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Abstract: Many gaze data visualization techniques intuitively show eye movement together with
visual stimuli. The eye tracker records a large number of eye movements within a short period.
Therefore, visualizing raw gaze data with the visual stimulus appears complicated and obscured,
making it difficult to gain insight through visualization. To avoid the complication, we often employ
fixation identification algorithms for more abstract visualizations. In the past, many scientists have
focused on gaze data abstraction with the attention map and analyzed detail gaze movement patterns
with the scanpath visualization. Abstract eye movement patterns change dramatically depending
on fixation identification algorithms in the preprocessing. However, it is difficult to find out how
fixation identification algorithms affect gaze movement pattern visualizations. Additionally, scientists
often spend much time on adjusting parameters manually in the fixation identification algorithms.
In this paper, we propose a gaze behavior-based data processing method for abstract gaze data
visualization. The proposed method classifies raw gaze data using machine learning models for
image classification, such as CNN, AlexNet, and LeNet. Additionally, we compare the velocity-based
identification (I-VT), dispersion-based identification (I-DT), density-based fixation identification,
velocity and dispersion-based (I-VDT), and machine learning based and behavior-based modelson
various visualizations at each abstraction level, such as attention map, scanpath, and abstract gaze
movement visualization.

Keywords: gaze data visualization; gaze behavior; machine learning

1. Introduction

In behavioral research with eye-tracking, the fixation generally refers to the act of the
eye staying at informative RoI (Regions of Interest), and the saccade is the term used to
describe the rapid movements between fixations [1]. We extract fixations and saccades
from eye movement data to interpret the eye movements and stops of an observer. We
can use various fixation identification algorithms, including velocity-based, dispersion-
based, and density-based algorithms. In particular, Velocity-Threshold Identification (I-VT),
which is one of the velocity-based algorithms, is a high-performance and straightforward
technique and has been employed widely in many eye-tracking studies [2–4]. However,
since the I-VT algorithm is sensitive to the velocity value near the threshold, the gaze
points can be clustered in a more or less number of fixations than one of the expected
fixations. Additionally, scientists utilize dispersion-based algorithms such as Dispersion-
Threshold Identification (I-DT). In a few cases [5,6], the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [7] is adapted to eye movement data.

Gaze data visualization intuitively represents eye movement data over visual stimuli.
Popular gaze data visualization includes heatmap (or fixation map) [8] and scanpath
visualization [9]. We can grasp the gaze data abstractly with the heatmap, but we are
not able to identify the gaze movements. Since it is challenging to distinguish movement
behaviors within the heatmap, many scientists are in danger of interpreting eye movements
according to their desired results or their preferred theory [10]. Scanpath visualization
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enables to analyze eye movement flows and patterns, but scanpaths are overlaid over time,
which causes visual clutters. Scientists often have difficulty in interpreting gaze data due
to overlapping scanpaths [11]. In addition, in the scanpath visualization, it is difficult to
reveal smooth pursuit [12], which is following the moving targets.

The velocity range [13] for smooth pursuit is similar to one for the slow saccade [14],
it is difficult to set the velocity threshold to distinguish the two eye movements from
fixation and saccade [15]. Therefore, algorithms using machine learning techniques [16–18]
have been proposed to improve the performance of eye movement events classification.
These machine learning algorithms classify fixation, saccade, and smooth pursuit with
higher accuracy than parameter thresholding techniques. However, the annotations of the
ground truth data for evaluation do not have a high agreement among the experts, and
improving classification accuracy is still a challenge problem [18]. In addition, machine
learning techniques classify discrete eye movement events because they train models
based on annotated data but do not capture continuous gaze behavior. Human gaze
behavior makes smooth pursuit eye movements to place the target at the center of the
fovea (also called foveal vision) when gazing at a moving target [19,20]. Since the eye is
not entirely still, the fixation includes a minute movement, tremor, around the 90 Hz, a
fast micromovement, microsaccades, that tends to return to the original eye position, and
a slow movement, drifts, that is away from the center of fixation [10]. Additionally, the
fixation occurs within 1–2◦ from the foveal vision center, and this foveal area is considered
the range that a human can focus on [21]. In this study, for the gaze behavior analysis, we
define the fixation and smooth pursuit as stare because both fixation and smooth pursuit
are actions to place the target at the center of the fovea and stare at the target, and the
movement like saccade as move.

The gaze visualization changes dramatically according to the fixation identification
algorithms because it abstractly visualizes the gaze data except for the raw gaze point
visualizations. We generally apply a fixation identification algorithm suitable for the
environment of eye-tracking research by referring to the studies comparing the performance
of fixation identification algorithms [22–25]. These studies save time and effort in testing
all of the various fixation identification algorithms every time we design an experiment.
However, since there is no study comparing the effect of fixation identification algorithms
on gaze data visualizations, we tend to spend much time on selecting various visualization
techniques and fixation identification algorithms during the gaze data analysis.

In this paper, we compare the effects of gaze-parsing algorithms on gaze visualizations
along with different levels of abstraction. We utilize heatmaps, abstract gaze movement
visualization, and scanpath visualizations for the comparison. We employ an improved
technique that emphasizes the directionality of eye movements in work proposed by
Yoo et al. [6] as an abstract gaze movement visualization. Moreover, we propose a behavior-
based gaze data processing to classify gaze behavior into stare and move, and transform raw
gaze points into image windows. The images generated by the behavior-based gaze data
processing are trained with machine learning models, such as CNN (Convolutional Neural
Network) [26], AlexNet [27], and LeNet [28], and applied to classify gaze behaviors. The
fixation identification algorithms for the comparison include the velocity-based algorithm
I-VT, the dispersion-based algorithm I-DT, the improved density-based algorithm DBSCAN
with the IQR (Interquartile Range), velocity and dispersion based algorithm I-VDT, machine
learning based alogrithm REMoDNaV, and the behavior-based data processing method
with machine learning models. The contributions of our study are summarized as follows:

• We compare and analyze how gaze bahavior affects gaze data visualizations at differ-
ent levels of abstraction.

• We propose a behavior-based gaze data processing with machine learning models.
• We improve an abstract gaze movement visualization and gaze-parsing method by

extending the visualization technique presented by Yoo et al. [6].
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2. Related Work

The heatmap visualization is utilized to interpret the distribution of gaze data. The
gaze distribution enables scientists to measure how long an observer examines areas within
a visual stimulus [29–31]. The heatmap visualization is also applied in the various visual
stimulus analysis, such as the gaze data analysis in physical 3D shapes [31] and immersive
video [30]. Smith and Mital [29] investigate how the gaze distribution changes according
to the viewing conditions of video stimuli such as free-view and spot-the-location, and
the scene types such as static and dynamic. However, the heatmap visualization primarily
focuses on showing the data density. Since the density is computed with all accumulated
data, the heatmap visualization is not suitable for analyzing data accumulation patterns
and eye movement patterns over time.

