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Abstract: Most eye tracking methods are light-based. As such, they can suffer from ambient light
changes when used outdoors, especially for use cases where eye trackers are embedded in Augmented
Reality glasses. It has been recently suggested that ultrasound could provide a low power, fast,
light-insensitive alternative to camera-based sensors for eye tracking. Here, we report on our work on
modeling ultrasound sensor integration into a glasses form factor AR device to evaluate the feasibility
of estimating eye-gaze in various configurations. Next, we designed a benchtop experimental setup
to collect empirical data on time of flight and amplitude signals for reflected ultrasound waves for a
range of gaze angles of a model eye. We used this data as input for a low-complexity gradient-boosted
tree machine learning regression model and demonstrate that we can effectively estimate gaze (gaze
RMSE error of 0.965 ± 0.178 degrees with an adjusted R2 score of 90.2 ± 4.6).

Keywords: eye tracking; gaze estimation; ultrasound; CMUT; machine learning; Gradient Boosted
Regression Trees; Comsol Modeling

1. Introduction

Most current eye tracking methodologies use video to capture the position of the
iris and/or reflected lights sources–glints [1]. As such, these methods can be affected
by ambient light [2], which is particularly true for use cases such as augmented reality
with eye glasses. Other light-based methods such as scanning lasers [3], third Purkinje
images [4] and directional light sensors [5] can likewise be affected. Speed can also be
limited, especially in wearables, where operating a camera at high speed (on the order of
100 Hz or above) would imply high power consumption. At these speeds the camera-based
sensors can capture fixations but not other parameters such as saccades, which have been
implicated as a markers of schizophrenia spectrum in at-risk mental states [6] as well as
other neurological disorders [7]. Fast eye tracking is required for measuring saccades.
Current devices capable of measuring saccades are designed for laboratory use, and tend to
lack portability [8]. The possibility of using ultrasound for eye tracking has been raised in a
patent [9] and there exist studies that use eye-tracking to assist ultrasound procedures [10].
However, to the best of our knowledge, there is no report on experimental study to
empirically demonstrate the feasibility for gaze estimation using ultrasound sensors.

A recent paper explored the possibility of using non-contact ultrasound sensors to
track fast eye movements [11]. The work focused on the development of a finite element
simulation model to investigate the use for ultrasound time of flight data to track fast eye
motions. The simulation model is based on a setup made of four transducers positioned
perpendicular to the cornea. Distances are measured with each transducer based on the
time for it to receive the reflection of its own signal. Given the cornea protrudes, this
time changes with the gaze angle. For implementing this simulation setup in any form of
glasses-form factor device, the device needs to be precisely positioned relative to the eye.
However, we are interested in applications for eye tracking in augmented reality (AR) and
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virtual reality (VR), where user-specific placement of the sensors is not possible (in AR/VR
the eye tracking system will be fixed and the position of the eye will vary from user to user,
which means alignment will vary).

It is also to be noted that the modeling in [11] was done in the absence of occlusions
(such as eyelids). Eye occlusions are known to be problematic for eye tracking systems in
general [12]. Furthermore, the authors [11] chose to model standard 40 kHz transducers.
While these would be advantageous in terms of minimizing attenuation in air, such a
system may be subject to interference from range-finding applications (typically in the
40–70 kHz range). Common range finding systems lack the resolution and short distance
sensing capabilities required for eye tracking (the typical sensing range would be in
meters with a resolution of 1 cm). Another concern for our application of interest is
size. Devices would need to fit in glasses frames. Capacitive Micromachined Ultrasonic
Transducers (CMUTs) operating at 500 kHz–2 MHz [13] provide the range, resolution
and size that is suitable for use in VR and AR devices. This type of transducer has found
numerous medical applications in both imaging and therapy [13], which are applications
for contact ultrasound.

Here, we use the CMUTs for remote sensing as airborne transmitters and receivers. In
this mode, the difference in impedance between air and tissue means over 99 percent of the
ultrasound signal will be reflected by the eye surface [11]. As such, the size of transducers
was a primary concern for our choice of CMUTs for the proposed study and concerns
related to test bench size and power consumption did not drive our investigations.

