because it may be required by a higher priority thread. The
number of mutexes is determined using more complex criteria related to the specifics of
applications, technological restrictions, the number of instPi, etc.

4.4. Hardware Module for Synchronization and Inter-Thread Communications

Another important aspect of any RTOS is synchronization and communication be-
tween threads. For implementation, as for mutexes, defining a set of global registers with
rapid access is proposed. These s registers with 2nj + k bits (Figure 9), which form the
SSMRF (Signal Synchronization and Message Register File, originally named Event Register
File in [6]), store the actual signal on the most significant bit; the static identifier (sIDm) of
the source thread (which coincides with that of the instPi) that activated the event on the
following nj = dlog2 ne bits; the static identifier of the destination thread (dIDm) for which
the event is sent on the next nj bits; and a message whose meaning remains at the discretion
of the application programmer (it is possible that the field is not used) on the last k bits.
The SSMRF behaves in one way when activating an event (Signal) and another way when
the destination thread reads the event to find out who sent it and what message it sent.
When a thread wants to activate a signal, a 32-bit value with the Signal bit 1L (Figure 9) is
written on the grSSMR0 register and will receive a 1-bit signal value from the grSSMR0
register or a 0-bit signal value that represents a failure (most likely indicating no free SSMR).
The hardware must perform a parallel search, if possible, in a single processor cycle, and
the operation must be indivisible for the hardware scheduler. At this point, the register
whose address has been returned is reserved, and when the instruction described above
is executed, it writes the static identifier of the instPi on which the thread containing the
instruction was executed on the source identifier field. Thus, it will be written on address i,
obtaining the desired value from the grSSMRi register according to the structure in Table 7.
Note that address 0 will never be returned as a grSSMRi register address. Thus, we have
n = 4 for 16 instPi instances, and as a result, we have nine bits of control and identification
and 23 bits for message identification, or they may even constitute a value (for example, a
23-bit integer, 21 bits if n = 5, or 27 bits if n = 2).
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Table 7. The meaning of the bits for the grSSMRi register and the SSMRF.

nj − 1 1 0 nj − 1 1 0 k − 1 1 0

0/1 sIDnj − 1 sID1 sID0 dIDnj − 1 dID1 dID0 messk − 1 mess1 mess0
Signal Source Task Identifier Destination Task Identifier Message

rw rw rw rw rw rw rw rw rw rw rw rw rw

Signal = 1/0 Signal with active or inactive message; nj = dlog_2 ne sIDm—bits for static source identifier, dIDm—bits for destination
static identifier.

The mechanism for validating SM-type events is analogous to that of mutex valida-
tion. Thus, at the level of each instance of nMPRA, there are one or more local registers
crESSMrij (crESSMRi0, crESSMRI1, etc.; see Figure 9). Validation signals for instPi are
called lr_en_SMjk (1L: the signal validates the generation of the evSMi event; 0L: validation
is disabled for this signal). Similarly, the generation of the evSMi event at the level of
instPi can use the same scheme as in Figure 8b, but the name is changed to Mutexi with
Signali, lr_en_Mij with lr_en_SMij, and evMi with evSMi. These changes are presented in
Figure 10a. When the destination task receives the evSMj event, it reads the SSMR0 register,
and if the signal bit is 1L, the last bits contain the address of the first register that has the
static identifier of the instPi on which the instruction is running in the destination field.
Otherwise, no message is received (error). Reading must be continued until the thread
no longer receives a message. Reading at dIDm destination can clear or not the signal bit
(using the static identifier of the destination instPj instance). A possible hardware scheme
for the mechanisms described above is shown in [6]. Signals can be used to implement
more complex mechanisms that can also enable information communication through either
pointers to specific message structures or the numeric value in the message field. The
actual implementation is determined by the designer. Similarly, the number of SMs in the
system depends on the designer, the specifics of the applications, technological restrictions,
the number of instPi, etc. No significant improvements have been made in relation to the
mechanisms described in [6].