On the other hand, scanpath visualization is an analytical technique that reveals the
eye movements with fixation and saccade [32–35]. The scanpath visualization is adopted to
investigate eye movement patterns in various domains [36,37]. Burch et al. [36] analyze gaze
trajectories of observers looking at traditional, orthogonal, and radial layouts diagrams.
Eraslan et al. [37] analyze the scanpaths to improve the usability of web pages. The scanpath
visualization also shows various information in gaze data with node size, link thickness,
and colors of nodes and links in addition to the movement feature [38–40]. Fuhl et al. [38]
visualize similar gaze movement patterns between observers with color-coded links that
indicate the gaze directions. Andrienko et al. [39] encode the number of gaze visits to AoIs
(Area of Interests) with the line thickness, and Kurzhals and Weiskopf [40] analyze the
attention of an observer by representing the fixation time as the size of the fixation node.

There are a few studies for abstracted gaze motion visualizations [6,41]. Peysakhovich
and Hunter [41] extract the fixations and saccades and perform saccade bundling in the
saccade direction. They propose a color-encoded visualization of the saccade length, time
stamp, and saccade direction into a bundled saccade link. Yoo et al. [6] represent heatmaps
by dividing eye movement data into fixation layers. They propose a gaze movement
visualization applying the smudge effect on each layered heatmap. The difference between
these two abstraction gaze movement visualizations is the use of temporal information.
The visualization proposed by Peysakhovich and Hunter [41] focuses on the representation
of the saccade directions rather than the distribution of the data over time, while the
visualization proposed by Yoo et al. [6] focuses on showing eye movements with the gaze
distribution over time.

Since the techniques [42–45] have been improved recently to lower the calibration
errors in various conditions such as real-time, calibration-free, and head-free environments,
eye tracking has been utilized in various studies. In general, researchers mainly apply
statistical analysis techniques to understand eye movements [46–48]. Besides, gaze data
visualization is also employed to obtain additional insight along with statistical analysis
techniques [49,50]. Both statistical and visualization techniques are utilized for analysis
mainly after extracting eye movement events from raw gaze points. Fixation identification
algorithms as the event extraction techniques include velocity-based, dispersion-based,
and density-based algorithms [1,5,22,23,25]. The most representative algorithm of the
velocity-based fixation identification algorithm is I-VT [1] that produces fixations with one
parameter, the velocity threshold. Many scientists use the I-VT due to its simplicity and
relatively good performance. In particular, companies that design eye-tracking devices like
Tobii (Tobii AB, https://www.tobii.com/, accessed on 8 July 2021) also employ the I-VT;
therefore, we can easily utilize this algorithm during the use of commercial eye-tracking
devices. However, the I-VT has a problem of blips that are sensitive to velocity near the
threshold and create undesirable fixations [1]. Therefore, scientists apply I-HMM (Hidden
Markov model Identification) [1,25] for more robust identification than the I-VT. Tobii also
provides higher performance fixation identification algorithms with additional features
such as noise filtering along with the I-VT [2]. I-DT is a dispersion-based fixation identifica-
tion algorithm that uses two parameters, dispersion and duration. Llanes-Jurado et al. [51]
propose a new algorithm with I-DT for the fixation identification in immersive virtual

https://www.tobii.com/
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environments. Since they reflect the VR-centered paradigm, apply the 3D head position
and 3D points of gaze rays that intersect virtual objects into the algorithm. Density-based
fixation identification algorithms are not commonly used but there are a few studies [5,6,52].
Yu et al. [5] propose I-STTraDBSCAN, which modifies Eps and MinTime as parameters for
the gaze fixation identification. Yoo et al. [6] apply DBSCAN, which is a time-weighted eye
movement data, with the interquartile range (IQR) as a fixation identification algorithm
in the gaze visualization. Liu et al. [52] present an outlier-aware fixation identification
algorithm that extends the FID (fixation-inner-density) filter. Machine learning is also
applied for fixation identification [16,53,54]. Akshay et al. [53] shows that the random
forest and decision tree algorithms have the highest accuracy for the fixation and saccade
classification among K-Means, KNN, SVM, Decision Tree, and Random Forest using the
fixation dataset labeled with I-DT. The eye movements classification models proposed
by Zemblys et al. [54] and Startsev et al. [16] do not require parameters and thresholds.
Zemblys et al. [54] introduce gazeNet, a framework for creating event detectors using deep
neural network, which classifies fixation, saccade, and PSO (post-saccadic oscillations).
Startsev et al. [16] present a deep learning system for fixation, saccade, and smooth pur-
suit classification. Their system utilizes 1D CNN with BLSTM to classify eye movement
events. In addition to these mentioned in this section, more gaze-parsing algorithms can
be designed by selecting various algorithms depending on the applications [55–57].

3. Method

In this paper, we aim to qualitatively compare the effects of gaze-parsing algorithms
on gaze data visualizations at different levels of abstraction. We first compare scanpaths
and the number of fixations according to the parameter settings of fixation identification
algorithms (see Section 4.1). In the next step, we propose a behavior-based gaze data
processing model for the intermediate abstraction level of gaze data visualization, which is
in between heatmap visualization and scanpath visualization (see Section 4.2). Lastly, we
qualitatively compare the effect of the gaze-parsing algorithm on gaze data visualizations
at different levels of abstraction (see Section 5). In this section, we introduce the heatmap,
scanpath, and mid-level abstraction gaze data visualization utilized for comparison. We
also describe the eye-gaze tracker employed to collect eye movement data, visual stimulus
and task, and datasets used to train and test the model.

3.1. Different Abstraction Level Gaze Data Visualizations

In this section, we briefly introduce the gaze data visualizations used in our study.
Figure 1 shows examples of the gaze visualizations. Figure 1a,b are the heatmap and
scanpath visualizations that we typically find in many gaze studies. In our study, (a)
indicates the visualization at the high abstraction level, and (b) denotes the visualization at
the low abstraction level. (c) and (d) present the abstract gaze movement visualizations. (c)
is a modified visualization from the visualization in (d) proposed by Yoo et al. [6]. We utilize
the visualization in (c) as a visualization at the mid-level abstraction. We have enhanced the
visualization in (d) to produce more intuitive visualization for data directionality, as seen in
(c). The eye movements between the heatmaps are marked in (c-1) and (d-1). In (d), the eye
movement is represented with a constant thickness, as shown in (d-1). Additionally, as the
smudge effect is applied, the color of the eye movement is turned to black and emphasized
unnecessarily. On the other hand, we visualize the eye movement as presented in (c-1),
with the smudge effect slightly pulled from the heatmap, so that the eye movements are
visualized separately in the overlapping areas. We show the directionality compactly by
tapering and reducing the thickness of the eye movement, as shown in (c-2). The color of
the eye movement stretches from the color of the source to the color of the destination.
Thus, this color selection eliminates unnecessary stresses, allowing us to focus more on eye
movement directions.