In order to systematically investigate the feasibility of near-field ultrasound sensing for
eye-tracking with an AR form-factor device, we first did our own finite-element-modeling
study using acoustic rays for 1.7 MHz transducers configured on AR glasses. We compared
directional and omnidirectional transmit and receive configuration for the sensors to
determine where we would expect to see a meaningful signal around glasses frames for
a source placed near the glasses branch. We then built a series of table top test bench
systems to (a) verify our ability to accurately measure distances in the appropriate range,
(b) characterize the transducers, and (c) generate data to be used in a machine learning
model to estimate gaze. As such we focus on empirically testing the hypothesis that
ultrasound sensors can be used for gaze estimation in the presence of occlusions. We note
that in the context of our experiments, gaze is defined by the static orientation of model eye
on the goniometer. We demonstrate that ultrasound time of flight and amplitude signals
can be leveraged to track gaze in such conditions. In particular, we train a regression
model using gradient boosted decision trees to estimate the gaze vector given the set of
ultrasound time-of-flight and amplitude signals captured by the CMUT receivers. The
nonlinearities introduced by occlusion artifacts make the task of regressing gaze directly
from recorded signals non-trivial and we believe that a nonlinear regression model trained
on the collected data is best suited to extract the relvant signals for gaze estimation. Results
show that the trained model produces a regression R2 score of 90.2 ± 4.6% and a gaze
RMSE error of 0.965 ± 0.178 degrees.

2. Materials and Methods

In this section, we describe the set up for acoustic ray tracing modeling, the benchtop
experimental setup for data collection, the signal processing steps to extract the ultrasound
time of flight and amplitude signals, and the machine learning framework adopted to train
a gaze estimation model.

2.1. Modeling

Ultrasound is modeled as rays released all at once from a single point. Their position
is updated at fixed time intervals. We did this so we could trace the path of signals
reaching the receiver and determine if they were reflections from the cornea or the skin
or glasses. We used the acoustic ray tracing features of COMSOL Multiphysics software
(https://www.comsol.com/release/5.5) . We used a fixed value of 343 m/s for the speed
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of sound in air. We accounted for an acoustic wave attenuation in air that corresponds to
1.7 MHz. The absorption attenuation coefficient is 470 (dB/m). To estimate the reflection

of the signal we used the formula R =
(

Z2−Z1
Z2+Z1

)2
where R is a measure for the fraction

of sound reflected and Z1 and Z2 are the impedance of the two media [11]. The acoustic
impedance of a medium are its density times the speed of sound. We used a density of
1 kg/m3 for air. The densities of the solids range from 911 kg/m3 for the tear film to
2580 kg/m3 for glass, with 1051 kg/m3 for the cornea. The speed of sound in the solids
ranges from 1450 m/s in fat to 4500 m/s in glass. Based on these values we estimate
99.87–99.99 percent of the signal will be reflected. These calculations guided our decision
to assume 100% reflection of ultrasound waves of eye in our modeling.

We used a scanned eye surface obtained with an Eye3D scanner (Transfolio, Marina
del Rey, CA, USA). A fit of cornea with a sphere shows a radius of 5.65 mm. The surface
was smoothed, and the mesh size adjusted using Autodesk Meshmixer (https://www.
meshmixer.com). We used it to create gaze variants: straight, ±20 degrees in the vertical
direction, ±30 degrees horizontal.

We used a scanned face and glasses designed in Solidworks to create the eye box (the
space in which rays will propagate). Locations for the transducers are shown in Figure 1.
These positions were arbitrary. (The Comsol model was built by Veryst, Needham Heights,
MA, USA).

Figure 1. Physical layout for our model. Send location: transducer operating in transmit mode;
numbered locations: transducers operating in receive mode. The distance traveled by a ray starting
at the send position, reflecting off the cornea, and arriving at receiver 4 is in the 5.28 to 5.35 mm
depending on gaze.

2.2. Benchtop Setup

We designed a series of three test benches to evaluate distance measurements, signal
attenuation, transducer directionality, and our ability to estimate gaze.

