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Abstract: We exploit the use of a controller area network (CAN-bus) to monitor sensors on the
buses of local public transportation in a big European city. The aim is to advise fleet managers
and policymakers on how to reduce fuel consumption so that air pollution is controlled and public
services are improved. We deploy heuristic algorithms and exhaustive ones to generate Bayesian
networks among the monitored variables. The aim is to describe the relevant relationships between
the variables, to discover and confirm the possible cause–effect relationships, to predict the fuel
consumption dependent on the contextual conditions of traffic, and to enable an intervention analysis
to be conducted on the variables so that our goals are achieved. We propose a validation technique
using Bayesian networks based on Granger causality: it relies upon observations of the time series
formed by successive values of the variables in time. We use the same method based on Granger
causality to rank the Bayesian networks obtained as well. A comparison of the Bayesian networks
discovered against the ground truth is proposed in a synthetic data set, specifically generated for this
study: the results confirm the validity of the Bayesian networks that agree on most of the existing
relationships.

Keywords: bayesian networks; granger causality; hill climbing; brute force; fuel reduction; public
transportation; sensors; CAN-bus

1. Introduction

According to the World Health Organization (WHO), air pollution is the second
leading cause of noncommunicable diseases, such as stroke, cancer, and heart disease,
and of pulmonary diseases, such as chronic obstructive pulmonary diseases and lower
respiratory infections. Ambient air pollution accounts for an estimated 4.2 million deaths
per year [1]. Around 91% of the world’s population lives in places where air-quality levels
exceed WHO limits and the suggested standards for a healthy life [2–4]. Air pollution
is due to the presence of particulate matter 2.5 (PM2.5), which refers to tiny particles in
the air that are two and one-half microns or less in width. Studies suggest that long-term
exposure to fine particulate matter may be associated with increased rates of chronic
bronchitis, reduced lung function, and increased mortality from lung cancer and heart
disease. Furthermore, nitrogen dioxide (NO2) is one of the other main air-quality pollutants
of concern and is typically associated with vehicle emissions. The annual EU limit for NO2
was widely exceeded across Europe in 2017. Some 86% of these exceedances were detected
at roadside monitoring locations.

The red and violet colors in the map in Figure 1 show the areas in which the limits were
overcome multiple times in past years in European countries. Similar maps are available
for the other main air pollutants. In many countries, diseases can only be significantly
reduced by improving air quality. Turning air-pollution-reduction goals into policies to
combat noncommunicable diseases leads to multiple benefits for the environment, economy,
and health. With this work, we address these concerns by putting data science to use at the
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service of public policies. According to the European Environment Agency, we can reach
the goal of a reduction in air pollution by monitoring and modeling air quality, by collecting
data using sensors on roads and on vehicles, and by maintaining emission inventories. We
should employ emission-control strategies to reduce the amount of private transports; to
improve public ones; to reduce their emissions; to increase the use of renewable energy;
and to apply contingency measures, new policies, and rules that, for instance, encourage
planning of more compact cities.

Figure 1. Map of locations with NO2 emissions exceeded over the annual mean limit.