Figure 1e is a combination of the heatmap and scanpath visualization at the same
location as (c-3), and only the scanpath is drawn on the heatmap that represents the density
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of the entire data regardless of time. Contrary to this, in (c-3), the heatmap layers are
divided over time.Visualization comparisons

(d)

(d-1)

(c)

(c-1)
(c-2)

(c-3)

(a) (b)

(e)

Figure 1. Gaze visualizations. (a,b) The heatmap and scanpath visualization. (c) Our abstract
gaze movement visualization. (d) A gaze data visualization proposed by Yoo et al. [6]. (e) presents
the visualization of combining the heatmap and scanpath visualizations. (c-1) and (d-1) shows an
example of eye movements and (c-2) indicates the tapering on the path for the direction. (c-3) includes
complicated eye movement patterns that correspond to (e).

3.2. Eye-Gaze Tracker

We compare fixation identification algorithms in Section 4.1 and collect eye movement
data to create a behavior-based gaze data processing model in Section 4.2. Additionally, in
Section 5, we compare the effects of gaze-parsing algorithms on gaze data visualizations.
We collected the gaze movement data using the 40 Hz screen-based eye tracker, Tobii
Pro X2-30 (Tobii Pro X2-30, https://www.tobiipro.com/product-listing/tobii-pro-x2-30/,
accessed on 8 July 2021). The Tobii Pro X2-30 has a lower sampling frequency than the
more professional Tobii Pro eye tracker (Tobii Pro Fusion, https://www.tobiipro.com/
product-listing/fusion/, accessed on 8 July 2021) or EyeLink 1000 (EyeLink 1000 Plus,
https://www.sr-research.com/eyelink-1000-plus/, accessed on 8 July 2021). However,
Tobii Pro X2-30 is being used in various studies for analyzing human gaze behavior [58–63].
Additionally, Tobii Pro SDK (Tobii Pro SDK, http://developer.tobiipro.com/index.html,
accessed on 8 July 2021) and eye tracker manager software (Tobii Pro Eye Tracker Manager,
http://developer.tobiipro.com/eyetrackermanager.html, accessed on 8 July 2021) for pro-
fessional eye-tracking research are provided. The eye tracker collects the eye movement
data of the observer more similarly to reality as the sampling rate increases. However,
the higher the sampling rate, the more expensive the eye tracker. Table 1 shows the F1
scores of event classification for eye movement data collected using 500-Hz and 40-Hz
eye trackers. The data for 500-Hz included the eye movement data measured while watch-
ing BergoDalbana.avi, BiljardKlipp.avi, TrafikEhuset.avi, and triple_jump.avi videos in
the Lund2013 dataset (Available for download at https://github.com/richardandersson/
EyeMovementDetectorEvaluation, accessed on 8 July 2021) distributed by Larsson et al. [15].
We collected the data for 40-Hz with Tobii Pro X2-30 for the algorithm comparisons in
Section 5. I-VDT [64] and REMoDNaV [65] are algorithms for smooth pursuit classification.
The I-VDT takes velocity and dispersion threshold as parameters. The REMoDNaV is a
parameter-free algorithm based on machine learning. When comparing the F1 scores for

https://www.tobiipro.com/product-listing/tobii-pro-x2-30/
https://www.tobiipro.com/product-listing/fusion/
https://www.tobiipro.com/product-listing/fusion/
https://www.sr-research.com/eyelink-1000-plus/
https://www.sr-research.com/eyelink-1000-plus/
http://developer.tobiipro.com/index.html
http://developer.tobiipro.com/eyetrackermanager.html
https://github.com/richardandersson/EyeMovementDetectorEvaluation
https://github.com/richardandersson/EyeMovementDetectorEvaluation
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the two datasets measured at 500 Hz and 40 Hz in Table 1, there is a slight difference with
up to 0.08 for smooth pursuit, up to 0.09 for fixation, and up to 0.02 for saccade between
these two datasets. Therefore, we believed that the measurement sampling rate (40-Hz)
of the Tobii Pro X2-30 used in this study would not significantly affect the results. Note
that we calibrated the experiment environment using the eye tracker manager software
provided by Tobii. In addition, to reduce noise caused by eye blink, raw gaze data points
not detected in both left and right eyes in Tobii pro SDK were treated as the outliers.

Table 1. F1 scores are compared for the eye movement event identification between the Lund2013
dataset [15] with the 500-Hz sampling rate and the data collected in this work through Tobii Pro
X2-30 with the 40-Hz sampling rate.

Lund2013 Dataset (500 Hz) Tobii Pro X2-30 Dataset (40 Hz)

Smooth
Pursuit F1

Fixation
F1 Saccade F1 Smooth

Pursuit F1
Fixation

F1 Saccade F1

I-VDT 0.42231 0.68683 0.52303 0.42803 0.58926 0.50061
REMoDNaV 0.52516 0.68745 0.52729 0.44115 0.68806 0.52281

3.3. Recruitment of Observers

We recruited 10 observers for data collection. Two undergraduate and three graduate
students majored in computer science. The remaining five were recruited regardless of
their majors. The observers were all adults who were not wearing glasses, and there were
six observers in their 20s and four observers in their 30s. Since the number of fixations and
gaze data visualizations according to the parameter setting of the fixation identification
algorithms did not change by the observers, and the comparison among the observers was
not the purpose of the study, we randomly selected data from 1 out of 10 observers.

3.4. Visual Stimulus and Task

For the analysis in Section 4.1, the visual stimulus and task as shown in Figure 2 were
used for the comparison of gaze-parsing algorithms. Note that we did not apply a natural
visual stimulus in this paper to prevent the observer’s gaze from moving to an unintended
place. The observers stared at the visual stimulus presented in Figure 2a and followed
the box target moving along the path presented in Figure 2b. The box target moved in
order, T1, T2, T3, and T4. We controlled the experiment time within 20 s. We have designed
various periods of each box target staying at each target stimulus location. We collected
data with the tasks having various transition times of the target moving from T1 to T4 and
selected the task that best showed the problems of I-VT, I-DT, DBSCAN with IQR, and
I-VDT in Section 4.1. We created the tasks by combining the transition times of the target.
We designed 27 tasks with transition time combinations of 0.1, 0.2, and 0.5 s and four tasks
with combinations of 1 and 2 s. Note that the distance between T1 and T2, and T3 and
T4 is 15 degrees, and the distance between T2 and T3 is 27.5 degrees. The time the target
stayed in T1, T2, T3, and T4 was fixed as 3 s. The transition time of the moving target used
in the analysis of each fixation identification algorithm is described in each subsection of
Section 4.1.