In terms of electronics and data acquisition, all test benches are based on a CMUT
evaluation kit from Fraunhofer IPMS (Dresden, Germany). This test kit is comprised of
CMUT transducers (1.74 MHz), an amplifier, bias-tee, and associated software. These
transducers fit our size and power requirements.

We first verified our ability to measure distances, as well as the signal decay due to
attenuation in air given that ultrasound signal attenuation is significant at MHz frequen-
cies [14]. We used a setup consisting of a pair of transducers aimed at a flat target attached
to a linear translation stage (Test bench 1, Figure 2A).

Next we tested the emission properties of the transducers. Our CMUTs are comprised
of an array of cells connected to a single electrode and a single counter electrode. As such
they act as a fixed phased array, which is expected to exhibit directionality. We tested
this using a fixed transducer and one on a rotating stage (Test bench 2, Figure 2B). The
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Tx transducer was rotated in 1 degree increments and the amplitude of the Rx signal
was recorded.

Figure 2. CAD schema for attenuation (A) and directionality (B) test benches. Tx refers to transducer
in transmit mode, Rx receive mode. In A the transducers are fixed and the target is moved. In B the
Rx is fixed and the Tx rotated.

Our third test bench is designed for gaze estimations (Figure 3A). As noted earlier,
we define gaze in terms of the static orientation of model eye on the goniometer. The
transducer side is on the right. We used a pair of transducers (one in transmit mode and
one receiver) mounted on rotating stages to allow us to mimic multiple locations around a
ring (or glasses frame). We acquired data for all transmit and receive locations covering
360 degrees in 10 degree increments (Figure 3C).

On the target side (left part of Figure 3A), a standard sphere on sphere model eye
(cornea radius 7.8 mm, sclera radius 11.925 mm, offset 5.6 mm) was mounted on a go-
niometer (Thor Labs). Note these dimensions differ slightly from the scanned eye used for
modeling. This does not affect our findings, see discussion. Gaze angles were set in one
degree increments between ±5 degrees in both up/down (φ) and left/right (θ) directions.

Figure 3. (A): CAD schema for the experimental bench-top setup and (B): occlusions (C). Transducer
rotation. The receiver is fixed and the transmitter rotates around an arc. 30 degree steps are shown.
We acquired data from −90 to +90 degrees in 10 degree steps.

Occlusions (known to affect eye trackers) were added for realism. This is a step
forward from previous modeling which totally ignored occlusions. We did not model or
attempt to integrate eyelashes. Our occlusions consisted of a partial scanned face printed
in flexible material (A40 durometer Polyjet) with a cavity to accommodate the model eye
(Figure 3B). This was mounted in front of and against the model eye and allowed the eye
to move freely.

Our test signal consisted of a train of seven oscillations at 1.74 MHz, repeated at 2 kHz.
The transmitter was moved to positions around a 180 degree arc opposite the receiver (−90,
−80, . . . , 80, 90), Figure 3C. Fifty runs were recorded for each transducer position. The
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series was repeated for all static goniometer positions. The received signal was digitized at
80 MHz.

2.3. Data Analysis
2.3.1. Feature Engineering

The raw signal carries too much noise to allow for accurate peak time and amplitude
measurements. Improvements are possible (data not shown). For this proof of concept
we used averaging and filtering. In Figure 4A, we show one raw trace, xr

i (t, θ = 0,φ = 0)
(i ∈ [0, 49] and r ∈ [−90,−80, · · · 80, 90]), for the ultrasound signal captured at the receiver,
in response to a single test signal emitted by the transmit CMUT transducer. Figure 4B,
shows the average of ten traces, defined as x̄r

k(t) = 0.1 ∑
j+10
j xj(t) (k ∈ [0, 4]). The ultra-

sound time of flight, τr
k (θ, φ), and amplitude, ar

k(θ, φ), signal is estimated for each x̄r
k(t, θ, φ)

as follows: the signal, x̄r
k(t, θ, φ) is band-pass filtered in the frequency range, [1.6 MHz–

