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Abstract: With the advancement of technology and the arrival of miniaturized environmental sensors
that offer greater performance, the idea of building mobile network sensing for air quality has quickly
emerged to increase our knowledge of air pollution in urban environments. However, with these
new techniques, the difficulty of building mathematical models capable of aggregating all these data
sources in order to provide precise mapping of air quality arises. In this context, we explore the
spatio-temporal geostatistics methods as a solution for such a problem and evaluate three different
methods: Simple Kriging (SK) in residuals, Ordinary Kriging (OK), and Kriging with External Drift
(KED). On average, geostatistical models showed 26.57% improvement in the Root Mean Squared
Error (RMSE) compared to the standard Inverse Distance Weighting (IDW) technique in interpolating
scenarios (27.94% for KED, 26.05% for OK, and 25.71% for SK). The results showed less significant
scores in extrapolating scenarios (a 12.22% decrease in the RMSE for geostatisical models compared
to IDW). We conclude that univariable geostatistics is suitable for interpolating this type of data but is
less appropriate for an extrapolation of non-sampled places since it does not create any information.

Keywords: spatio-temporal geostatistics; mobile sensors; air quality; ozone concentration

1. Introduction

Air pollution is one of the major concerns of the last century and has caused more
than 7 million deaths per year [1]. The situation is more alarming in metropolitan areas
where the air quality regularly exceeds the standards suggested by the World Health
Organization [2]. This can be attributed to the scale of urbanization and population growth,
as well as the resulting energy consumption [3]. Air quality monitoring is a crucial part in
the process of reducing urban air pollution and its harmful effects on people’s health and
the environment. Indeed, real-time information on air pollution in urban areas is of great
importance for environmental and health protection agencies who must advise the general
public as soon as possible. This information can also be used by companies to offer several
services and solutions in order to reduce the impact of air pollution on health.

1.1. Classical Methods of Air Quality Monitoring

Currently, air quality monitoring is carried out using fixed air quality monitoring
stations. These stations are managed by national environmental protection agencies.
These reference stations provide a very precise measurement of air quality at the cost
of limited spatial coverage. The stations can generate detailed time series data, but only at
limited locations. This makes it difficult to compile reliable and representative information
for a city or a region as a whole, and therefore a more macroscopic view of trends in
pollution fields is provided. However, the air quality in a city varies greatly because the
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concentration of pollutants in a given place depends mainly on local emission sources and
atmospheric flow conditions [4].

For example, after comparing surveillance data from two streets in Copenhagen
(Jagtvej and Bredgade), Berkowicz et al. [5] argued that roadside readings were site depen-
dent and not representative of a larger urban area. They demonstrated that the measured
concentrations could be very different at these two sites. Another study [6] showed that
the air quality measurements taken at the intersection of two central London streets were
highly dependent on the local wind flow and the geometry of the streets and buildings
surrounding the receiver.

The total number of fixed air quality monitoring stations in a city is limited due to
practical constraints, such as the cost and size of equipment and the power supply. An
increase in the number of fixed stations is often hard to achieve. Hence, it is necessary to
use other measurement and modelling techniques to assess urban air quality at unsampled
places. There exist five large families of models and methods for creating urban air
pollution cartography:

Land-Use Regression models Land-Use Regression models (LUR) make the assump-
tion that the air quality in a given place depends only on the local characteristics of
the environment, such as the land use, weather-related variables, building density,
and traffic density. These models link the measurement of air quality taken at the
fixed station to the chosen predictive environmental variables.

A LUR model developed by Kerckhoffs et al. [7], including small-scale traffic, large-
scale address density, and urban green, explained 71% of the spatial variation for
ozone concentrations. Meng et al. [8] and Chen et al. [9] successfully developed a
LUR model for NO2 concentrations in China.

LUR models provide good results for a rather low complexity. They also describe
the effect of the environmental variables on the pollutant concentration but remain
limited by the amount of data from other variables needed or obtained at a relatively
expensive cost.

Deterministic interpolation methods One of the most popular deterministic inter-
polation methods is Inverse Distance Weighting (IDW). The value at the unknown
location is calculated as the weighted average of the measurements collected from
the monitoring stations. This method assumes that the value is more influenced by
the nearest measurements than the distant ones, and thus the closest locations obtain
greater weights. As the distance increases, less weight is given to the measurement.

Given the simplicity of this method, it is often used as a benchmark. Marshall et al. [10]
used it to compare the urban variability of the NO and NO2 concentration to a LUR
model and an Eulerian grid model in Vancouver, Canada. Wong et al. [11] compared
different interpolation methods, including IDW to estimate the ozone concentration
and Particulate Matter (PM) concentrations.
The weakness of deterministic interpolation methods lies in their poor extrapolation
accuracy. These methods are not considered as models, because they do not describe
the data in addition to not giving uncertainty associated with the prediction.

Geostatistics Geostatistics regroup stochastic kriging methods, the value at the un-
sampled location is evaluated by a weighted linear combination of measurements,
and the weights are calculated from the variability of the data inferred from the actual
structure of the data.