In this study, we completed the scheme by adding a static identifier decoder des-
tination for the message to each SSMRk register, which is validated by the appearance
of a signal that can be picked up by its intended message signaling scheme for, in this
case, instPi. Mutex and SM are very powerful mechanisms with very low run times and
specific hardware support, which eliminates sequential searches in lists by using a parallel
hardware search and reading the message in a thread without searching through software.
Thus, all access is protected by indivisibility by eliminating the race condition and ensuring
a single access time for all items in the list (see SSMRF registers). The kernel latency to an
event can be two to four machine cycles if a higher priority event is not being executed.
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Figure 10b illustrates the handling of the lr_enSMi event in the crTRi register shown
in Table 1. The period of time illustrated in the oscilloscope capture (∆t = 490.2 ns) includes
handling an external interrupt event associated with instP2 (2.18 clock cycles), sending
the message to instP0 (five cycles for the pipeline stages are necessary for the execution of
the store word (sw) MIPS32 instruction), parallel searching in the hardware, and setting
the flip-flop evSMi presented in Figure 10a (one cycle), setting the instP0_ready line in
Figure 4b (one cycle), changing the context based on the selection of HW_thread_i related
to instP0 (one cycle), jumping to the appropriate event handler (one cycle), and executing
the load word (lw) instruction so that the LED[7] digital output is mapped in the data
memory address space (five cycles).

4.5. The Module for Interrupt-Type Events

There are only exceptions in HW_nMPRA_RTOS. Interrupts are handled as interrupt
events that do not require saving information because the thread resources are multiplied
at each instPi level. Moreover, these interrupt events can be attached to and have priority
to any thread (classically, interrupts are the highest priority sections of code that may or
may not interact with the thread through RTOS API functions). This uniformizes the space
of priority threads—interrupts. Otherwise, a priority inversion situation may occur here
as well. An interrupt that sends a signal to a task with a certain priority can interrupt
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tasks that are higher in priority than that task. The proposed scheme for this module is
presented in Figure 11. We note that an interrupt event can be associated with any instPi
and thus with any thread i. This event inherits the instPi priority. We assume that there
are p events of the interrupt type in the system. For each interrupt in the system, there is a
global register with n useful bits, i.e., INT_IDi_register, that stores the static identifier of
the task that the interrupt is associated with. Enabling the INTi (Figure 11) interrupt event
validates the decoder, which, in turn, activates one of the INT_i0, . . . , INT_in − 1 signals.
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Figure 11. The programmable association register of an interrupt event with instPi (default with
thread i) and the event generation scheme for that thread.

The OR logical gate in Figure 11 can collect all interrupts in the system if, for example,
all are attached to instPi and if all p registers INT_IDi_register (i = 0, . . . , p − 1) have the
value i. D flip-flop is intended to synchronize a random occurrence of an INTi interrupt
event by creating the event. The schema also produces the fit_ID_Ii signal that can activate
the interrupt attached to instPi (threads) at the input to the priority encoder (see also
Figure 12a). This schema has some powerful and interesting features:

• There must be no specialized controller for interrupts;
• Interrupt events inherit the thread priority, i.e., instPi;
• A thread can attach none, one, more, or even all of the p interrupts in the system;
• For interrupt events attached to the same instPi, the priority is set by the programmer

or a hardware schema;
• Interrupts attached to instPi can preempt a lower priority thread, but they cannot

interrupt the execution of the thread to which it is attached or a higher priority thread;
• An interrupt event can be attached to a single thread;
• The interrupt-type event handler can be a thread;
• All interrupts can be attached to a single instPi;
• The interrupt does not reset the pipeline of other instPi;
• This does not involve saving and restoring thread contexts;
• Interrupts can be nested;
• Interrupt priorities can be dynamic (by reattaching to instPi or by changing the priority

of the instPi to which it is attached).
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the interrupt event that is also its priority; (b) Interrupt event latency (∆t = 381.6 ns): asynchronous external signal
triggering = 15.85 ns (Channel A), kernel latency = 60.6 ns (Channel B–Channel C), and real-time response = 305.15 ns—
en_pipe_instP0 = 1, CPU executes the first C instruction of the handler routine and set LED[7] (Channel D).

