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Abstract: Target recognition is one of the most challenging tasks in synthetic aperture radar (SAR)
image processing since it is highly affected by a series of pre-processing techniques which usually
require sophisticated manipulation for different data and consume huge calculation resources. To
alleviate this limitation, numerous deep-learning based target recognition methods are proposed,
particularly combined with convolutional neural network (CNN) due to its strong capability of data
abstraction and end-to-end structure. In this case, although complex pre-processing can be avoided,
the inner mechanism of CNN is still unclear. Such a “black box” only tells a result but not what
CNN learned from the input data, thus it is difficult for researchers to further analyze the causes of
errors. Layer-wise relevance propagation (LRP) is a prevalent pixel-level rearrangement algorithm to
visualize neural networks’ inner mechanism. LRP is usually applied in sparse auto-encoder with
only fully-connected layers rather than CNN, but such network structure usually obtains much
lower recognition accuracy than CNN. In this paper, we propose a novel LRP algorithm particularly
designed for understanding CNN’s performance on SAR image target recognition. We provide a
concise form of the correlation between output of a layer and weights of the next layer in CNNs. The
proposed method can provide positive and negative contributions in input SAR images for CNN’s
classification, viewed as a clear visual understanding of CNN’s recognition mechanism. Numerous
experimental results demonstrate the proposed method outperforms common LRP.

Keywords: synthetic aperture radar (SAR); target recognition; layer-wise relevance propagation
(LRP); convolutional neural networks (CNN) understanding

1. Introduction

Synthetic aperture radar (SAR) can generate radar images with both high range-
resolution and Doppler-resolution by synthesizing a series of small aperture antennas
into an equivalent large aperture antenna. SAR can work in various extreme conditions,
e.g., mist, rain, clouds, etc., thus it is widely applied in electronic reconnaissance, topo-
graphic mapping, and vehicle surveillance [1,2]. Although numerous SAR images have
been generated, the interpretation of SAR images develops far behind imaging them. In
SAR image interpretation, target recognition is usually regarded as one of the most chal-
lenging tasks [1,3]. Generally, target recognition can be compartmentalized into two steps:
First, some pre-processing techniques will be performed on raw SAR images, such as filter-
ing, edge detection, region of interest (ROI) extraction, and feature extraction. Second, a
classifier is used to categorize them to their corresponding class according to the divergence
among extracted features [4,5]. However, such complex individual procedures usually
bring a huge computation burden, causing difficulty in realizing real-time application and
device miniaturization.
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To alleviate these limitations of traditional methods, numerous deep learning based
target recognition algorithms were proposed in recent decades, particularly combined with
convolutional neural network (CNN). CNN is an end-to-end structure which requires no
pre-processing implementation [6]. The input data are abstracted as discriminative features
by different convolutional units (kernel, filter, channel) in deep layers for classification.
Convolutional units cannot only reduce the number of trainable parameters but also
preserve local characteristics in neighbor regions in images. In SAR image processing,
much related work has been studied and achieved amazing performance. Wu et al. adopted
CNN as a classifier in target recognition and achieved higher recognition rate than an SVM
in [7]. Zhang et al. proposed a fast training method for SAR large scale samples based on
CNN for targets recognition in [3], which can effectively reduce over-fitting. Zhou et al.
proposed a large-margin softmax batch-normalization CNN (LM-BN-CNN) for SAR target
recognition in [8], which simultaneously obtained the superior accuracy and convergence
speed compared with other general CNN structures. Zhang et al. proposed a feature
fusion framework (FEC) based on scattering center features and deep CNN features which
achieves superior effectiveness and robustness under both standard operating conditions
and extended operating conditions [9]. Oh et al. proposed a CNN-based SAR target
recognition network with pose angle marginalization learning which outperforms the other
state-of-the-art SAR-ATR algorithms, yielding the correct target recognition rate with an
average of 99.6% [10].