Kim et al. [12] developed an Ordinary Kriging (OK) prediction model to predict
long-term PM concentrations in seven major Korean cities. Whitworth et al. [13]
modelled the ambient air levels of benzene in an urban environment. More sophisti-
cated than IDW and regression modelling, geostatistics also provide the uncertainty
associated with the prediction. However, these techniques suffer from a relatively
high computational cost.
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Dispersion models Dispersion models replicate the formation of atmospheric pol-
lutants through physical and chemical processes. They have been widely used in
traffic-related pollution prediction and make use of the environmental variables, such
as the ones used in LUR models.

Hamer et al. [14] described the Eulerian urban dispersion model EPISODE and
its application to the modelling of NO2 pollution concentration. Fallah et al. [15]
improved the characterisation of near-road air pollution using a regional Gaussian
dispersion model. Gibson et al. [16] used the AERMOD Gaussian plume air dis-
persion model to evaluate the PM, NOx, and SO2. However, these methods suffer
from numerous shortcomings, such as the computational cost and the production of
uniform and imprecise maps, related to the challenging task of modelling the small
scale random variations.

Machine learning algorithms A machine learning algorithm analyses the training
data and produces an inferred function, which can be used to map new examples.
Machine learning is very effective in situations where insights must be discovered
from large sets of diverse and changing data. Numerous studies applied this method
to predict air pollution levels: Singh et al. [17] identified pollution sources and
predicted urban air quality using ensemble learning methods. Cabaneros et al. [18]
provided a review of Artificial Neural Network (ANN) models for ambient air
pollution prediction. Some machine learning algorithms were combined with fuzzy
models in order to predict air pollution levels [19]. Machine learning algorithms are
considered as black boxes with poor descriptive power and struggle to provide better
results than the other models with limited data.

With recent technological advances, the proliferation of air quality low-cost sen-
sors offers additional tools to refine the spatial-temporal characterization of air pollution
levels [20]. Numerous instruments from business entities, non-profits, and startups have
entered the market thus far [21]. The performance of these sensors can differ significantly
between different models as well as between units of the same model, as indicated by field
and laboratory evaluations [22].

Although having many advantages, the use of this new type of sensors to assess urban
atmospheric pollution also presents inconveniences. Mainly, taken separately, the data
from these sensors are often noisy and not very precise. Studies [23,24] analysed the
performance of low-cost air quality sensors as well as their benefits and their viability for
monitoring air pollution levels in urban areas. None of the sensors tested showed good
correlation with reference data in low ambient concentrations (0 to 15 µg/m3 range). When
deployed in large quantities and using the right calibration and prediction models, they are
able to provide complex and complementary information to the fixed monitoring station.

1.2. Mobile Sensors

The use of a fleet of low-cost sensors onboard vehicles (cars, buses, trams, and so
on) travelling in an urban area in order to have a better representation of pollutants is
increasingly popular. As opposed to the traditional air quality monitoring stations, the use
of a low-cost mobile sensor network that can dynamically travel through the environment
will deliver data with unprecedented resolution [25,26]. Some notable examples of research
projects using low-cost sensors for monitoring air pollution include: the “OpenSense”
projects in Switzerland [27], “Array of Things” in Chicago, United States [28], the Imperial
County Community Air Monitoring Network [29] in California, United States, “Gotcha” II
in Shenzhen, China [30], and the “Air Map Korea Project” in major cities of South Korea.

In this context, a mobile sensor could be a good compromise between temporal
resolution and spatial resolution, allowing high spatial cover over large areas without
using a large number of fixed sensors. However, due to the reduced temporal resolution
of any sampled location, it is challenging to generate pollution maps with high temporal
resolution at daily or hourly time scales.
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Air quality monitoring using mobile sensors is attracting an increasingly growing
interest [31,32]. Several devices have been developed to monitor, in real-time, the spatial
and temporal variability of air quality using different instruments, technologies, and
platforms. Gozzi et al. [33] summarized the status of mobile monitoring of PM. Most of
these studies used mobile monitoring to assess air pollution exposure or to study spatial
and temporal characteristics. Only a few studies were interested in producing urban
pollution maps using mobile monitoring at a fine spatial-temporal scale.

A range of methods exist to go beyond the spatial and temporal coverage of the mobile
measurements and draw pollution maps. Studies naturally applied the same methods
used for fixed stations to the new problem generated by the use of mobile sensors. Table 1
summarizes the main recent studies using mobile monitoring to map air pollution levels.

Table 1. Mapping air quality studies using mobile sensors. UFP stands here for ultrafine particles, LUR for land-use
regression, ANN for artificial neural network and PMx for particles smaller than x microns in diameter.