The proposed scheme is very versatile and can implement multiple models of work
with interrupts in a real-time execution. In terms of prioritization, a schema deficiency
occurs when multiple interrupt events are attached to instPi; a loop test is performed in
which prioritization is implemented through software and the response time depends on
the loop position. Based on the ideas expressed in [22] and [23], a possible improvement
is presented in Figure 12a. The priorities of interrupts, if they are all attached to a single
instPi, is INT0 for the highest priority and INTp − 1 for the lowest priority. From this
point of view, the priorities are fixed. To take into account only the interrupts of instPi
(the highest priority) at a time, local crEPIji registers are provided (j is instPj, and i is the
number of the register attached to interrupt i). This register contains one bit for each of the
p interrupts. If the bit is 1L, then the interrupt is attached to the thread, and the INT_IDi
register must be written with the identifier of that thread. This correspondence must be
provided for any interrupt attached to instPi. If this connection is not performed for an
interrupt, then it will never generate an event because the evINT_ji signal will be 0L. The
evINT_ji signal is activated if the instPj to which the event was attached is running, with
the fit_ID_i active signal being 1L. The evINTi signal, for example, handles all possible
attachments of the interrupt to instPi, but it is mandatory that an interrupt be attached to a
single thread. Therefore, because only one instPj is active at any given time, only interrupts
of that instance can be active when entering the priority encoder. Thus, using the grNrINT
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register, the j instance will read the interrupt number with the highest priority. A bit will
signal a possible error in the sense that there is no active interrupt. Attaching an interrupt
event to a specific instPi (equivalent to attaching the event to thread i) is similar to setting a
priority level for an NVIC-handled interrupt in ARM processors. The difference is that, in
this case, the priority of a thread acting as an interrupt event handler can increase.

Figure 12b illustrates the practical measurements of the interrupt event latency based
on the scheduler implemented in HW_nMPRA_RTOS. In this test, the interrupt event
was validated by means of the lr_enIi bit in the crTRi register (with the highest prior-
ity). The time period shown in the oscilloscope capture (∆t = 381.6 ns) includes external
signal triggering, instPi_ready flip-flop (Figure 4a), setting the en_pipe_instP0 signal for
instP0 (Figure 6), jumping to the appropriate handler (Table 8), executing the sw MIPS32
instruction, and changing the digital output state mapped in the address space of the
data memory.

Table 8. The interrupt event handler MIPS32 code for testing CPU data path and kernel latency.

Application Description MIPS32 Code for Interrupt Event Latency Measurement

instP0 is executed for treating an interrupt event, with
the highest priority of all activated events.

//instP0 interrupt event handler
200e0000, //addi (Add Immediate), SignExtImm = 0000
00000000, //nop (no operation)
//The following two instructions write the value 32’h30000000
//in the GPR register r14, to address the LEDs
200e0003, //addi (Add Immediate), SignExtImm = 0003, rd = r14
000e7780, //sll (Shift Left Logical), Shamt = 30, rd = rs = r14
//for LEDs: MIPS32_Data_IO_Mem_Addr[29:26] = 4’b1100
200c00f0, //addi, SignExtImm = 00f0, rd = r12, write the value
32’h000000f0 in the r12
//register to switch ON the LEDs[7:4] (Virtex-7 Development Kit)
00000000, //nop (no operation)
adcc0000, //sw (Store Word), save r12 COP0 to the address stored
in r14
//r14contain address of I/O mapped in the memory data address space
00000000, //nop (no operation)
48c1ffff, //movcr, the wait instruction causes the next context switch
based on nHSE

Figure 12b illustrates the time period from the occurrence of the external ExtIntEv[0]
signal, corresponding to the pressing of a button in the development kit, until its capture
in the interrupt event bit (evIi) from crEVi register. This jitter is 15.85 ns, which depends
on when the trigger appears relative to the positive edge of the input signal (Channel A)
to the next positive edge of the CPU_clock (Figure 5a). Because the CPU clock period is
30.3 ns, the jitter can range from 0 to 30.3 ns.

The evaluation of the performance showed that, despite the additional hardware costs,
the implementation of the scheme in Figure 12a is mandatory for minimize the kernel
latency to external stimuli by the immediate execution of the handler corresponding to the
treatment of interrupt events (IEH). The schema can be expanded to cover all events, as
shown in Table 9.
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Table 9. The trap address for the IEH generated by the hardware.

no Event Thread 0 (instP0) Thread i (instPi) ... Thread n − 1 (instPn − 1)

ADDRESS, start to 0

0 Reset_i (instP0_ID × 16 + no) × 4 (instPi_ID × 16 + no) × 4 ... (instPn − 1_ID × 16 + no) × 4
1 Reserved_1i idem idem ... idem
2 NMI_i idem idem ... idem
3 HardFault_i idem idem ... idem
4 MemFault_i idem idem ... idem
5 InstrFault_i idem idem ... idem

6, . . . , 7 Reserved_6, . . . , 7i idem idem ... idem
8 evTi idem idem ... idem
9 evWDi idem idem ... idem

10 evD1i idem idem ... idem
11 evD2i idem idem ... idem
12 evIIi idem idem ... idem
13 evMi idem idem ... idem
14 evSMi idem idem ... idem
15 Reserved_15i idem idem ... idem

ADDRESS start to base_address_evI = (16 × n × 4)

16 evI0 base_address_evI + ((No − 16) × 4) = base_address_evI
16 + p − 1 evIp − 1 base_address_evI + ((No − 16) × 4) = base_address_evI + (p − 1) × 4

Note: A global register can be added to enable the software to generate interrupt events.