1.9 MHz] using a Butterworth filter of order 4 to generate the filtered version, f (x̄r
k)(t, θ, φ).

In Figure 4C, we show the trace for f 2(x̄r
k)(t, θ = 0, φ = 0). The ultrasound time to

peak τr
k (θ, φ) and the amplitude, ar

k(θ, φ) is obtained by considering a time window of
45 µsaround the time instance of peak value for f 2(x̄r

k(t, θ, φ)) and finding the first instance
of the peak value for x̄r

k(t, θ, φ) within the considered time window. The detected peak
value represents the amplitude signal ar

k(θ, φ) and the time to peak, τr
k (θ, φ). Thus, for each

position Y = (θ, φ) of the model eye on the goniometer, we obtain a set k = 5 feature vectors
X ∈ R36 = {ar, τr}r=[−90,−80···80,90] per experimental run. In order to collect sufficiently
robust dataset and also to account for changes in day to day environmental fluctuations, we
conducted a total of 9 experiments spanning a period of 9 days. In total, for each position,
Y, on the goniometer, we were able to compile a set of 9× 5 feature vectors, X, and our
goal for ultrasound based eye tracking is to learn a regression model, H : X→ Y; that is,
given the ultrasound sensor time of flight and amplitude data, estimate two-dimensional
eye gaze coordinates.

A

B

C

Figure 4. Example of recorded raw time trace of ultrasound sensor signal. The top row (A) shows an
example of time trace recorded at the receive Ultrasound CMUT sensor in response to a single burst
of test signal. The middle row (B) shows averaged signal computed from the response to a set of
10 bursts of test signal. Finally the last row (C) shows the squared filtered response signal out of a
Butterworth filter. The red line indicates the time period of time-to-peak signal detection.

In Figure 5A,B, we plot the distribution of τr(0, 0) and ar(0, 0) respectively. In the
last sub-plot for each of the figures we show how the mean time-of-flight and the mean
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amplitude signal changes as function of the position of the receiver transducer. It is worth
noting that while the time-of-flight signal falls of symmetrically from the center of gaze,
the amplitude signal peaks at receiver r = 20, a result of occlusion from the nose-pad. We
also note of the distribution spread for the time-of-flight and the amplitude signal captured
by each receiver, which may be the result of measurement noise with our test-bench.

Figure 5. Distribution of the ultrasound time-of-flight (A, del/τ) and amplitude (B, amp/a) signal
when the model eye is oriented to gaze angle θ = φ = 0 degrees.

2.3.2. Gradient Boosted Regression Trees

From a machine learning perspective, the task of learning a gaze estimation model H is
categorized as a supervised regression problem. Gradient Boosting Regression Trees (GBRT)
are a powerful class of boosting algorithms for classification and regression tasks, which
combine output from several weak learners into a powerful estimator. Specifically, GBRT
considers additive models of the form: Fm(x) = Fm−1(x) + hm(x), where hm are the basis
functions modeled as small regression trees of fixed size. For each boosting iteration, a new
boosting tree is added to the GBRT model, F. For our problem, we train two separate GBRT
models to independently estimate the response in the horizontal and vertical dimensions:
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Y = (θ, φ) as function of the input features, X = (τr, ar). Assuming the GBRT model is
comprised of M regression trees with Tm leaf nodes per regression tree, the GBRT model for
each of the gaze regressor is given as: Fy(X, wy) = wy

0 + ∑M
m=1 ∑Tm

j=1 wy
jm I(X ∈ Ry

jm), where

y = {θ, φ} and Ry
jm represents the jth disjoint partitioning of the input space for the mth

regression tree for the regressor variable, y. The GBRT model weights are estimated from
data as follows: w∗= w

1
N ∑N

i L(yi, F(Xi, w)) where, L is the squared error loss function. For
an exhaustive description of GBRT, see [15,16].

Our choice of GBRT as a choice of regression model to predict gaze is motivated by the
fact that occlusions introduce non-linearities for localizing gaze given a set of ultrasound
time-of-flight and amplitude signals. In order to evaluate the utility for using a nonlinear
regression model, we also train a linear regressor for gaze estimation (see Table 1).

Table 1. Regression Model for Gaze Estimation. Numbers are presented in terms of mean ± std. dev.