For the analysis in Section 5, eye movement data were collected using 6-point stimuli.
Data were gathered through four task combinations with moving patterns and whether
the moving target stopped at six points. The moving target speed was fixed at 30 deg/s.
There were two eye-moving patterns, including repeating up and down and running
in Z-shape. There were two stop patterns of moving target, including one case that the
moving target stayed at all six points for 3 s and another case that the moving target passed
without pausing. The moving patterns and stop patterns of the moving target utilized in
the visualization comparison according to the gaze data visualization are presented in each
subsection of Section 5.
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I-VT analysis

(b) Task

𝑇1

𝑇2 𝑇3

𝑇4

(a) Visual stimulus

𝑇1

𝑇2 𝑇3

𝑇4

Figure 2. Visual stimulus and the task to collect gaze data for comparisons. We have used Tobii Pro X2-30.

3.5. Ground-Truth Data

We examined the fixation classification performance of CNN, AlexNet, and LeNet
machine learning models with the training data generated by our proposed gaze behavior-
based data processing in Section 4.2. We utilized the eye movement data as training and
validation datasets. As the test dataset, we used the Lund2013 dataset [15] that included
labeled eye movement events as fixation, saccade, smooth pursuit, PSO (post-saccadic
oscillations), blinks, and unknown. We investigated the models by classifying fixation and
smooth pursuit into the stare label and saccade and PSO into the move label. Note that in
our test, the smooth pursuit was set to stare because it was an action staring at a moving
target rather than a moving action, and PSO to move because PSO occurred only after
saccade [54].

4. Gaze-Parsing Algorithms

In this section, we identify problems with fixation algorithms that require parameter
settings and introduce a behavior-based gaze data processing method with an image-based
machine learning classification algorithm.

4.1. Problems with Manual Parameter Settings

The fixation identification algorithms used in most eye-tracking studies require man-
ual parameter settings. In particular, I-VT, I-DT, and DBCAN with IQR have a velocity
threshold (see [1,2] for equations), dispersion and duration thresholds (see [1] for equations),
eps and minPoint as parameters, respectively. Many scientists utilize fixation identifica-
tion algorithms in eye-tracking studies, but it is difficult to determine the ideal fixation
parameters because they must adjust parameters manually, relying on their experiences. To
analyze fixation identification algorithms according to parameter settings of the fixation
identification algorithms, we collected gaze data in a tightly controlled environment as
mentioned in Section 3.

4.1.1. I-VT Fixation Identification Algorithm

Figure 3 shows the fixations of the gaze data with the I-VT algorithm. In this analysis,
we utilized gaze data staring at the visual stimulus where the box target stayed on all
targets (T1 to T4) for 3 s and equally moved for 0.5 s between targets. Figure 3a presents
the number of fixations according to the velocity threshold. Subfigures (b1), (c1), (d1),
and (e1) show the scanpaths when the number of fixations extracted in order was 9, 9,
3, and 5, respectively. As seen in Figure 3a, the number of fixations changed irregularly
as the velocity threshold increased. The visualizations of (b2) to (e2) show the raw gaze
points and scanpaths at (b1) to (d1) in (a), respectively. Subfigures (b2) and (c2) on the right
images show different scanpath shapes even though the number of fixations was the same.
Subfigures (d2) and (e2) on the right images have different fixation numbers and scanpath
shapes, although the velocity thresholds were almost same. Subfigures (d1) and (e1) had
similar velocity thresholds. The velocity thresholds of (d1) and (e1) were 6.5117 and 6.7216,
respectively, as seen in (d2) and (e2). However, the numbers of fixations were different. The
I-VT fixation identification algorithm was greatly affected by minute changes in velocity
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threshold due to its simple structure using only one parameter. The blips problem, that one
fixation was identified as multiple fixations since I-VT reacted sensitively at the velocity
threshold boundary, also occurred for the same reason.

I-VT analysis

(a)

Velocity Threshold (˚/s)
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ti

o
n

s

(c1)

(b1)
9

3

(e1)

(d1)

fixation = 9
threshold = 8.3617 ˚/s

fixation = 9
threshold = 12.9482 ˚/s

fixation = 3
threshold = 6.5117 ˚/s

fixation = 5
threshold = 6.7216 ˚/s

(d2) (e2)

(b2) (c2)

Figure 3. I-VT fixation identification. (a) shows the number of fixations according to the velocity
threshold. The visualizations of (b2), (c2), (d2), and (e2) include the raw gaze points and scanpaths
at (b1), (c1), (d1), and (e1) in (a), respectively. (b2) to (e2) show four cases of fixation identifications.
The black dots denote the raw gaze points, and the red dots indicate the fixations. The red links are
the saccades.

4.1.2. I-DT Fixation Identification Algorithm

Figure 4 presents the fixations of the gaze data using the I-DT algorithm. The gaze
data we used in this analysis were obtained as the box target stayed for 3 s on the targets,
T1, T3, and T4, and 0.2 s on T2. Additionally, it took 0.1 s for the box target to move from
T1 to T2 and from T2 to T3, whereas it took 0.5 s to move the box target from T3 to T4. As
shown in Figure 4a,b, there are two similar scanpaths with a different number of fixations.
However, this was the case when we fixed one parameter and adjusted only the other
parameter. Additionally, even if we could accidentally obtain the ideal value of a parameter
and manipulate only the other, we still were not sure whether we discovered the ideal
number of fixations. Subfigures (c) and (d) in Figure 4 show the cases where fixations were
not appropriately extracted according to the parameter setting because two parameters in
the I-DT algorithm are closely associated. The scanpath in (c) did not contain a fixation at
T2, and the scanpath in (d) did not include most fixations.

4.1.3. DBSCAN with IQR

Figure 5 shows the fixations of the gaze data using DBSCAN with IQR. In this analysis,
the box target stayed for 3 s at every target in the stimulus. The box target moved for 1 s, 2 s,
and 1 s from T1 to T2, T2 to T3, and T3 to T4, respectively. DBSCAN with IQR automatically
set the eps value optimized for the gaze data in the DBSCAN algorithm (see [6]). Thus, as
seen in Figure 5a–d, all scanpaths looked similar. However, DBSCAN with IQR had a big
difference in the number of fixations depending on the other parameter, minPoint.
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I-DT analysis

(a) (b)

(c) (d)

fixation = 6
dispersion threshold = 100
duration threshold = 0.5

fixation = 7
dispersion threshold = 15
duration threshold = 30

fixation = 27
dispersion threshold = 30
duration threshold = 0.5

fixation = 2
dispersion threshold = 8.5564
duration threshold = 26.2530

dispersion threshold = pixel, duration threshold = second

Figure 4. I-DT fixation identification. (a–d) The different cases of fixation identifications with the
I-DT algorithm. The parameter settings are displayed in each image. Similar to Figure 3, the black
dots denote the raw gaze points, and the red dots indicate the fixations. The red links are the saccades.DBSCAN with IQR analysis

(b)

fixation = 16
epsilon = 27.6572
min points = 1

(a)

fixation = 9
epsilon = 27.6572
min points = 15

(c)

fixation = 27
epsilon = 27.6572
min points = 2

(d)

fixation = 37
epsilon = 27.6572
min points = 3

Figure 5. DBSCAN with IQR fixation identification. (a–d) The different cases of fixation identi-
fications. The minPoint parameter in each case is presented in each image. The epsilon (eps) is
automatically set based on Q3, the third quartile (75%), from the center of gaze distributions [6].
Similar to Figure 3, the black dots denote the raw gaze points, and the red dots indicate the fixations.
The red links are the saccades.