4.6. Module for Generating Time Events and Counters for the Running Times of instPi

This module generates time events at the level of each instPi: deadline 1 (D1i),
deadline 2 (D2i), and watchdog timer (WDTi) tick event types. Two counters are pro-
vided to measure the operating cycles (CNTExi) and the stationary ones (CNTIdlei) at the
level of each instPi and at the level of the CPU (CNTEx and CNTIdle). Figure 13a presents
tick events with the signals instPi_ID[1:0] modified based on the signals lr_enTi and evTi in
Figure 4a and the current instPi_ID in Figure 6. Figure 13b shows part of the initialization
section of the nHSE registers, i.e., setting periods for tick events (mrTEVi[3:0]).
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Figure 13. Time events in the nMPRA. (a) Oscilloscope signals for testing instPi_ID in the RUN state; (b) the initialization 
section of the hardware scheduler in Verilog HDL using Vivado development tools. 

4.7. Other Modules Implemented in the nHSE 
This section describes additional modules implemented in the test architectures that 

are not mentioned above. 
The memory protection (MP) module includes x sets of three registers that store the 

basic address of the memory mode, its end address, and the status and control of the mode 
(invisible and cannot be accessed, read only, write only, read/write, execute only, read/ex-
ecute, write/execute, static identifier (instPi_ID) of instPi, etc.) with the generation of 
memFault interrupts or a break event. 

Each set can be attached to any instance and any memory space. Usually, there are 
as many sets as there are instPi, but a set can be attached to any nMPRA hardware in-
stance. 

The Debug module provides breakpoints for data addresses/instructions (for reading 
and writing execution), for events (including taking a mutex or signal, no free mutex, no 
free signal), and for instPi activation. At a breakpoint, the program that runs on that in-
stance stops running, or the nMPRA clock is blocked, after which the program can run 
step by step. This module can also determine the status of the processor (all registers avail-
able to the programmer and special registers) and change the status of nMPRA. 

5. Discussion 
The further development of this project will enable rapid response times to events 

and controllable deterministic behavior for both simulations and practical implementa-
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Figure 13. Time events in the nMPRA. (a) Oscilloscope signals for testing instPi_ID in the RUN state; (b) the initialization
section of the hardware scheduler in Verilog HDL using Vivado development tools.

4.7. Other Modules Implemented in the nHSE

This section describes additional modules implemented in the test architectures that
are not mentioned above.

The memory protection (MP) module includes x sets of three registers that store the
basic address of the memory mode, its end address, and the status and control of the
mode (invisible and cannot be accessed, read only, write only, read/write, execute only,
read/execute, write/execute, static identifier (instPi_ID) of instPi, etc.) with the generation
of memFault interrupts or a break event.

Each set can be attached to any instance and any memory space. Usually, there are as
many sets as there are instPi, but a set can be attached to any nMPRA hardware instance.

The Debug module provides breakpoints for data addresses/instructions (for reading
and writing execution), for events (including taking a mutex or signal, no free mutex,
no free signal), and for instPi activation. At a breakpoint, the program that runs on that
instance stops running, or the nMPRA clock is blocked, after which the program can run
step by step. This module can also determine the status of the processor (all registers
available to the programmer and special registers) and change the status of nMPRA.

5. Discussion

The further development of this project will enable rapid response times to events
and controllable deterministic behavior for both simulations and practical implementation
using FPGA technology. The proposed research project is a novel contribution, and similar
implementations are not described in the specialized literature. In this paper, previous
projects and implementations that are comparable to the proposed architecture are pre-
sented and analyzed. Table 10 presents a comparison between the nMPRA architecture and
a few other performant processor implementations. The proposed HW_nMPRA_RTOS
system with a real-time hardware scheduler is a novel design. The JTAG debugging module
was used for the testing and verification of the proposed processor concept. In the design
and testing stages, we used the Vivado integrated simulator, Verilog testbench, ChipScope
ILA, and PicoScope 6404B.
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Table 10. Comparison between different CPU architectures based on implementation and hardware support.