Although the recognition accuracy is increasingly higher in aforementioned deep
learning methods, CNN is usually used as a “black box” since the inner recognition mecha-
nism of CNN is still opaque. Specifically, the semantic information of features extracted
by the deep convolutional layers is often difficult for humans to understand [11,12]. In
this case, the reliability of recognition results is less convincing compared with traditional
methods. On the other hand, unexplainability of CNN also makes it difficult to analyze the
causes of wrong results. To provide a reasonable explanation of “black box”, many scholars
obtained some meaningful achievements. Some of them explain neural network from
perspective of structure. Setzu et al. proposed GLocalX to generalize local explanations
expressed in form of local decision rules to global explanations iteratively by aggregating
them hierarchically [13]. Xiong et al. proposed a totally interpretable CNN, SPB-Net, by
deep unfolding to suppress speckles in SAR images [14]. In comparison, another group of
researchers attempt to visualize what CNN learns from input data [15–19], mainly divided
into three categories: perturbation methods, activation methods and propagation methods.
The former two methods highlight the regions of the input image that are responsible
for CNN’s correct classification, while the latter can further detect the regions that are
negative for CNN’s judgment in addition. Perturbation methods usually occlude the input
image with a sliding patch to check whether the occluded region can cause a dramatic
drop of recognition accuracy. Perturbation methods are intuitive and easy to implement;
however, they have two obvious limitations: (1).The computation burden is huge for this
traversal search. (2). Different data may require specifically designed occlusion rules, lead-
ing to huge cost of algorithm design. Perturbation methods are seldom directly adopted
to generate heatmaps; instead, they are usually used to verify the performance of other
visualization methods. Activation methods visualize CNN decisions by artfully combining
the feature maps in deep convolution layers. These kinds of methods integrate input image,
features in deep layers and final output of CNN, which obtained remarkable and amazing
achievements [16–19]. However, in some scenarios, it is not enough to know which parts
of the input images are responsible for CNN’s recognition. We also need to know, more
specifically, which parts contribute positively to recognition and which parts contribute
negatively. Propagation methods can solve this problem well [20]. They are a kind of
pixel rearrangement methods which propagates CNN’s output backward to input space
layer for layer. Amin et al. combined layer-wise relevance propagation (LRP) and sparse
auto-encoder to obtain an understanding of CNN’s performance on radar-based human
motion recognition [21]. However, the auto-encoder only contains fully-connected layers.
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For SAR images, such a simple structure is not powerful enough to extract the features
which can achieve high recognition accuracy. Therefore, we propose a novel LRP method
particularly designed for CNN’s performance in SAR image target recognition. In our
proposed method, we provide a concise form of the correlation between the output of
convolutional layer and weights of convolutional units.

The contributions of this paper can be summarized as: (1) To the best of our knowledge,
this is the first time LRP and CNN are combined in SAR image interpretation; (2) In com-
parison to [21], the proposed method can provide the positive and negative contributions
under much higher recognition accuracy.

The remainder of this paper is organized as follows. For a comprehensive under-
standing of propagation methods, Section 2 reviews basic LRP. Section 3 introduces the
the proposed method in detail. Section 4 provides numerous experimental results from
various perspectives to compare the performance of the proposed method with basic LRP.
Section 5 discusses the experimental results and clarifies some confusion.

2. Principle of Layer-Wise Relevance Propagation

In this section, we take an application of LRP approach combined with sparse encoder
in understanding of human motion radar signals as an example to introduce its principle.
Section 2.1 concisely describes sparse auto-encoder and Section 2.2 introduces how LRP
works in this structure.

2.1. Sparse Autoencoder

Sparse auto-encoder is a kind of fully-connected neural network with symmetrical
structure. Sparse auto-encoder can be divided into encoder and decoder. The encoder
attempts to obtain the sparse representation of the input data via a single hidden layer
that typically has fewer neurons than the input while the decoder has the same number of
neurons with the input data, as shown in Figure 1. The loss function of sparse auto-encoder
is a minimization of measurement between output of network an and original input image
xm. Once the sparse auto-encoder is well trained, the output of hidden layer can be deemed
as a discriminative representation of input data.