4.1.4. I-VDT Smooth Pursuit Identification Algorithm

Figure 6 shows the identification of eye movement events using I-VDT. In this analysis,
the box target stayed for 3 s at every target in the stimulus. The box target moved for 1 s,
2 s, and 1 s from T1 to T2, T2 to T3, and T3 to T4, respectively. Since the velocity range
of smooth pursuit overlapped with the saccade, the parameter setting was challenging.
Subfigures (a) and (b) show that the eye movement event identification varied differently
depending on the velocity threshold for the same dispersion threshold. The smooth pursuit
was sometimes mixed with fixation. Subfigure (c) reveals that too many fixations and
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smooth pursuits were classified because the dispersion threshold was too low compared
to (d).

I-VDT

(b)

fix = 3
SP = 2
velocity = 6
dispersion = 100

(a)

fix = 5
SP = 4
velocity = 1
dispersion = 100

(c)

fix = 64
SP = 58
velocity = 10
dispersion = 10

(d)

fix = 7
SP = 6
velocity = 10
dispersion = 60

fix = fixation, SP = Smooth Pursuit, velocity threshold = ˚/s, dispersion threshold = pixel

Figure 6. I-VDT smooth pursuit identification. (a–d) The different cases of eye movement event
identifications. The velocity and dispersion threshold parameters in each case are presented in each
image. The black dots denote the raw gaze points, and the red dots indicate the fixations and smooth
pursuits. The red links are the saccades.

4.2. Behavior-Based Gaze Data Processing

As presented in the previous section, the fixation identification algorithms with pa-
rameter settings such as I-VT, I-DT, and DBSCAN with IQR extract the different number
of fixations and the different scanpath shapes depending on the parameter settings. Most
scientists apply these algorithms, but spend much time and effort on determining appro-
priate parameters. Since the velocity range of smooth pursuit overlaps the velocity range of
saccade, it is difficult to set the velocity threshold for the smooth pursuit detection [13,15].
To resolve the problem, we split eye movement data into stare and move based on gaze
behavior rather than events. Since the fixation and smooth pursuit reflected the gaze be-
havior of the observer who wanted to gaze at the target, it could be identified as stare, and
other movements could be recognized as move. Note that this definition did not simply
mean combining fixation and smooth pursuit into one label. Existing machine learning
techniques for smooth pursuit detection classify discrete eye movement events. However,
continuous gaze behavior is not recognized because the classification is achieved through
learning annotated events rather than gaze behavior. Therefore, we propose a gaze-parsing
technique to identify continuous gaze behavior by learning gaze behavior in this section.

In this study, we introduce a behavior-based gaze data processing method using the
image classification machine learning algorithms to reduce the effort and time spent on
setting parameters manually and to include smooth pursuit eye movements on fixation
aggregation. Figure 7 shows the bahavior-based gaze data process of creating labeled
datasets from raw gaze points for the training in the image classification machine learning
models. As seen in (a), we generated a virtual window with the size of a human visual
angle, crop gaze points within the virtual window according to eye movement, and save
cropped gaze points as an image. We implemented data visualization, cropping, and
image storage with Python OpenCV library (Python OpenCV library, https://opencv.org/,
accessed on 8 July 2021). Figure 7a illustrates how we generated image datasets in (b) with
a 32 × 32 degrees window. Note that we determined the window size as 32 × 32 degrees
since the smooth pursuit [10] moved at a speed of 10–30 degrees per second and the visual

https://opencv.org/
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angle is 1–2 degrees [21] that humans could focus. The window moved from the start
point to the end point of the raw gaze data in time order. The window was located at the
center of the current gaze point (tcur), as presented in Figure 7(a-1). Of the gaze points
within the window range, the data from the current gaze point to the past nth, i.e., tcur
to tcur−n, were taken as shown in Figure 7(a-2), where n was set to 2 in this illustration,
and there were three gaze points, t0, t−1 and t−2, taken within the window range. As
presented in Figure 7(a-3), we made the window background black and make the gaze
points in Figure 7(a-2) more transparent away from the present in time order. In this
process, the image data in Figure 7b were generated. The background color of the image
dataset was fixed to black to discard other visual stimuli to learn only the time-dependent
behavior of the scanpath of raw gaze points. We label the images in Figure 7b as stare and
move according to the gaze behaviors. The proposed behavior-based gaze data processing
method generates images where gaze points were gathered as the stare class when the gaze
behavior stares in one area or was a smooth pursuit moving at a speed of 10–30 degrees
per second. Saccades were formed as the move class, where there was a gap between
gaze points or gaze points were not gathered. As illustrated in Figure 7c, the labeled
data were divided into the training datasets and validation datasets. We created a total of
8000 training datasets and 8000 validation datasets through the process in Figure 7. Note
that we used the same number of data from each class.

Behavior based fixation filter

Stare

Move

(32x32 degrees) size

(a) (b) (c)Raw gaze points scanpath

𝑡𝑝𝑎𝑠𝑡 𝑡𝑐𝑢𝑟 𝑡𝑓𝑢𝑡𝑢𝑟𝑒

window
(32x32 degrees)

start

end

𝑡𝑐𝑢𝑟−𝑛

𝑡−1

𝑡−2
𝑡0

(a-1)

(a-2) (a-3)
Image dataset Label

Figure 7. Gaze bahavior-based data processing for training with image classification machine
learning algorithm. The image dataset is generated in the form of a 32 × 32 degrees window with a
black background.