Project Architecture Type CPU Scheduler Frequency FPGA
Pipeline

Stages/Power
Consumption

nMPRA4 MIPS32

Static/Support for
dynamic scheduler

implemented
in hardware

33 MHz
Xilinx Virtex-7,
XC7VX485T-

2ffg1761C
5 stages/0.432 W

uRV Core [16,21] RISC-V (RV32IM ISA) Software 100 MHz/94 MHz
Xilinx

Spartan-6/Altera
Cyclone-4 E

4 stages/0.737 W
(Device Static)

nMPRA4 [25] RISC-V Static
nHSE/hardware 100 MHz

Xilinx Virtex-7,
XC7VX485T-

ffg1761
3 stages

Cortex M3 [26] ARM Software 40 MHz Xilinx Spartan-7,
xa7s50csga324-2I 3 stages/0.255 W

biRISC-V [27] RISC-V (RV32IMZicsr) Software >50 MHz Xilinx Nexys4
DDR

Superscalar
(dual-issue)

in-order 6 or 7
stage pipeline

The initialization and operation of internal scheduler registers and hardware logic
were validated using assembler program code benchmarks. For the project validation and
verification methodology, the proposed system was compared with other architectures
based on tests performed by the authors, in which each implementation was synthesized
and implemented in the FPGA.

By parameterizing the Verilog HDL code, it is possible to analyze the CPU working
frequency and FPGA resources needed for CPU extensions. The Virtex-7 resource require-
ments for implementing the HW_nMPRA_RTOS architecture in different configurations
and for comparing performances with other projects are presented. The project validation
analyzes many aspects of the system: the bus structure, the hardware resources, and the
data coherency. This paper proposes a multitasking RTS architecture. We focus on hard-
ware solutions, but we also analyze software issues of time-predictable RTSs. The basic
building block of the system is the processor core based on the idea of thread pipelining.
Moreover, the pipeline structure of a core based on nMPRA+nHSE and MIPS32 is flexible
and can be configured for a given instPi. Table 11 presents the resource requirements for
implementing different CPU architectures.

Table 11. The use of FPGA resources based on different CPU implementations.

Resources/SoC
Project

XC7VX485T-
2ffg1761C Virtex-7

Resources

uRV Core
[16,21]

nMPRA
(RISC-V) [25]

biRISC-V
[27]

nMPRA
(MIPS32)
(4 instPi)

nMPRA
(MIPS32)
(16 instPi)

LUT 303,600 1271 39,882 11,326 16,014 58,774
LUTRAM 130,800 1 5725 1 814 946

FF 607,200 936 26,285 6678 8613 31,916
BRAM 1030 17 0.50 16 148 148

IO 700 9 89 327 32 32
BUFG 32 1 12 1 15 15

Table 12 presents the WCET coefficients in microseconds following the processor
performance evaluation presented in this paper. Figure 14 illustrates the distribution of the
obtained WCETs based on multiple measurements, the data being relative to the events
associated with the highest priority instPi. The following times have been measured: the
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relative time for the initialization and boot operation of the HW_nMPRA_RTOS, the time
required for the task context switching operation in the least favorable case when the as-
sembly line contains atomic instructions, and the task activation time by an interrupt event.

Table 12. WCET parameters related to the kernel functions based on HW_nMPRA_RTOS.

WCET Parameters HW_nMPRA_RTOS WCET (33 MHz)

Thread context switch 0.033 µs (Figure 5)

Selection of the next thread to execute (scheduler time) 0.043 µs (Figure 5b)

Preempt a task instance (kernel latency) 0.060 µs

Treating an asynchronous external interrupt 0.381 µs (attached to instP0) (Figure 12b)

Executive booting and configuration 21.8 µs

Create/Stop instPi (cr0MSTOP) 0.151 µs

Activation and prioritization of a periodic task 0.242 µs

Read/write task state (1 parameter—32 bit) 0.165 µs

Enable/disable a mutex or semaphore 0.132 µs (mutex)

Lock/unlock a mutex or semaphore 0.212 µs (mutex)
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The following aspects contributed to the WCET coefficients obtained and presented
in Table 12: the multiplication of resources for each instPi (HW_thread_i), the hardware
implementation of the nHSE scheduler [28] at the level of COP2, and designing the syn-
chronization and communication mechanisms as part of the nHSE module [7].