Figure 1. Structure of sparse auto-encoder.
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The neurons between layers are connected by the weights and biases. Sigmoid function
σ(·) is adopted as activation to weighted and biased input data units xm, i.e., the output of
the hidden layer nth neuron is

an = σ(∑
m

xmωm,n + bn) (1)

where wm,n and bn denote the weight and the bias, respectively. wm,n and bn are two
trainable parameters learned by minimizing the aforementioned cost function. When the
auto-encoder is well trained (the output of encoder can be deemed as representative and
sparse features of the input data), a classifier with softmax regression can be performed
following the encoder to categorize the input data into its most probable class, as shown in
Figure 2. More details about the architecture can be found in [22].

Figure 2. Deep learning based architecture for target recognition.

2.2. Layer-Wise Relevance Propagation

Layer-wise relevance propagation (LRP) is a propagation-based explanation frame-
work, which is applicable to general neural network structures, including deep neural
networks, LSTMs, and Fisher vector classifiers. LRP explains individual decisions of a
model by propagating the prediction from the output to the input using local redistribution
rules [23]. The overall idea of LRP is to understand the contribution of a single pixel of
an image x to the prediction f (x) made by a classifier f in an image classification task.
Assume that the first layer of the neural network are the inputs, i.e., the original image,
and the last layer is the real-valued prediction output of the classifier f . The contribution
of nth neuron in the lth layer to the activation of the mth neuron in the next layer l + 1 is
modeled as a vector z:

zn,m = a(l)n ω
(l,l+1)
n,m (2)

LRP approach assumes that we have a relevance score R(l) when backward propagat-
ing from one layer to the next, i.e.,

f (x) = R(1) = · · · = R(l) = R(l+1) (3)

In fact, the classification function f (·) of the input image x can be deemed as the
relevance of the last layer. Note that each neuron in a certain layer has corresponding
relevance, thus the relevance R(l) in layer l is computed as the sum of relevance r(l)n of all
N neurons in layer l:

R(l) =
N

∑
n=1

r(l)n (4)

When the output of the neural network is propagated backward to the first layer, a
heatmap h = r(1)n is obtained as the following iteration:

r(l)n = ∑
m
(α

z+n,m

∑n′ z+n,m
+ β

z−n,m

∑n′ z−n,m
)r(l+1)

m (5)

where α + β = 1, z+n,m and z−n,m are the positive and negative part of zn,m, respectively.
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Equation (2) is a very concise iterative form and is friendly to implementation, whereas
it is only available for neural networks with fully-connected layers, like sparse auto-encoder
rather than CNN. For some images of simple objects, such as MINIST and spectrum
data [21,24], sparse auto-encoder can extract features discriminative enough for classifi-
cation; however, such structure is not powerful enough to process complex SAR images.
The discrepancy between two classes of SAR images is not only different targets, but
also may be related to scattering angle, medium density, interference, etc. [25,26]. This
property of SAR images brings in two problems when sparse auto-encoder is adopted as
a feature extractor: (1) The extracted features can only achieve low recognition accuracy;
(2) The LRP heatmap shows puzzling regions of positive and negative contribution for
classification. In fact, the heatmap h is closely related to the parameters of the network
model, thus a wrong classification probably leads to an unreasonable heatmap. Here we
exhibit several SAR images from MSTAR dataset (The detailed information of MSTAR is
introduced in Section 4) and their corresponding LRP heatmaps in Figure 3. Apparently, it
is confusing for people to understand these pixels are positive contributions and negative
contributions, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. LRP heatmaps of SAR images. (a–d) are SAR images of 2S1 (self-propelled artillery),
SN_9563 (armor vehicle), D7 (bull dozer), ZIL131 (cargo truck), and (e–h) are corresponding
LRP heatmaps.