We compared the performance of three machine learning algorithms, including CNN,
AlexNet, and LeNet, with the image data generated by the behavior-based gaze data
processing method. We used the CNN model consisting of three convolutional layers,
one max-pooling layer, and two fully connected layers. The ReLU (Rectified Linear Unit)
activation function was used in the convolutional layers and the fully connected layer.
AlexNet consisted of five convolutional layers, three max-pooling layers, and three fully
connected layers. The activation function was ReLU. LeNet consisted of two convolutional
layers, two max-pooling layers, and three fully connected layers. The sigmoid was applied
as the activation function. The input was the image dataset we created, and the output
was the classification, stare and move. Figure 8 shows the performance of the bahavior-
based gaze data processing method using CNN, AlexNet, and LeNet. We calculated the
accuracy and loss to compare the performance of each model. The accuracy denotes the

classification accuracy defined as accuracy =
(TP + FP)

(TP + FP + FN + TN)
. TP is True Positive,

FP is False Positive, FN is False Negative, and TN is True Negative. The loss implies the
difference between the data distribution for learning and the data distribution predicted by
the model. The loss is defined as H(P, Q) = −ΣP(x) log Q(x), where H is the loss and P is
the distribution of the data for training. Q is the data distribution predicted by the model
to approximate P, and x is the observation for the correct answer label. We compared
the loss and accuracy of CNN, AlexNet [27], and LeNet [28] in Figure 8. AlexNet had the
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highest accuracy with the smallest loss, whereas LeNet had the lowest performance for
both accuracy and loss. On average, it took 14 s for CNN, 386 s for AlexNet, and 1 s for
LeNet per epoch during the training. The hardware configuration used for training and
classification of all models was Intel i7-3770 cpu @3.4 G Hz, eight cores, NVIDIA GeForce
GTX 660 Ti 4 GB memory, and 16 GB RAM.

Accuracy

1 50 100 150 200

CNN AlexNet LeNet Loss

1 50 100 150 200

One epoch time (mean): CNN = 14s, AlexNet = 386s, LeNet = 1s

CNN AlexNet LeNet

Figure 8. Accuracy, loss, and one epoch training mean time performance comparisons of CNN,
AlexNet, and LeNet.

5. Comparison of Gaze-Parsing Algorithms and Gaze Data Visualizations

In this section, we compare the effects of gaze-parsing algorithms on the abstract
levels of gaze data visualization. We compare the heatmap, scanpath, and abstract gaze
movement visualization using I-VT, I-DT, DBSCAN with IQR, and the behavior-based gaze
data processing method using AlexNet. We manually set the parameters of the fixation
identification algorithms by determining the optimal results based on the shape of the
scanpath compared to the conditions of collecting the gaze data.

5.1. Heatmap Visualization

We chose the heatmap as a gaze visualization representing a high level of abstraction.
In general, heatmaps were represented by counting raw gaze points or counting fixation
points. Since we could not examine the changes according to the fixation identification
algorithms with the number of raw gaze points, we represented the heatmap by counting
the fixation points in this study. Figure 9 shows the changes in the heatmap according to
the gaze-parsing algorithms.

In the data collection, the observer saw the visual stimulus, as presented in Figure 9a.
The observer paused for three seconds at the points where the green dots are drawn while
moving his eyes. Subfigure (b) shows the raw gaze points. Subfigure (c) is the heatmap
with the behavior-based gaze data processing method using AlexNet. The heatmaps with
I-VT, I-DT, and DBSCAN with IQR are presented in (d-1) to (d-3), (e-1) to (e-3), and (f-1) to
(f-3), respectively. Note that the parameter values are printed on the visualizations. Most
cases showed similar heatmaps. However, I-VT in (d-1), I-DT in (e-1), and DBSCAN with
IQR in (f-1) did not produce a sufficient number of fixations. The behavior-based gaze data
processing method using AlexNet did not produce fixations along the gaze path shown
in (a) unlike (d-2, d-3), (e-2, e-3), and (f-2, f-3). DBSCAN with IQR identified the smaller
number of fixations compared to ones with I-VT or I-DT by aggregating adjacent gaze
points over both time and space coordinates. Figure 9(f-2,f-3) shows that DBSCAN was
less preferred to represent the fixation density in the high level of the abstract visualization
compared to (d-2, d-3) and (e-2, e-3) since I-VT and I-DT identification algorithms are
sensitive to identify fixations. Therefore, in the high level of abstract visualization such
as heatmap, it was necessary to consider the degree of aggregation within the fixation
identification algorithm to reveal the detail of data distribution.
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heatmap

(a) (b)

(d-1)

(d-2)

(d-3)

(e-1)

(e-2)

(e-3)

(c)

(f-1)

(f-2)

(f-3)

s = 15

f = 19
v = 8.3

f = 51
v = 2.8

f = 33
v = 4.3

f = 8
m = 15

f = 60
D = 30
d = 0.5

f = 28
D = 50
d = 0.5

f = 9
D = 150
d = 2

f = 13
m = 4

f = 24
m = 2

s = stare, f = fixation, v = velocity threshold, D = dispersion threshold, d = duration threshold, m = minPoints

I-VT

I-VT

I-VT

I-DT

I-DT

I-DT

Behavior-based AlexNet

DBSCAN with IQR

DBSCAN with IQR

DBSCAN with IQR

Figure 9. Comparison of heatmaps with different gaze-parsing algorithms. (a) A visual stimulus,
including the eye movement task of an observer. The observer paused for 3 s at the point where the
green dots are drawn during the eye movement. (b) The raw gaze points. (c) The heatmap with the
behavior-based gaze data processing method using AlexNet. The heatmap with I-VT in (d-1–d-3),
I-DT in (e-1–e-3), and DBSCAN with IQR in (f-1–f-3) are presented.

5.2. Scanpath Visualization

We used the scanpath visualization to represent a low level of abstraction. In general,
the scanpath visualization is applied to analyze eye movement patterns. We compared
the fixations of gaze data with an eye movement, such as searching for information and
following the moving target.

Figure 10 presents scanpath visualizations by the fixation identification algorithms.
The observer sees the visual stimulus in Figure 10a. The observer paused for 3 s at the
points where the green dots are located. Subfigure (b) shows the raw gaze points. Subfigure
(c) presents the scanpath visualization with the behavior-based gaze data processing
method using AlexNet. The scanpath visualizations with I-VT, I-DT, and DBSCAN with
IQR are presented in (d-1) to (d-3), (e-1) to (e-3), and (f-1) to (f-3), respectively. Note that
the parameter values are printed on the visualizations. In the fast eye movement similar to
searching behavior, Figure 10 shows all similar scanpaths except for (d-1), and the scanpath
in (c) was similar to the ones in (d-3), (e-3), and (f-3). However, the number of fixations
varied greatly depending on the parameter values.