Adjusted-R2 RMSE

Gradient Boosted Tree 90.2 ± 4.6 0.965 ± 0.178

Linear Regression 85.3 ± 7.6 1.177 ± 0.236

Both the GBRT and linear regression models are trained to minimize the mean-squared-
error between the estimated gaze-vector and the predicted gaze-vector and we report model
performance in terms of root-mean-squared model error on a 5-fold cross-validation set. In
addition we report the adjusted-R2 as a goodness-of-fit measure for regression models.

3. Results

In this section we present findings from our modeling study as well as experiments
conducted using the three benchtop setups described in Section 2.2.

We begin by presenting our findings on the CMUT sensor characterization. Data
collected using test bench setup 1 allowed us to investigate the decay characteristics of
the ultrasound signal in air, see Figure 6A. As expected, the ultrasound signal decays
exponentially as a function of distance. An extrapolated fit shows it decays to zero. The
distance axis shows the distance between the pair of transducers and the target (Figure 2A).
Actual travel distance is twice this measurement. The range is similar to the distances for
transducers mounted on eye glasses frames, our use case scenario.

Data collected using test bench 2 (Figure 2B) allowed us investigate whether the
CMUT transducers exhibit directionality. Our findings are reported in Figure 6B. The
CMUT transducers indeed exhibit directionality with an emission cone of 10 degrees. This
applies to the transducers in both transmit and receive mode.

Based on the above findings we conclude that the strength of ultrasound signal at
the receiver CMUT transducer will depend on two factors: distance and incident angle.
As such, we believe that the amplitude of the ultrasound signal at the receiver contains
relevant information to contribute to our ability to estimate gaze and as shown below, our
findings indeed support this claim.

Our modeling study explored two situations: an omnidirectional transducer and one
that mimics the properties of our CMUTs, see Figure 7. 131,072 rays are released from a
point source in each case. The rationale for exploring the two situations is that while our
CMUTs fit our needs, single crystal piezo transducers may provide a robust, inexpensive
alternative. They are omnidirectional but can be turned into a directional device by adding
baffles. In terms of size, they would be slightly larger (2.5 mm instead of 1 mm in our
frequency range).
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Figure 6. CMUT sensor characterization. (A): Attenuation, obtained with Test bench 1, see Figure 2A;
(B): Directionality, obtained with Test bench 2, see Figure 2B.

Figure 7. Sensor directionality options. (A) Omnidirectional; (B) Directional. The color of the ray
indicates its intensity; (C) Weigh function to mimic the transducer native curve (shown in Figure 6B).

We implemented the sensor native curve by releasing rays with a uniform density
distribution and assigning weight functions to the rays based on rays angle of emission
and reception. The weight function of the rays is cos(min(alpha*(90/15),90°). Alpha is the
angle between the ray and transducer direction.

In the directional case we used a similar approach to account for the receiver native
curve. We assigned a similar weight function to the acoustic rays that reach receivers based
on the angle between the incoming acoustic rays and the sensor direction of each receiver.
Therefore, each ray has two weight functions. One weight function is assigned initially
when the ray is released, another weight function is assigned when the ray is detected by a
receiver. The product of the two weight functions is applied. If the angle between a ray
(that reaches a sensor) and the receiver direction is more than 15 degrees then the ray is not
detected (its weight function is zero). If this angle is zero then the weight function is 1.

Figure 8 shows a comparison of the predicted signal at our sensor locations for di-
rectional and omnidirectional transducers. The left and right panels correspond to thirty
degree rotations of the eye to the left (towards the nose) or right. In the case of omni-
directional transducers the differences between gazes are small. Differences are more
pronounced for directional transducers. Peaks are also better defined with directional trans-
ducers. Late peaks resulting from longer paths due to multiple reflections are minimized. It
is to be noted that such late peaks would be ignored in our analysis, as we only use the time
to peak and peak amplitude for the first peak detected in a given channel. With the same
total number of rays (transducer power), receiver sensors with a directional transducer
have higher signal strength than receiver sensors with an omnidirectional transducer. We
ran the same models for a straight gaze as well as up/down twenty degree rotations
(data not shown), and obtained similar results. Taken together the directional transducers
perform better to resolve gaze.
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Next we looked at where on the frame we might detect a signal, and why. Figure9, left,
shows signal intensity around the frame. Areas in red have a higher chance of detecting
rays reflected from the eye. Rays reflected off the glasses or skin are ignored. The center
panel shows the path taken by the rays that reach receiver 6. Some of the rays arrive after
multiple reflections from the skin and glasses. The right panel provides a detailed view of
the direction of rays reaching receiver 6 (sphere). Sensor direction is shown with the solid
black line. The majority of these rays will not be detected by the receiver due to the narrow
angle of detection dictated by the receiver native curve. If we were using omni-directional
transducers, rays arriving after two or more reflections would broaden the signal or create
multiple peaks. Directional transducers allow us to reject unwanted signals before they
are counted.