Article Method Area Pollutant Sensor Carrier

Marjovi et al. [34] LUR, machine learning (ANN) Lausane, Switzerland UFP Bus
Hart et al. [35] LUR Texas, USA PM2.5 Bike
Apte et al. [36] Reduction algorithm Oakland, USA NO, NO2, BC Car

Hasenfratz et al. [37] LUR Zurich, Switzerland UFP Tram
Hasenfratz et al. [27] LUR Zurich, Switzerland UFP Tram

Marjovi et al. [38] LUR, Probabilistic Graphical Model Lausanne, Switzerland UFP Bus
Li et al. [39] Kriging Zurich, Switzerland UFP Tram

Lim et al. [40] LUR, machine learning Seoul, South Korea PM2.5 Pedestrian
Adams et al. [41] ANN Hamilton, Canada NO2 Van
Hankey et al. [42] LUR Minneapolis, USA BC, PM2.5 Bike
Gressent et al. [43] Kriging Nantes, France PM10 Car

Do et al. [44] Autoencoders Antwerp, Belgium Several pollutants Bike
Zhang et al. [45] Machine learning Songdo, Korea CO2, PM2.5, PM10 Car
Song et al. [46] Machine learning Beijing, China PM2.5 Car
Van et al. [47] LUR Ghent, Belgium BC Bike

Guan et al. [48] LUR, kriging Oakland, California NO2 Car
Mariano et al. [49] Decision trees Zurich, Switzerland UFP Tram

Ma et al. [50] Machine learning China PM2.5 Car

Land-Use Regression models have become the standard method. Hatzopoulou et al. [51]
and Kerckhoffs et al. [52] have evaluated the robustness of LUR models developed from
mobile air pollutant measurements and concluded that mobile monitoring provided robust
LUR models for predicting ultrafine particles concentrations. This partially explains the
popular use of these models in mobile monitoring. All the studies in Table 1 have proposed
models that share the same weaknesses with the LUR models: they require (and are mainly
based) on information provided by external variables.

These variables are introduced into the model to investigate the link with the pollutant
level, and the predicted pollutant value at unsampled locations is, therefore, derived from
the knowledge of these variables at those locations. In addition to being able to predict
only at the locations sampled by these covariates, the difficulty of their acquisition as well
as the additional computational cost represent real obstacles to the use of these methods.
Moreover, they have the disadvantage of producing maps with relatively large spatial
and temporal resolutions. The final resolution of the prediction highly depends on the
resolution of the covariates.

The problem worsens when we are interested in real time prediction. Either these
covariates are sometimes available only after a given period of time, which makes them
unavailable for real time prediction, or we use the predictions of these variables, which can
introduce a lot of uncertainties in the final result.
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Geostatistics have the advantage of being able to incorporate covariates (Kriging with
External Drift (KED), Cokriging) but can also do without it (Simple Kriging (SK)), and
thus represent, with the deterministic methods, a way to produce maps without using other
variables. This method has the advantage, compared to the deterministic interpolation
methods, to give the uncertainty associated with the prediction. However, geostatistics
make stronger assumptions about the data. This model family was selected to tackle the
real-time prediction problem because of the previously introduced advantages.

Some studies used geostatistics as a way to map air pollution using low cost mobile
sensors. Li et al. [39] and Guan et al. [48], on top of using several covariates in their
geostatistical model, used a likelihood-based method making stricter assumptions about
the underlying distribution of the data and increasing the computational resources, making
it challenging to use in real-time applications. Gressent et al. [43] used, as opposed to the
likelihood method, a variogram-based method. They chose a purely spatial model that did
not take into account the temporal correlation of the data.

This paper aims to show the prediction efficiency of variogram-based spatio-temporal
geostatistics in the mapping process of air quality using mobile sensors without the use of
external variables other than pollution data for real-time prediction purpose.

2. Materials and Methods
2.1. Data

Considering the limited number of studies carried out on urban air pollution with
mobile sensors, the number of public datasets is limited. In this paper, we used the data
from the OpenSense project to answer the research question. The ozone concentration was
selected as the first pollutant to be examined in this study, and the methodology remains
the same for any other pollutant categories.

The OpenSense project [53], is a Swiss project aiming to integrate air quality measure-
ments from heterogeneous mobile and crowd sensed data sources in order to understand
the health impacts of air pollution exposure and to provide high-resolution urban air
quality maps. This project deployed several mobile air quality sensors on the trams’ roofs
in the Swiss city of Zurich and Lausanne’s buses, collecting the measurement of ozone
concentrations and counting Ultra Fine Particles (UFP). More information about the data
as well as the data collection methodology can be found in these studies [37,54]. Even
if these data show drawbacks, especially the sampling only on static trajectories of the
city, they remain, nonetheless, very valuable for the application and the evaluation of new
approaches to model the spatio-temporal variability of pollution in the urban environment.

In this paper, our study was carried out using the measured ozone concentration
provided by the mobile sensors deployed on the top of the Zurich trams. The trajectory
of the trams can be seen on Figure 1. Since the objective is to predict the concentration on
a very detailed temporal resolution, this paper restricted the data used for a single week
(from 28 February to 5 March 2016) containing data from five sensors on lines number 4, 7,
8, 12, and 13, resulting in a dataset of 40,000 observations.

The Opensense data provide the ozone concentration in parts per billion (ppb) in
a given volume (volume of gaseous pollutant per 109 volumes of ambient air). In order
to convert it to µg/m3 to match the unit of the data from the fixed monitoring station,
we applied the following formula: µg/m3 = (ppb) · (12.187) · (M)/293 where M is the
molecular weight of the ozone pollutant (M(O3) = 48). An atmospheric pressure of
1 atmosphere and a temperature of 20 ◦C is assumed.
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Figure 1. Location of the fixed station and the tram paths in the city of Zurich.