Figure 11 compares the effect of the gaze-parsing algorithms on the scanpath visual-
ization in the smooth pursuit eye movement such as following the moving target. When
the observer’s gaze followed the moving target, more scanpath visualizations lost the
expected shape, as seen in (d-1), (d-2), (f-1), and (f-2), than the scanpath visualization
shown in Figure 10. However, the scanpaths were visualized similar to the shape of the raw
gaze points in (b) with the behavior-based gaze data processing method using AlexNet in
(c), I-VT in (d-3), I-DT in (e-1) to (e-3), and DBSCAN in (f-3). In the low-level techniques
such as scanpath visualization, it is essential to explore detailed eye movement patterns.
As shown in Figure 11, in the searching movement, even though the number of fixations
increased, the level of abstraction remained as the fixations were added only in the area
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where the eyes paused. On the other hand, as shown in Figure 11, the smooth pursuit eye
movement showed a lower abstraction level as the number of fixations increased.

scanpath - fast

(a) (b)

(d-1)

(d-2)

(d-3)

(e-1)

(e-2)

(e-3)

(c)

(f-1)

(f-2)

(f-3)

s = 17

f = 8
v = 20

f = 13
v = 8. 3

f = 26
v = 12

f = 8
m = 15

f = 12
D = 100
d = 0.5

f = 9
D = 130
d = 3

f = 8
D = 150
d = 2

f = 8
m = 6

f = 21
m = 2

I-VT

I-VT

I-VT

I-DT

I-DT

I-DT

Behavior-based AlexNet

DBSCAN with IQR

DBSCAN with IQR

DBSCAN with IQR

s = stare, f = fixation, v = velocity threshold, D = dispersion threshold, d = duration threshold, m = minPoints

Figure 10. Comparison of scanpath visualizations with the eye movement according to the gaze-
parsing algorithms. (a) The visual stimulus with the eye movement task of an observer. The observer
pauses for 3 s at the points where the green dots are drawn during the eye movement. (b) The raw
gaze points. (c) The scanpath visualization with the behavior-based gaze data processing method
using AlexNet. The scanpath visualizations with I-VT in (d-1–d-3), I-DT in (e-1–e-3), and DBSCAN
with IQR in (f-1–f-3) are presented.

5.3. Abstract Gaze Movement Visualization

The abstract gaze movement visualization represents a mid-level of abstraction be-
tween the heatmap and the scanpath visualization. This visualization contains the features
of both the heatmap and scanpath visualization. Figure 12 shows the abstract gaze move-
ment visualizations according to the gaze-parsing algorithms.

As the eye movement task shown in Figure 10, the observer moved the eye along
the path shown in Figure 12a and pauses for 3 s at the green dots. (b) shows the raw gaze
points. In (c) to (f-3), we present the abstract gaze movement visualizations according to
the gaze-parsing algorithms shown in Figure 10.

This type of visualization became complicated when the stares were located closely,
and the heatmaps were overlaid. The mid-level abstraction gaze visualization presents
the ideal case at the level where the eye movement path was identified rather than the
number of stare, unlike the heatmap and the scanpath visualization. The visualization in
Figure 12(f-1) with DBSCAN is the ideal case for this type of visualization. In other cases,
extra data post-processing might be needed after using the gaze-parsing algorithms to
draw the abstract gaze movement visualizations. Since not all cases showed ideal results
with DBSCAN, this visualization might require much time and effort in the post-processing.
Although the parameter settings are particularly tricky in the mid-level abstraction gaze
visualizations and the heatmap overlaps in most cases, the visualizations show clearly
the areas where the eye paused and the eye movement directions. However, when we
combined the gaze distribution with the gaze movement directions, the gaze movement
path could be different, as shown in Figure 12(d-1,d-2) according to the parameter setting.
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scanpath - slow

(a) (b)

(d-1)

(d-2)

(d-3)

(e-1)

(e-2)

(e-3)

(c)

(f-1)

(f-2)

(f-3)

s = 25

f = 5
v = 8.3

f = 45
v = 4.3

f = 13
v = 6.5

f = 6
m = 100

f = 46
D = 40
d = 5

f = 26
D = 80
d = 2

f = 13
D = 150
d = 2

f = 15
m = 20

f = 20
m = 15

I-VT

I-VT

I-VT

I-DT

I-DT

I-DT

Behavior-based AlexNet

DBSCAN with IQR

DBSCAN with IQR

DBSCAN with IQR

s = stare, f = fixation, v = velocity threshold, D = dispersion threshold, d = duration threshold, m = minPoints

Figure 11. Comparison of scanpath visualizations with the eye movement while reading according
to the gaze-parsing algorithms. (a) The visual stimulus with the eye movement task of an observer.
The observer slowly moves the eye to the end without pausing the eye movement. (b) The raw gaze
points. (c) The scanpath visualization with the behavior-based gaze data processing method using
AlexNet. The scanpath visualizations with I-VT in (d-1–d-3), I-DT in (e-1-e-3), and DBSCAN with
IQR in (f-1–f-3) are presented.

Figure 13 presents gaze data visualizations of an observer who watched triple_jump.avi
in the Lund2013 dataset [15]. We utilized the gaze data of triple_jump.avi where the du-
ration was 3 s. (a) is the visual stimulus. The black box is the moving target, and the red
dots are raw gaze data. (b) to (f) show the visualizations after applying I-VT, I-DT, gaze
behavior-based AlexNet, I-VDT, and REMoDNaV gaze-parsing algorithms, respectively.
For REMoDNaV in (f), (a-1) and (a-2) were classified as smooth pursuits, and loss occurred
since each smooth pursuit was depicted as one representative point. Therefore, (a-3) was
not fully drawn in the heatmap, scanpath, and mid-level abstraction gaze data visualiza-
tion. Except for REMoDNaV in (f), the mid-level abstraction gaze data visualizations in
(b) to (e) revealed the distribution of missing data occurring in the heatmap and scanpath.
Figure 14 presents the quantitative and qualitative comparisons of the parameter-based
gaze-parsing algorithms used in Figure 13. Figure 14a presents the FQnS (Fixation Qualita-
tive Score) of I-VT and I-DT. (b) shows the FQlS (Fixation Quantitative Score) of I-VT and
I-DT. In (a) and (b), since I-DT utilized the dispersion and duration threshold as parame-
ters, it was divided into I-DT-dispersion and I-DT-duration. FQnS and FQlS proposed by
Komogortsev et al. [25] were employed to evaluate the fixation behavior detection perfor-
mance. (c) and (d) show the PQnS (Smooth Pursuit Qualitative Score) of I-VDT. (c) presents
PQnS_P, which calculated the score using the position difference of the smooth pursuit, and
(d) gave PQnS_V, which measured the score using the velocity difference of the smooth pur-
suit. In (c) and (d), since I-VDT had the velocity and dispersion threshold as parameters, it
was divided into I-VDT-velocity and I-VDT-dispersion. The PQnS proposed by Komogort-
sev and Karpov [64] compared the performance of smooth pursuit behavior detection
using velocity and position as indicators. Range Coefficient (RC) was RC = T ∗ Vi + C,
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where T is the threshold parameter value, Vi is the increasing threshold value, and C is the
initial threshold value. As seen in (a), FQnS had the maximum value when RC was 2 for
I-VT and I-DT-dispersion and decreased after that. The I-DT-duration had the highest value
at first and then continued to decrease. In (b), the I-DT-dispersion was not visible because
it had FQlS values similar to that of I-VT. I-VT, I-DT-dispersion, and I-DT-duration had the
maximum values when RC was 2 and decrease after that, which showed similar patterns
as in (a). Additionally, the trends of the graphs were similar. Therefore, it was possible to
obtain high performance of I-VT and I-DT identification classification by setting velocity,
dispersion, and duration thresholds in the 2∼4 RC range as seen in (a) and (b). In (c) and
(d), the graph patterns of I-VDT-dispersion and I-VDT-duration were similar. In both (c)
and (d), the I-VDT-dispersion had high PQlS values when RC was between 14 and 30. The
I-VDT-velocity had high PQlS values when RC was between 2 and 14. (c) and (d) show that
the I-VDT performance was high when RC is 2∼14 for the velocity threshold, and RC was
14∼30 for the dispersion threshold. Machine learning-based algorithms were compared
using the F1 score as presented in Table 2. The F1 score of gaze behavior-based AlexNet
was 0.78 in the detection of stare, but unlike REMoDNaV, it did not detect eye movement
events such as smooth pursuit. Likewise REMoDNaV does not detect stare. Therefore, it
was not possible to compare the two algorithms directly.