Figure 8. Modeled responses of ultrasound signal measured by the receiver with omni-directional
and directional transducers. Left gaze reperesents a 30 degree rotation away from the nose, Rights
gaze is 30 degrees towards the nose. Transducer 1 is not shown, as it operates only in transmit mode,
see Figure 1.

Figure 9. Signal detection: (A). Rays reflected from the eye; (B). Subset of rays arriving at sensor 6;
(C). closeup of rays arriving at sensor 6.

We next report findings from training a GBRT model on data collected using the third
test bench setup (see Figure 3). For each model eye position on the goniometer, θ, φ, for
a fixed receiver transducer position (180 degrees) and for a set of 19 transmit transducer
positions, we fire the ultrasound test signal 50 times, at 2 kHz and record the raw receiver
signal (see Figure 4 top row). In order to increase the strength of ultrasound response
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at the receiver we average 10 traces of the raw response signals at a time, to effectively
generate 5 averaged ultrasound response signals, in effect acquiring data at 200 Hz. The
averaged response signal is passed through a Butterworth bandpass filter and we extract
two ultrasound signal features: time of flight (τ) and the amplitude at peak (a), as explained
in Section 2.3. In total for each model eye position, we generate a total of 45 samples for
each model eye position on the goniometer over the duration of the study. For the set of
36 model eye positions, we produce a total of 1620 data samples.

We train a GBRT model on these data samples, performing a 5-fold cross-validation
study. The model performance is reported using an adjusted R2 score [17] and the gaze
RMSE error in degrees. Hyper-parameter search on the GBRT model parameters that
produced the best adjusted R2 score for 5-fold cross-validation are reported in Table 2.
We obtain gaze RMSE error of 0.965 ± 0.178 and mean adjusted R2 score of 90.2% with
a standard deviation of 4.6, suggesting that almost 90% of the data fit the regression
model. We also perform a similar analysis using a linear regression model and the results
are reported in Table 1. Nonlinear modeling of the problem through GBRT produced
an improvement in performance for RMSE of ≈ 18% and goodness-of-fit improvement
of ≈5.7%, in support of our claim that the occlusions introduce nonlinearities in the
ultrasound signals captured by the CMUT receivers, that can be best captured using a
nonlinear regression model.

Table 2. Hyper-parameters for the trained GBRT model. See xgboost parameters in sci-kit learn
(https://xgboost.readthedocs.io/en/latest/parameter.html accessed on 5 April 2021) for explanation
of these hyper-parameters.

Hyper-Parameters (XGBoost GBRT Model)

learning rate 0.0825
max tree depth 5

# regression trees 750
min. child weight 23
α regularization 0.01
λ regularization 1

Residuals analysis confirmed that the estimates obtained using the GBRT model
are un-biased (data not shown). In Figure 10, we show the plot of the fraction of GBRT
estimated gaze values that fall within an epsilon-ball of given radius (degrees). We see that
≈50% of estimated gaze values fall within an epsilon ball of radius 0.8 degrees and ≈90%
of estimated gaze values fall within an epsilon-ball of radius 2 degrees. Based on these
findings, we conclude that using CMUT ultrasound sensors, we can expect gaze resolution
of up to 2 degrees.