Reference data for fixed stations was obtained from www.ostluft.ch, the official air
quality monitoring network in eastern Switzerland, which manages several fixed stations
in the country. The data used here is the ozone concentration, available as hourly averaged.
Since it is needed at a high temporal resolution, a linear interpolation was performed.
The hourly averages were interpolated at each timestep when a measurement from the
mobile sensors was collected.

Calibration Process

The data provided by OpenSense were raw and not calibrated. A first analysis showed
that the sensor measurements differed significantly from each other even when they were
close to each other. To reduce the bias and errors, a linear transformation using the data
from the fixed monitoring station considered as aa reference was applied. The calibration
was carried out separately for each sensor in order to achieve the best possible performance
for the various sensors without changing their respective correlation.

Let Xi(x, t) be the raw data coming from sensor i sampled at place x and time t, F(t)
be the data from the fixed monitoring station at time t, and Zi(x, t) be the calibrated data
from sensor i sampled at place x and time t.

A linear calibration of the raw data, to correct possible bias, is described as follows:

Zi(x, t) = ai + bi · Xi(x, t) (1)

In Equation (1), the only known term is Xi(x, t). The estimation of ai (additive bias)
and bi (multiplicative bias) is needed to get the calibrated data. The estimation of ai and bi
involves F(t):

F(t) = ai + bi · Xi(x, t) + ε (2)

The estimation of ai and bi from Equation (2) was made using ordinary least squares,
that minimized ε. This calibration was done for each sensor individually, using all sensor i
data from all days in the dataset and fixed station data. There were as many estimates of ai
and bi as there are sensors.
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2.2. Methodology

As stated in the introduction above, there is a need for a method to generate real-time
air pollution maps. In this section, the methodology used to assess the efficiency of spatio-
temporal geostatistics is presented, by comparing different geostatistics models and show
the potential gain compared to a standard IDW method, which is the most common and
known in practice. First, the research question is defined:

What are the best models of space-time geostatistics for predicting urban air pollution
using mobile sensors and what are the benefits compared to a standard deterministic
approach? The remainder of this section develops each step of the methodology.

2.2.1. Model Selection

Three geostatistical approaches were applied. Apart from mobile sensors data, two
of them used fixed station data to predict air quality. Each of these three methods make
different assumptions, which will be discussed in detail in the theoretical Section 2.3:

• Simple kriging with a varying known mean: the time series of the fixed monitoring
station was chosen to be the overall mean.

• Ordinary kriging with a constant piecewise mean, but unknown.
• Kriging with external drift: the data from the fixed monitoring station was used to

estimate the underlying mean.

The originality of the proposed models lies in their capacity to rely on a variographic
study to describe spatiotemporal variance.

2.2.2. Variographic Study

In this paper, only the estimation of the variogram and not of the covariance function
was performed, making less restrictive assumptions on the stationarity of the random field.
In the calculation of the experimental variogram, Arnaud et al. [55] recommend taking into
account distances up to the half of the maximum distance encountered between two points
in the field. Beyond that, the number of pairs of points involved in the calculation of the
variogram decreases and reduces its robustness.

Knowing that, the maximum distance between two points in this study was 12.8 KM;
variograms were, thus, limited to 6 km. As for the temporal limit, knowing that months
of data were available, restricting this study to half of this temporal distance was neither
possible in practice nor advantageous. The retained limit was set manually by increasing
the time limit step by step until a sill appeared in the variogram.

One week of data was used to estimate the empirical variogram, all the data from this
week was used for parameter estimation, which includes the 04/03 (the day of prediction)
and the following day (05/03).

To study a possible anisotropy in the data linked to external factors, two spatio-
temporal empirical variograms in the two static directions (north–south and east–west)
were performed. Finally, three variograms were computed, each one associated with a
different selected model.

2.2.3. Models Validation Process

In order to evaluate the different models, a four-fold cross validation procedure was
made, and the averages of the performance indicators used were computed. By varying
the size of the training data set, conclusions about the efficiency of the models in different
conditions are presented. Only the data from 04/03 was used in this cross validation
procedure for the prediction/interpolation purposes following the three scenarios described
below. The day 04/03 was chosen for the prediction tests for two main reasons: it is the day
with the largest number of observations, and it represents teh typical daily ozone variation
with a peak around 2 pm.

The data from 04/03 was kept in the parameter estimation procedure because, in
practice, we did have access to a part of the data that we could include in the estimation
of the variograms. Moreover, knowing that this cross validation procedure used different
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percentages of data, estimating a spatio-temporal variogram at each of these steps would
be expensive in calculation cost. Furthermore, this data will not change much in practice
in the estimation of parameters as it represents only a part of the global data used for
parameter estimation (less than 1/5).

Three different ways for the random selection of points were chosen:

• The first method consists of randomly choosing a proportion of points regardless of
their location in space or when they were collected: this corresponds to the reconstruc-
tion of data between sampled places.

• The second, more realistic, method consists of choosing small paths of different lengths
while keeping the same percentage of data in order to reproduce a real data collection
from a mobile sensor: this corresponds to the extrapolation of the data to places close
to the sampling places.

• The last method, uses only the data resulting from the trajectory of specific trams.
This corresponds to extrapolation for places "far" from the sampling points, which
will often be encountered in practice.