3. Our Method

Different from fully-connected networks, CNN involves in weight sharing in convolu-
tional layer and downsampling in pooling operation. Therefore, Equation (2) of common
LRP can not be applied to CNN directly. Here we denote ω(l,l+1) as the relationship of
weight ω(l,l+1) between lth layer and those of next layer (l + 1)th layer. ω(l,l+1) is in size
of (N, C, M, M), where N and C are the number of convolutional kernels and channels of
each kernel in the lth layer, respectively. M denotes the width and height of convolutional
kernels in lth layer. a(l) is the output of the lth layer in size of (C, W, H). The specific
relationship between contribution z and a(l) and ω(l,l+1) is described as follows:

z[n, c, w, h] = a(l)[c, m + W ∗ ∆, m + H ∗ ∆]ω(l,l+1)[n, c, m, m] (6)

where (n, c, w, h) refers to the corresponding element of z, n = 1, 2, · · · , N, c = 1, 2, · · · , C,
w = 1, 2, · · · , W, h = 1, 2, · · · , H, and m = 1, 2, · · · , M. In this case, the relevance R(l) can
be calculated by Equations (4) and (5). It should be noted that the relevance map of the
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next layer needs to be upsampled to the output size of the upper convolutional layer due
to pooling operation, which can be described as:

Rl
Q = Sup(Rl)Q (7)

where Sup(.)Q means upsampling relevance maps to the size of the output of the upper
convolutional layer (Q,Q).

The details and flowchart of LRP method for CNN are described in Algorithm 1
and Figure 4.

Algorithm 1 CNN-LRP
Input: the original SAR image I in size of (1, W, H)

1: model f
2: parameters: α, β
3: for l in [ L− 1,...,1] do:
4: if l in classification layers then:
5: zn,m as in Equation (2)
6: r(l)n as in Equation (5)
7: Rl as in Equation (4)
8: else if l in convolution layers then:
9: z[n, c, w, h] as in Equation (6)

10: r(l)n as in Equation (5)
11: Rl as in Equation (4)
12: end if
13: if l in maxpooling layers then:
14: Rl

Q as in Equation (7)
15: end if
16: end for
17: H(LRP) = R(1)

Output: the heatmap H(LRP) in size of (1, W, H)

Figure 4. Flowchart of LRP method for CNN.

4. Experimental Results

In this section, we compare the performance of common LRP with sparse auto-encoder
and the proposed method with CNN. Next, we analyze the results of our proposed method
from several perspectives. The experimental dataset adopted in this paper is the real
measured SAR images of ground stationary targets of 10 classes of vehicles, namely 2S1
(self-propelled artillery), BRDM_2 (armored reconnaissance vehicle), BTR60 (armored
transport vehicle), D7 (bulldozer), T62 (tank), ZIL131 (cargo truck), ZSU234 (self-propelled
anti-aircraft gun), and T72 (tank). High-resolution focused synthetic aperture radars with a
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resolution of 0.3 m × 0.3 m are used in this program, which work in the X-band, and the
polarization mode is HH. For simplicity, we utilize a lightweight auto-encoder with only
convolutional layers. Adaptive moment estimation (Adam) was adopted as the optimizer,
learningrate = 1 × 10−3, β = (0.9, 0.999), ε = 1 × 10−8, weight-decay = 0), as shown in
Figure 4. Note that the gist of this paper is not to manipulate a CNN structure or obtain a
set of parameters with high recognition accuracy, but to provide a visual understanding of
CNN’s performance on SAR images. Some other state-of-the-art CNN models can probably
achieve higher recognition accuracy, whereas such complex structures may be obstacles for
understanding of CNN.

4.1. Comparison of the Proposed Method and Common LRP

In this experiment, we apply our proposed method and common LRP in MSTAR
dataset to obtain heatmaps. Figure 5 shows a SAR image from each class and their corre-
sponding heatmaps generated by common LRP and our proposed method, respectively. In
general, our proposed method can provide better interpretability of CNN than common
LRP. Evidently, both positive and negative contributions in the heatmaps of common LRP
are numerous scattered speckles, which is difficult to understand why CNN focuses on
these elements. In contrast, our proposed method can provide more interpretable positive
contributions which coincide with most parts of the target. Next, we will discuss the
understanding of CNN’s classification by our method on several different cases.