The main technical objective of our project is to implement the HW_nMPRA_RTOS
concept for a time-predictable embedded system. The dynamic scheduler has a major effect
on the RTOS overhead. In the future, we are considering the hardware implementation
of an EDF scheduling algorithm and a priority ceiling protocol defined by OSEK. For
BASELINE, we will use BL_RISC-V with four-stage pipeline.
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6. nMPRA Programming Paradigms

With the mechanisms implemented in HW_nMPRA_RTOS, programmers can write
RTOS applications in a simple manner without switching contexts for multiple register
saves or managing complex data structures; without calling RTOS functions; without
message queues; without a complex time management function, usually with a variable
duration depending on the application context; without managing queues with the thread
status by the scheduler; and without a controlled software dispatch. These operations
can only be performed by simple reading/writing operations in HW_nMPRA_RTOS
registers. A general example is shown in Figure 15, where the initialization sequence
initiates its thread and hardware resources (HW_thread_i) through an application. If
necessary, lr_en_Xi-type bits can be validated for events to be used by thread_i on the
instPi instance.
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When the wait instruction is called (when lr_run_instPi = 1L), it compares events vali-
dated with thread_i_ev with events already pending. If one or more events in thread_i_ev
are already pending, then wait loads the PC with the start address of the event handler
routine (EHR) of the highest priority event (if there are more). If no events are waiting, then
the wait Rj instruction deletes lr_run_instPi = 0L, the thread exits the ready-to-run state,
and through the scheduler, HW_nMPRA_RTOS dispatches another instPi (the highest
priority that is ready to run) to run the associated thread. When an event occurs for thread
i (it becomes ready to run) and when instPi has the highest priority, the execution of the
wait Rj instruction that sets the lr_run_instPi bit resumes and transfers control to the EHR
corresponding to the highest priority event. In the EHR, the bit from the crEVi register
must be deleted (with lr_run_instPi = 1L), and the time depends on the frequency of the
occurrence and the behavior of the event. It is usually cleared at the end of the EHR. If the
event is an interrupt, then the source that generated it must also be cleared. With the CTC2,
CFC2, MFC2 (move word from coprocessor 2), and MTC2 (move word to coprocessor 2)
instructions, all HW_nMPRA_RTOS functionalities are easily managed.

In the future, we will propose for these functions similar RTOS names often used at
this level (Keil RTX5, uC_OS III—Micrium, FreeRTOS, etc.). Several applications will be
tested and additional hardware will be added for other specific RTOS facilities.
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7. Conclusions

The proposed architecture is based on predictive execution using the nMPRA concept
to satisfy the timing constraints required in real-time applications without exceeding the
imposed limit of power consumption. Moreover, the simulation, synthetization, and imple-
mentation of this project in an FPGA will enable the development and debugging of the ap-
propriate applications. The research carried out for this paper was completed by a series of
practical tests, and the scientific results were validated based on well-chosen experiments.

In this context, the nMPRA + nMSE architecture will be implementable in silicon,
scalable, and configurable. HW_nMPRA_RTOS is an architectural concept designed for
high performance and energy-efficient implementation by combining the MIPS32 or RISC-
V architecture, ISA extensions, explicit management of the memory hierarchy, and compiler
support to meet performance requirements for RTSs used in industry and beyond. The
FPGA implementation can meet a wide range of performance requirements by scaling
the number of instPi, configuring the events at the level of each HW_thread_i, or adding
specific extensions. The economic benefits of the solution include the significant growth of
productivity due to its easy integration into software applications of new RTSs, even in
the IoT sector. The proposed custom CPU implementation can provide static or dynamic
priorities for interrupts, depending on the priority of the instPi to which they are attached.
This solution may be the basis of a variety of specific applications for the monitoring and
control of industrial processes. In this innovative project, the feasibility and performance
of the HW_nMPRA_RTOS implementation were tested using a Virtex-7 FPGA circuit. The
experimental results obtained by implementation in a physical chip can lead to major
improvements in the development of real-time applications. The ability to flexibly set
processor instance priorities and dynamically attach interrupt events to any instPi provides,
in addition to quick responses to events, increased performance for RTS applications.

8. Patents

The nMPRA and nHSE concept presented in this paper is patented in Germany,
Munich (DE202012104250U1, June 2012).
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