2.2.4. Performance Indicators

The three approaches were compared to one deterministic interpolation technique,
here considered as the reference (IDW), in the three scenarios. The evaluation of the result
of each of them used the following three performance indicators:

• The Root Mean Squared Error (RMSE) was selected as the main performance indicator
to measure the error as it is the most frequently used measure to assess the differences
between the predicted values by a model or an estimator and the observed values. The
three geostatistical models presented in this article were built to minimize this error.

RMSE =

√
∑n

i=1(Z∗i − Zi)2

n

• The bias performance indicator was chosen to control the unbiasedness of the estima-
tors. The three geostatistics estimators are theoretically unbiased. This performance
indicator is used to check that.

BIAS = 1/n
n

∑
i=1

(Z∗i − Zi)

• The correlation performance indicator was selected to deal with the low-cost nature
of the sensors. In case of bias, it is necessary to measure the correlation performance
and compare it to the RMSE.

CORR =
∑n

i=1(Z∗i − Z̄∗)(Zi − Z̄)√
∑n

i=1(Z∗i − Z̄∗)2 ∑n
i=1(Zi − Z̄)2

2.3. Methods

There are two ways of incorporating time into spatial geostatistics. The first is in
the form of cokriging, and the second, more natural, by considering time as a separate
dimension, which will be the case in this study. What has been considered here as support,
is a unique sample measured in a volume of air.

Given a support D in Rn and a probability space (Ω,A,P), a random function is a
function of two variables Z(x, w) such that, for each x in D the section Z(x, .) is a random
variable on (Ω,A,P).

In this case, D = R2 ×R+ where R2 represents space and R+ time, the random func-
tion is simply denoted by Z(x, t), and a realisation of this random function is represented
by z(x, t) where x ∈ R2 and t ∈ R+.
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The methods presented in this section have been theoretically defined in previous
works [56]. However, the adaptation of this work to our use case required dedicated efforts.
In the next section, we introduce the necessary theoretical details to understand the models.

2.3.1. Simple Kriging with a Varying Mean

The application of simple kriging requires two hypotheses: the second order stationary
of the random field, and the knowledge of the mean over the whole domain D. Assuming
that the fitted data collected by the mobile sensors comes from a stationary random field of
order two is a strong hypothesis that is not realistic. In this model, the data given by the
fixed monitoring station F(t) is supposed to be the overall mean. Subtracting the value
of the fixed station from the fitted data provided by the mobile sensors is assumed to be
stationary of order two with a zero mean.

The simple kriging estimator is:

Z∗(x, t) = µ +
n

∑
i=1

λi(Z(xi, ti)− µ) =
n

∑
i=1

λiZ(xi, ti) (3)

where µ is the mean of the detrended random field and is equal to zero. To produce the
best linear estimator, we must ensure that the estimation variance is minimal and that the
estimator is unbiased.

The unbiased condition is automatically verified, and does not imply any additional
constraint because:

E[Z∗(x, t)− Z(x, t)] =
n

∑
i=1

λiEZ(xi, ti) = 0 (4)

This leads to the simple kriging equations:

n

∑
j=1

λjγ(xi − xj, ti − tj) = γ(xi − x, ti − t) i = 1, .., n (5)

The resolution of Equation (5) gives the different lambda in the linear combination (3).

2.3.2. Ordinary Kriging

The application of ordinary kriging makes less restrictive assumptions—namely a
constant but unknown mean. The linear estimator of ordinary kriging is written this way:

Z∗(x, t) =
n

∑
i=1

λiZ(xi, ti) (6)

To ensure the unbiased condition:

E[Z∗(x, t)] = E[
n

∑
i=1

λiZ(xi, ti)] = m
n

∑
i=1

λi (7)

n

∑
i=1

λi = 1 (8)

The objective is to minimize the error, characterized by its expected mean square
E(Z∗−Z)2 under the unbiased condition (8) using the Lagrangian multiplier µ. The weights
that minimize the error are the solution of:
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n

∑
j=1

λjγ(xi − xj, ti − tj) + µ = γ(xi − x, ti − t) i = 1, .., n

n

∑
i=1

λi = 1

(9)

The equation system (9) is called the ordinary kriging system, and solving it yields
the weights λi for the linear estimator (6).

2.3.3. Kriging with External Drift

Kriging with external drift or regression kriging assume that Z(x, t) can be broken
down into two parts, one deterministic µ(x, t) and the other stochastic Y(x, t):

Z(x, t) = µ(x, t) + Y(x, t) (10)

with Y being stationary intrinsic with zero mean. f0, f1, fL are deterministic functions with
f : D −→ R, and µ(x, t) is a linear combination of these functions evaluated at (x, t):

µ(x, t) =
L

∑
l=0

al fl(x, t) (11)

with f0(x, t) = 1

Z(xi, ti) = µ(xi, ti) + Y(xi, ti) =
L

∑
l=0

aL fL(xi, ti) + Y(xi, ti) (12)

The different functions fl(x, t) represents the covariates “external drifts” used to
estimate the underlying mean; in this study, only one function f1(x, t) = F(t), which
stands for the fixed station data, was used.