Figure 5. Comparison of common LRP and our method. The first and fourth row are the SAR images
of ten classes: 2S1, BRDM_2, BTR_60, D7, SN_132, SN_9563, SN_C71, T62, ZIL131, and ZSU_23_4.
The second and fifth row are corresponding heatmaps generated by common LRP. The third and
sixth row are corresponding heatmaps generated by our method.
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4.2. Proposed Method versus Other Activation-Based Methods

For CNN models, there have existed some activation-based methods, like various
CAM methods. In CAM methods, the saliency heatmap HCAM is composed of linear
weighted summation of feature maps in the last convolutional layer, defined as follows:

HCAM = ∑
k

αk
c Ak (8)

where Ak is the k-th feature map in a convolutional layer, αk
c denotes the weight of Ak

for the target class c. Saurabh Desai and Harish G. Ramaswamy proposed a Ablation
CAM which uses the impact of each feature on CNN’s classification accuracy to formulate
weights defined as:

αck_Ablation =
Sc(A)− Sc(A\Ak)

Sc(A)
(9)

where Sc(A) refers to the prediction score of class c when all the feature maps are sent to
the classifier, and Sc(A\Ak)Sc(A) refers to the prediction score when a specific feature map
Ak is removed. Wang et al. proposed a Score CAM that takes the similarity between input
image and each feature map as weights defined as:

αck_Score = C(Ak) = Sc(X ◦ Υk)− Sc(Xb) (10)

where Υk refers to the k-th feature map upsampled to the same size of the input image X,
and Xb is a baseline image which is usually set to 0. Here we also conduct these two CAM
methods as comparison to our method. Nonetheless, it should be noted that LRP methods
attempt to detect both positive and negative pixels influenced CNN’s classification, while
CAM methods aim at providing a highlighted region which matches the target precisely,
thus there are neither positive nor negative contribution in CAM heatmaps. To avoid
confusion, we adopt different colormaps to exhibit LRP heatmaps and CAM heatmaps
in Figure 6. Note that the value of elements in CAM heatmaps is normalized to [0, 1],
while the value is normalized to [−1, 1] in LRP heatmaps. We can clearly observe that
these two kinds of heatmaps reflect different information. CAM methods can highlight a
region precisely matching the target’s shape but they can detect these pixels are positive or
negative for CNN’s classification. In contrast, our method can vividly reflect both positive
and negative pixels in input image for CNN’s classification.

4.3. Understanding of CNN from Different Perspectives

To understand CNN’s classification mechanism of SAR images, we categorized the
heatmaps into three parts according to the distribution of positive and negative contri-
butions. Specifically, the three categories are (1) positive and negative contributions are
the targets, (2) positive contributions are targets while negative contributions are scat-
tered speckles, and (3) negative contributions are targets while positive contributions
are speckles.

We found that some heatmaps show both positive and negative contributions coincide
with most parts of the target, as shown in Figure 7. Specifically, some parts of the target are
conducive to CNN’s classification, while the rest are disturbing CNN’s classification. It is
probably due to some discriminative components (positive contribution) of the target, like
the barrel of self-propelled gun, and some confusing components (negative contribution)
that all the vehicles own, like wheels. Besides, it can be observed the intra-class divergence
of speckles is quite slight in a certain class, while the extra-class divergence is obviously
tremendous. It indicates that for a specific class, the imaging conditions are the same, such
as scattering angle, emission power, medium, etc., while for different classes, they are
different. Therefore, the speckles make no contribution to classification, which matches
human’s cognition.



Sensors 2021, 21, 4536 9 of 15

Figure 6. Comparison of Score-CAM, Ablation-CAM and our method. The first column is the
SAR images of ten classes: 2S1, BRDM_2, BTR_60, D7, SN_132, SN_9563, SN_C71, T62, ZIL131,
and ZSU_23_4. The second, third, and fourth columns are corresponding heatmaps generated by
Score-CAM, Ablation-CAM and our method, respectively.
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Figure 7. Positive and negative contributions are the targets. The first and third row are SAR
images of two classes: 2S1 and SN_132. The second and fourth row are the corresponding heatmaps
generated by our method.