In Figure 11A,B, we show feature importance for the GBRT tree models trained to
estimate the model eye gaze coordinates, θ (horizontal gaze) and φ (vertical gaze). We
can see that the top two features for both horizontal and vertical gaze GBRT model are
time of flight ultrasound signal. It has been our observation that while the time of flight
component of ultrasound signal contains dominant information signal to estimate gaze
(95% contribution to the regression score), the amplitude signal is also an important
contributor for GBRT model to produce an adjusted-R2 score close to 90%. In order to
test this observation, we trained GBRT model using just the ultrasound time-of-flight
feature and another GBRT model using just the ultrasound amplitude feature. The findings
are: GBRT model trained using time-of-flight features, produces an adjusted R2 score of
85.4 ± 5.2, where as the GBRT model trained using only the amplitude feature produces
an adjusted R2 score of 78.6 ± 8.2. In Figure 9C, we show the mean-RMSE error (across all
CV-folds) for the GBRT model. The error is biased towards the lower half of vertical gaze,
primarily resulting from occlusions.

https://xgboost.readthedocs.io/en/latest/parameter.html
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Figure 10. Sensitivity for gaze resolution: fraction of gaze estimates falling within a given radius of
corresponding ground truth gaze values.

Figure 11. Feature importance and mean accuracy of GBRT models to estimate gaze. (A). Horizontal
gaze, (B). Vertical gaze, (C). Error as a function of gaze angle.

4. Discussion

This study is the first experimental demonstration of use for ultrasound sensors in
gaze estimation. We show that ultrasonic transducers can effectively produce signals useful
to resolve eye gaze, as defined by the static orientation of model eye on a goniometer,
within the range tested, ±5 degrees in both up/down (θ) and left/right (φ) directions. This
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range reflects the full deflection of our goniometer. We plan on expanding the range in
future studies.

Prior to embarking on our experiments with bench-top setup we conducted ray tracing
modeling. This modeling helped us refine our test bench design, procedures, and analysis.
First, it pointed to the utility of directional over omnidirectional transducers. Second, it
informed us on where, given a source location, we can expect a signal around the glasses
frame. Finally, it provided information on the signals we need to measure from our bench-
top experiments: the time to peak (indicative of distance traveled), and the amplitude. Due
to attenuation in air the amplitude decreases with travel distance. Our modeling indicated
that amplitude also carries a signal based on the angle of incidence. This is further evidence
for using directional instead of omnidirectional transducers.

Our GBRTs show that both amplitude and time of flight contribute to our ability
to estimate gaze. This is a new finding as previous modeling work dealt with time of
flight alone. As mentioned in our modeling section, two factors contribute to amplitude:
attenuation and the incident angle of the incoming sound. One way to compensate for
attenuation is to use the time-gain correction built in our amplifier, increasing gain over
time to compensate for the signal attenuation with longer distances. When we did this (data
not shown) our model performed slightly worse. This indicates that attenuation plays a
role in our ability to estimate gaze, and would favor the use of high frequency transducers.

For this proof of concept we chose to average ten individual tests prior to filtering
the signal and extracting peak and amplitude. This reduces the eye tracking acquisition
speed from a maximum of 2 kHz to 200 Hz, which may not be sufficient to track saccadic
eye motion. While this study focused on primarily testing the hypothesis that ultrasound
signals can be leveraged to estimate gaze, in future works we will explore avenues to
investigate the use for ultrasound in tracking fast eye motion. Specifically, we plan on
using a fast-moving model eye coupled with multiple receivers operating at 2 kHz. The
GBRT models will be adapted so we can test the potential of ultrasound for fast eye tracking
to resolve saccades.

We are interested in investigating the feasibility for using ultrasound sensors for eye
tracking in virtual and augmented reality devices. In addition to sampling speed, power
consumption is an important factor to consider. The transducers are very low power, in
the milliwatt range. Our current system utilizes a high speed A/D converter. This can
be replaced with a low power peak detection circuit. On the compute side, GBRTs are
considered low compute. This is in particular true for run time on multi-core machines.
Specifically, the run time compute complexity for GBRT models is O(pntrees/C), where p
represent the number of input features and ntrees are the number of regression trees and
C is the number of compute cores on a given machine. For ntrees/C ∼ 1, the run time
complexity for GBRT is on parity with linear regression models, at O(p).

In summary, this study presents data driven proof-of-principle findings to support
the claim that ultrasound sensors can be used for gaze estimation.
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