The linear kriging with external drifts estimator is, therefore, written:

Z∗(x, t) =
N

∑
i=1

wiZ(xi, ti) =
N

∑
i=1

wi(
1

∑
l=0

al fl(xi, ti) + Y(xi, ti)) (13)

The unbiased condition is satisfied if and only if:

n

∑
i=1

wi fl(xi, ti) = fl(x, t) l = 0, 1 (14)

Coupled with the minimum variance condition, this gives the kriging system (15):

n

∑
j=1

λjγ(xi − xj, ti − tj) +
1

∑
l=0

al fl(xi, ti) = γ(xi − x, ti − t) i = 1, . . . , n

n

∑
i=1

wi fl(xi, ti) = fl(x, t) l = 0, 1

(15)

2.3.4. Spatio-Temporal Inverse Distance Weighting

Inverse Distance Weighting is a type of deterministic method that assigns values to
non-sampled points using a linear combination of values from sampled points weighted
by the inverse distance.

The general formula for the IDW is given by Equation (16):
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Z∗(x, t) =
n

∑
i=1

λiz(xi, ti) (16)

with:

λi =
1/dp

i

∑n
i=1 1/dp

i
(17)

di represents the distance between Z∗(x, t) and z(xi, ti). The weights decrease as the
distance increases, especially as the power value p rises. As with the previous methods,
points in the neighbourhood have a heavier weight and have more influence on the
prediction, thus, resulting in a local spatio-temporal interpolation. In this study, this
definition of a spatio-temporal distance was chosen:

di =
√
(xi − x)2 + (yi − y)2 + C · (ti − t)2 (18)

The parameter p was fixed at 2, while C was obtained by cross-validation.
Finally, while any covariance function can be written in the form of a variogram using

γ(h) = C(0)− C(h), the opposite is not generally true. The passage from variogram to
covariance is only possible under the assumptions of second order stationarity.

This paper only uses the variogram and not the covariance function, making less
strict assumptions.

3. Results

In this chapter, different results from the application of the methodology on the dataset
are presented. Starting with the variographic study, we show the two different directional
variograms, as well as the experimental variograms and their respective theoretical vari-
ograms considered for the different models. Then, a prediction with the three models was
carried out for the day of 04/03 from 5 a.m. to 10 p.m. The result of the cross validation
procedure in each of the scenarios is shown for the three performance indicators, for the
three spatio-temporal geostatistical models as well as the IDW method. Last, the prediction
of ozone concentration as well as the associated uncertainty via the KED model is displayed,
using all the data available for one day.

3.1. Variographic Study
3.1.1. Anisotropy

An isotropic phenomenon is a process that does not depend on any particular direction.
In spatial studies, this process is considered to evolve in the same way in all directions.
On the opposite, an anisotropic phenomenon is a process that varies in a different way
depending on the studied direction. The anisotropy can be detected on the experimental
variograms by different ranges according to the directions. Generally, it is observed that
the directions of the longest and the shortest spans are orthogonal.

We calculated two spatio-temporal directional variograms using the pair of points in
the north–south axis and in the east–west axis. The directional variograms were calculated
from the fitted data without subtracting the fixed monitoring station values. Figure 2a,b
shows that there were no significant differences between the two variograms.



Sensors 2021, 21, 4717 12 of 22

1000
2000

3000
4000

5000

200

400

600

0

50

100

150

Distance (m
)

Time lag (mins)

sample

1000
2000

3000
4000

5000

200

400

600

0

50

100

150

Distance (m
)

Time lag (mins)

metric

0

20

40

60

80

100

120

140

160

180

1000
2000

3000
4000

5000

200

400

600

0

50

100

150

Distance (m
)

Time lag (mins)

sample

1000
2000

3000
4000

5000

200

400

600

0

50

100

150

Distance (m
)

Time lag (mins)

metric

0

20

40

60

80

100

120

140

160

180

(a) East–west axis (b) North–south axis

Figure 2. Directional spatio-temporal empirical variograms.

3.1.2. Spatio-Temporal Variance

The study of the spatio-temporal variability of the data showed a clear difference
between the spatial and temporal variability. The different variograms showed that,
on average, there was a greater difference between two measurements sampled a few
hours apart at the same place, than two measurements sampled at the same time anywhere
in space (on the scale of a city), which justifies the traditional approach using the fixed
stations for monitoring air quality. Mobile sensors, in addition to being able to capture
temporal variance, can also capture spatial variance.

As we do not sacrifice spatial variance by using them, we can only improve the ex-
plained global variance. The three variograms (fitted data in Figure 3, residuals in Figure 4,
and estimated residuals in Figure 5) show exactly the same purely spatial variability. This
is because, for residual variograms, we subtracted only temporal component provided by
the fixed monitoring station, leaving the spatial variability unchanged.
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(a) Empirical variogram (b) Theoretical model

Figure 3. Spatio-temporal variograms associated with the ordinary kriging model.

The three computed empirical variograms show small nugget effects; however, there
is no data at the same time and at the same place simultaneously as none of the trams meet.
Moreover, the proximate collected data points necessarily come from the same sensor, and
these measurements are not independent conditionally to the ozone concentration. This is
why these variograms show small variability in the origin, which does not necessarily
reflect the real variability of the studied phenomenon.
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Figure 4. Spatio-temporal variograms associated with the simple kriging model.