In contrast to the prior case, some other heatmaps show only positive contribution
that coincides with the target, while negative contribution is located in some irregular areas,
as shown in Figure 8. It is probably because imaging conditions of different classes are
the same, thus similar interference speckles disturb the CNN’s classification. Conversely,
some heatmaps exhibit native contribution which coincides with targets while positive
contribution is located near speckles, as shown in Figure 9. It is probably because in these
images, the targets are quite similar, whereas the speckles are the most discriminative
features due to different imaging conditions.

Figure 8. Positive contributions are targets while negative contributions are scattered speckles. The
first and third rows are SAR images of two classes: D7 and ZSU_23_4. The second and fourth rows
are the corresponding heatmaps generated by our method.
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Figure 9. Negative contributions are targets while positive contributions are speckles. The first and
third rows are SAR images of two classes: BRDM_2 and SN_C71. The second and fourth rows are
the corresponding heatmaps generated by our method.

5. Discussion

In this section, we will measure the qualitative performance of our method from
classification accuracy. To further demonstrate the effectiveness of heatmaps, we binarize
the heatmaps to obtain a set of masks by a threshold (in this experiment, we only preserve
top 70% positive elements in heatmaps), thus a masked dataset can be generated by
performing Hadmard product of masks and original data. This process can be viewed
as filtering which only passes the positive or negative contribution pixels in the original
SAR images. In this case, it means the preserved pixels really make positive contribution
for CNN’s classification if the classification accuracy changes not obviously. We utilize
the proposed method and common LRP to generate masked data, respectively. Figure 10
shows several classes of images, their corresponding heatmaps, masks, and masked images.
Then original data and two kinds of masked data are used to train three CNNs with the
same structure and parameters. Table 1 shows the top 5 recognition accuracy of three
conditions when only positive contributions are preserved. Here we only select the top
five recognition accuracy because a large number of misclassified samples in the other
classes probably lead to inaccurate heatmaps which are negative for CNN’s understanding.
It is apparent from Table 1 that CNN and the proposed method outperform the sparse
auto-encoder and common LRP, respectively. Note that although the recognition accuracy
of masked data generated by our method declines slightly than original data, the accuracy
of our method (93.15%) is still higher than that of common LRP (83.99%) dramatically.

Table 1. Recognition accuracy of positive contribution.

Sparse Common LRP CNN Our Method

89.38% 83.99% 97.96% 93.15%
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SAR CNN-LRP Mask Conservation

Figure 10. Results of conservation. The first column is SAR images of four classes: 2S1, ZSU_23_4,
D7, T62. The second column is heatmaps generated by our method. The third column is binary mask.
The fourth column is conservated images.

To further study the recognition accuracy of each class, we provide the confusion
matrix of all SAR images of 10 classes under each condition in Figures 11 and 12. It is clear
that for sparse auto-encoder, misclassification occurs frequently among class 0, 1, 2, but
seldom emerges when CNN and our proposed method are adopted.

Figure 11. Confusion matrix of the sparse auto-encoder for 10 classes. The left is the confusion matrix
of original data. The right is the confusion matrix of the data generated by common LRP.
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Figure 12. Confusion matrix of the CNN for 10 classes. The left is the confusion matrix of original
data. The right is the confusion matrix of the data generated by our proposed method.

6. Conclusions

In this paper, we proposed a new LRP method particularly designed for CNN’s classifi-
cation in SAR image interpretation. Numerous experimental results on benchmark dataset
MSTAR demonstrate our proposed method produces higher informative heatmaps that
provide a visual understanding of the mechanism of CNN’s classification in comparison
to common LRP on three cases: (1) Imaging conditions are corresponding to each class.
In this case, both positive and negative contribution is located near some components of
the target; (2) When the imaging conditions are similar for different classes, the speckles
contribute negatively to classification; (3) When different classes of targets own similar
shape or components, the target makes a negative contribution to classification. The results
reveal that CNN indeed learns the most distinguishable information of different class to
make the classification. In conclusion, the proposed method is an effective visualization
tool of CNN’s inner mechanism and reveals that CNN’s mechanism matches human’s
cognition. This finding may help to totally interpret the CNN to a “white box” in the future,
which is our future research direction.
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