Abstract gaze movement visualization

(a) (b)

(d-1)

(d-2)

(d-3)

(e-1)

(e-2)

(e-3)

(c)

(f-1)

(f-2)

(f-3)

f = 8
v = 20

f = 13
v = 8. 3

f = 26
v = 12

f = 8
m = 15

f = 12
D = 100
d = 0.5

f = 9
D = 130
d = 3

f = 8
D = 150
d = 2

f = 8
m = 6

f = 21
m = 2

s = 17

I-VT

I-VT

I-VT

I-DT

I-DT

I-DT

Behavior-based AlexNet

DBSCAN with IQR

DBSCAN with IQR

DBSCAN with IQR

s = stare, f = fixation, v = velocity threshold, D = dispersion threshold, d = duration threshold, m = minPoints

Figure 12. Comparison of abstract gaze movement visualizations according to the gaze-parsing
algorithms. (a) The visual stimulus with the eye movement task of an observer. The observer pauses
for 3 s at the points where the green nodes are drawn during the eye movement. (b) The raw gaze
points. (c) The abstract gaze movement visualization with the behavior-based gaze data processing
method using AlexNet. The abstract gaze movement visualizations with I-VT in (d-1–d-3), I-DT in
(e-1–e-3), and DBSCAN with IQR in (f-1–f-3) are presented.

Table 2. F1 scores of machine learning-based gaze-parsing algorithms.

Fixation Saccade Smooth Pursuit Stare Move

Behavior-based - - - 0.78080 0.542831
REMoDNaV 0.60656 0.43529 0.33945 - -
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(c)

f = 10
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d = 0.05 I-DT

heatmap scanpath

mid-level abstract

(d)

s = 8 Behavior-based AlexNet

heatmap scanpath

mid-level abstract

(e)

f = 2
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v = 4
D = 0.04 I-VDT

heatmap scanpath

mid-level abstract
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f = 4
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mid-level abstract

s = stare, f = fixation, sp = smooth pursuit, v = velocity threshold, D = dispersion threshold, d = duration threshold

(a-1) (a-2)

(a-3)

Figure 13. Comparison of gaze data visualizations for various gaze-parsing algorithms using
Lund2013 dataset [15]. (a) The visual stimulus, moving target in the black box, and raw gaze points
in red. (a-1-a-3) indicate the gaze data segments. (b–d) The results obtained using I-VT, I-DT, and our
behavior-based AlexNet, respectively. (e) and (f) The results of identifying eye movement events with
I-VDT and REMoDNaV, respectively. The results of each algorithm are represented in the heatmap,
scanpath, and mid-level abstract gaze movement visualizations. The parameter settings and the
number of detected eye movement events are disclosed in each subplot.

Figure 14. Qualitative and quantitative comparison of gaze-parsing algorithms requiring parameter
setting. (a) The FQnS scores of I-VT and I-DT. (b) The FQlS scores of I-VT and I-DT. I-DT is divided
into I-DT-dispersion and I-DT-duration in (a,b) because it has dispersion and duration threshold
as parameters. (c) The PQlS_P scores of I-VDT. (d) The PQlS_V scores of I-VDT. In (c,d), since I-
VDT has velocity and dispersion threshold as parameters, it is divided into I-VDT-velocity and
I-VDT-dispersion.

6. Conclusions

In this paper, we compared the effects of gaze-parsing algorithms on gaze visualiza-
tions. Our abstract gaze movement visualization is an improved technique that emphasizes
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the directionality of eye movement in work proposed by Yoo et al. [6]. The visualizations uti-
lized in this work include the heatmap, abstract gaze movement visualization, and scanpath
visualization. The gaze-parsing algorithms we used in the comparison are velocity-based,
dispersion-based, density-based, velocity and dispersion based, and parameter-free al-
gorithms. The proposed gaze-parsing algorithms trains gaze behavior-based data using
deep learning models for the classification. In this study, we chose AlexNet as the classifi-
cation model by comparing the performance of CNN, AlexNet, and LeNet models, such
as accuracy, loss, and training time. Eye movement events detection algorithms, such as
I-VT, I-DT, DBSCAN with IQR, and I-VDT, vary significantly with different parameter
settings. Additionally, although our proposed bahavior-based gaze data processing method
sets parameters automatically, this gaze behavior parsing algorithm requires various case
studies and evaluations to test the robustness.

Our proposed behavior-based gaze data processing method applies the AlexNet deep
learning algorithm to train the gaze behavior image dataset. However, we did not consider
the effect of sampling or window size on the deep learning model design. Since the gaze
data sampling and the window size help to train the shape of the abstract gaze data, more
studies on the sampling and window size might allow us to recommend a gaze-parsing
algorithm according to the abstraction level of visualization. Additionally, we classified
the data manually to create labeled training data. We divided the gaze behaviors into two
classes, stare and move. Theoretically, the gaze data can be divided into more classes, such
as noise and return, besides stare and move. In the manual labeling, however, we were
not easily able to distinguish the sampled data. Even though the data were classified, the
ratios of all classes were so different that it could not be trained. Therefore, we need various
case studies and validation of this behavior-based gaze data processing method using
AlexNet. Therefore, we plan to study the effect of data sampling and window size on the
proposed gaze behavior-based data processing with AlexNet to recommend a gaze-parsing
algorithm for each visualization abstraction level.
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