3.1.3. Modelling

A metric theoretical spatio-temporal variogram assumes identical spatial and temporal
covariance functions taking into account the spatio-temporal anisotropy:

γ(h, u) = γjoint(
√

h2 + (K.u)2)

where γjoint is any known variogram that may include a nugget effect, and K is a spatio-
temporal anisotropy parameter defined as the number of space units equivalent to one
time unit. The estimation of K was done at the same time as all the other parameters of the
theoretical model (i.e., the sill, nugget, and range) by minimizing the average of the squared
deviations between the sample and the fitted variogram surface [57]. The used optimization
algorithm is L-BFGS-B, which is the bound-constrained variant of the limited–memory
Broyden–Fletcher–Goldfarb–Shanno optimisation algorithm. The different joint models
and their respective parameters can be found in Table 2 for the three methods.

Table 2. Different joint models and their respective parameters.

Method S-P Model K Join Model Sill Nugget Range

Simple kriging Metric 105.16 Spheric 82.30 5.00 30,415.43
Ordinary kriging Metric 91.18 Linear 148.8 5.00 38,073.4

Kriging with external drift Metric 83.03 Exponential 59.86 2.00 9872.405
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Figure 5. Spatio-temporal variograms associated with the kriging with external drift model.
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As expected, the variogram model associated with the ordinary kriging showed the
highest range and sill, as opposed to the two other models, where the data from the fixed
station partially explained the variance, resulting in a lower range and sill.

3.2. Spatio-Temporal Signals

Figures 6–8 show the prediction for the different tram lines trajectories. In the first,
second, and third scenarios. Only four sensors were functional that day: the sensors on the
lines 4, 7, 8, and 13.
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Figure 6. Comparison between the predictions and real values from four tram lines on 4 March 2016
in the first scenario.

The first thing to notice is the similarity of the predictions of the three methods. This is
explained by the same spatial variability common to the three variograms. Moreover, this
spatial variability is smaller than the temporal one, and thus the three estimators mainly
used the spatially close data. As the spatial variability did not change from one model to
another, we found fairly similar predictions. The three estimators did not interpolate the
data at the sampled locations; they are, therefore, not exact estimators due to the nugget
effect, which represents measurement errors. The estimators, therefore, tended to filter the
measurement errors.

In the third scenario (Figure 8), in the absence of data coming from the predicted tram
line, the estimators tended to imitate the values sampled in the nearest tram lines. Thus,
the prediction on line 2 was similar to the values sampled on line 17, and vice versa.

The inadequacy of predictions at a given location came from the lack of nearby data
at that location, and this was more visible in scenario 3. The result was even worse at the
end of the day. Indeed, in the absence of close data from the same tram, the predictions
will be more influenced by the measurements taken at the same time by the other trams;
however, we noticed a clear difference in the measurements taken at the end of the day.
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Figure 7. Comparison between the predictions and real values from four tram lines on 4 March 2016
in the second scenario.
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Figure 8. Comparison between the predictions and real values from four tram lines on 4 March 2016
in the third scenario.
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3.3. Performance Indicators Results

The first thing to notice in the RMSE (Figure 9) is that the three probabilistic meth-
ods performed significantly better than the deterministic interpolation in each scenario.
As expected, in the first scenario, the more data that were used, the less errors were made.
This was not true in the third scenario where we noticed that the error reached a minimum.
No matter how much data were used, the RMSE did not fall below 6 µg/m3. The KED
estimator showed the least errors in the case of data reconstruction at places close to the
sampled data (scenario 1) followed by SK and OK. We concluded that the contribution of
the fixed station data in such an environment was useful and that the KED optimized its use.
In the two others scenarios, the use of ordinary kriging appeared to be more appropriate.

The four methods biases tended towards zero in the first scenario, and, in the third
scenario, the prediction seemed systematically biased (Figure 10). Although the stochastic
methods systematically outperformed the IDW method. This was not the case in the
second scenario. The correlation Figure 11 consolidates the idea that KED seemed the best
suited in the first scenario, where OK showed better correlation results in the second and
third scenarios.

To summarize, in the first scenario, the performance indicators were smooth, and
the more data we used, the better the predictions. This was not true in the third scenario,
where we reached a sill regardless of the number of data points used. As for the second
scenario, it was a mix of both.

We concluded that kriging using the data from the fixed measurement station as
an external variable was the most suitable in the case of data interpolation. When we
want to extrapolate far from the sampling places, ordinary kriging appeared to be the best
solution. As expected, and as the majority of data reconstruction methods, geostatistics per-
formed better in the case of interpolation versus extrapolation, regardless of the considered
performance criterion.
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Figure 9. RMSE.
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Figure 11. Correlations.

3.4. Resulting Maps

To answer the objective of creating pollution maps, The KED algorithm was applied
using every data point available from the mobile sensors, as well as the fixed monitoring
station during one day. Figure 12 shows an example of 17 h of the resulting maps for
4 March 2016. Figure 12 display only the resulting ozone concentration from 5 a.m. to
10 p.m., when all four mobile sensors were active. The method succeeded in identifying
areas with high ozone pollution in the city of Zurich, considering that only four mobile
sensors were used. One of the important points that can be observed in Figure 12 is that
the typical mid day spike of ozone concentration was clearly visible, followed by mostly
very low concentrations during the evening and night.

The concentrations begin to increase throughout the city at around 6 a.m. (depicted
by a brief peak observed on lines 13 and 7, as shown by Figures 6–8). The concentrations
reached a maximum at around 12 a.m./1 p.m., at this point, the resulting maps indicate
concentrations exceeding 60 µg/m3 along the north-west side of the city. Finally, the overall
ozone concentration decreased again throughout the evening, and, around 7 p.m., reached
approximately the same levels as during the previous night of around 20 µg/m3 in most
areas of the city.

As stated above, one of the advantages of geostatistical models is to provide prediction
uncertainty, and Figure 13 shows the variance associated with the KED estimator. The
kriging variance is not related to the data values, but only to the data placement; this
is why there is no correlation between Figures 12 and 13. The further away from the
location of the collected data, the greater the variance, and vice versa. The relationship
between the variance and the distance from the data was directly impacted by the spatial-
temporal variogram.

As expected, the variance was minimal in the centre of the city where there was the
most data collected. The locations of the four sensors can be easily seen at certain moments
of the day (11 a.m. or 5 p.m.).

The maximum variance can be observed at the edge of the maps shown at 5 a.m. and
22 p.m. These two maps have the singularity of having data collected only on one side of
the time, resulting in a great temporal distance (beginning and end of the day) on top of a
great spatial distance (edge of the map) to the collected data, which, as said above, implied
a greater uncertainty.
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Figure 12. The resulting ozone concentrations maps from the KED estimator in Zurich, here shown for 4 March 2016. From
5 a.m. to 10 p.m.
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Figure 13. Resulting variance estimator maps for the KED estimator in Zurich, here shown for 4 March 2016. From 5 a.m. to
10 p.m.
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4. Discussion

In this paper, several findings need to be highlighted: Spatio-temporal geostatistics
offers tools to deal with the problem of using mobile monitoring sensors. While other
studies relied on several covariates to predict air quality, this approach can be used to create
real-time air pollution maps. The advantage of geostatistics is that we are not restricted to
a given temporal or spatial resolution. Therefore, we can predict at any distance step and
any time step. It would also be possible to predict at greater scales, such as road sections or
longer time periods using block kriging.

Despite the subtraction of the data coming from the fixed stations, there still exists a
large spatio-temporal variability, which could be easily captured by mobile sensors as it
can be seen in the results of this paper.

However, several limitations in this study must be detailed: The trams did not go
through all types of streets and, therefore, only measured a specific type of urban pollution.
Furthermore, the methodology described above was not used to identify the best model
to estimate the ozone concentration but rather the concentration measured by sensors
similar to those used in this study. In this dataset, we do not have access to the real value
of the ozone concentration from reference sensors, and it is, therefore, impossible to carry
out a cross validation for this purpose. Moreover, the data from the mobile sensors were
considered independent conditionally on the ozone concentration, and this study did not
take into account the autocorrelation of data from the same tram.

Ordinary kriging does not use the fixed station data in its prediction. Therefore,
the geostatistical approach can be evaluated in the absence of other data except the ones
collected by the mobile sensors. The assumption has been made that the mean is constant,
but unknown, or at least locally constant, being equal to the average of a limited number
of datapoints in the neighbourhood of the target point to predict. Thus, this approach is
not completely independent from the fixed station data: actually, in the process of sensor
calibration using an additive bias (Equation (1)), the empirical mean of each sensor is
imposed to be equal to the mean of the fixed station. Knowing that the ordinary kriging
assumes that the average of the field is constant and, therefore, tends towards the mean
of the measurements coming from the mobile sensors, finally, the predictions from the
ordinary kriging also tend towards the mean of the fixed station.

In this study, no model was capable of predicting a value that lay outside of the range
of data points on which it was based. Since these interpolations are carried out on subsets
of control data, the max and min values in those subsets will be the upper and lower limits
of what the methods can predict.

As no relationship between the spatial coordinates and the variable of interest (ozone
concentration) was found in this study, universal kriging could not be used. The absence
of auxiliary variables makes the prediction outside the collection areas collection extremely
hazardous. As geostatistics do not create information, one must rely on dependencies with
other variables to predict pollutant concentrations outside the sampling area.

5. Conclusions and Perspectives

Air pollution maps with high spatio-temporal precision is of paramount importance
and remains an unsolved problem. The use of a mobile sensors fleet, by increasing the
spatial coverage, offers a solution to this problem. The use of these devices requires new
models to manage these data and produce air quality maps. In this paper, we proposed
the study of three spatio-temporal geostatistics methods, and, by comparing them to a
deterministic interpolation, we concluded that the probabilistic methods systematically
outperformed the deterministic method. The use of univariable geostatistics provided
conclusive results and is more suitable for interpolation at places close to the sampling site.

For the extrapolation, it will be necessary to use auxiliary variables in the form of
cokriging or regression-kriging. Despite a higher complexity, the anisotropic models could
improve the quality of the prediction. In this paper, we only tested a fixed spatial anisotropy
in time, another idea would be to search for a possible variation of anisotropy, related for
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example, to the wind speed and direction. Even if univariate geostatistics have its own
benefits, future work must assess the added value from using multivariate geostatistics
by comparing several methods in terms of the complexity, error prediction, data used,
and so on.
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