In this work, we employ machine learning models, specifically, Bayesian networks,
to analyze sensor data installed on the buses of a public transport company in a European
city. The sensors collect data about the vehicle and its use (acceleration, braking, speed,
stop durations with the engine on, etc.) with some contextual information about the vehicle
location (such as altitude). An analysis of the sensor data using machine learning algorithms
applied using procedures of predictive maintenance can also be used to improve vehicle
equipment maintenance, with a reduction in costs due to stop times for faults and repair.
Several related works exist in the literature. The application of Bayesian networks for the
purposes of monitoring natural resources and applying policies wa proposed in [5]. The
majority of the works that monitor fuel consumption in vehicles applied predictive models.
Schoen et al. in [6] adopted Artificial Neural Networks (ANN) to predict average fuel
consumption in a fleet of heavy vehicles. They adopted a data summarization technique
of the consumption based on distance rather than time in order to eliminate a conversion
of the scale for the prediction of average fuel consumption. We also apply a similar
technique in this work because we build models that employ the fuel consumed per
kilometer. Perrotta et al. [7] compared multiple machine learning models—support vector
regression (SVR), random forest (RF), and artificial neural networks (ANN)—to predict
fuel consumption in heavy vehicles. Moradi et al. [8] used multiple models in cascade
and confirmed that ANN outperforms the other models. The goals of these works were to
reduce costs and to obtain better routing of the fleets even though they found it difficult
to determine an accurate estimation of the fuel level. Yao et al. in [9] used smartphones
to collect vehicle mobility data based on their global positioning system (GPS) combined
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with data from on-board diagnostics (OBD) terminals to predict fuel consumption based
on taxi-drivers’ driving styles. They compared ANN, SVR, and RF and showed that all
of them reach satisfactory prediction performances. Random forest achieved a superior
accuracy. Rimpas et al. in [10] selected some parameters for monitoring vehicles retrieved
through the OBD-II diagnostics protocol and related them to vehicle operation and fuel
consumption. They collected the proportion of oxygen in exhaust gases using a Lambda
Sensor and adjusted the fuel quantity measured by a short-term fuel trim (STFT) sensor
related to the immediate change in fuel flow and used as a proxy of the accelerator pedal
pressed by the driver. They collected the air flow as measured by a mass air flow sensor
(MAF) as a measure of engine malfunction, a vehicle speed sensor (VSS), and the value
of the engine coolant temperature (ECT) sensor where the coolant temperature affects
engine overheating and fuel consumption. The authors in [11] quantified the uncertainty
in measuring fuel consumption, both in light and heavy vehicles. They show that, in urban
conditions, the uncertainty reaches 7%. In [12], the authors considered the prediction of fuel
consumption in public buses using a multivariate data set including several explanatory
variables. They compared RF, gradient boosting (GB), and ANN. Based on their analysis,
RF produces a more accurate prediction compared to both GB and ANN. In [13], the
authors included weather variables for the task of fuel prediction and considered them
useful for an accurate prediction. Quite often in the above studies, the sample vehicles (in
terms of make, model, and age) were comparable so that the type and status of the vehicle
does not influence fuel consumption. We made a similar choice in the selection of heavy
vehicles (buses of the same model, type, mass, length, and age).

In this work, we used sensors with the sole purpose of collecting data about fuel
consumption and monitoring the drivers’ usage of the bus’s resources (fuel, breaks, acceler-
ation, and air conditioning). The goal was to monitor fuel consumption and its contextual
conditions with the ultimate objective to provide a descriptive and explainable model of
the variables that influence and cause fuel consumption and that ultimately produce air
pollution. We employed Bayesian networks that permit us to afford a unique model with
multiple tasks: description with a graph of the dependence relationships between the vari-
ables, identification of the variables that are independent from the target, selection of the
variables that have an impact on the target, quantification of the amount of impact on the
target, prediction of the target, simulation of the variables in a scenario, and intervention
in the scenario by changing some of the variables.

The first contribution of this work is to provide a public data set [14] on sensors
installed on board public transports with information about vehicle usage and fuel con-
sumption. Sensors communicate their measures via the controller area network (CAN-bus),
a specialized internal communications network that interconnects components inside a
vehicle [15]. CAN is a robust vehicle standard designed to allow micro-controllers and
devices to communicate with each other’s applications without a host computer. It is a
message-based protocol, originally designed for multiplex electrical wiring within automo-
biles, but it can be applied to many other contexts. For each device (sensor and actuator),
the data in a frame are transmitted sequentially. Thanks to this, the vehicle turns out to
be an advanced, computerized control system available on board and capable of sensor
data storage.

Thanks to the collected data, we assessed the sensor outcomes to support decision
making. We employed Bayesian networks (BN) as an essential tool that is able to provide
descriptive and explainable models of the relationships between the monitored variables,
and dependence relations that might also represent the cause–effect relationships [16].
In fact, BN captures the independence and the conditional independence among the
variables: in a BN, we represent variables with nodes and dependence relationships with
edges. The presence of a path connecting a variable V with a target variable T makes it
clear that we should change the values of V in order to modify the values of the target
(query) variable T. Instead, a change in variables not connected within a path including the
target should not cause any effect on it. The main contribution of this work is to provide a
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BN on the variables monitored by sensors connected in CAN-bus. These BN show which
variables we should change to control the fuel consumption variable. Furthermore, BN
also supports simulation of the behavior of the system. We use this feature of the BN
model because we generate synthetic data of a set of sensors that obey a known ground
truth [14]. The purpose is to verify correspondences between the cause–effect dependencies
reconstructed from the data and the true ones. We made these synthetic data publicly
available too [14].

BN is employed also to perform an assessment of the observed phenomena and to
perform an intervention analysis on the causal variables so that the monitored target can
be improved. As a result, we can provide the results and suggestions to drivers and
policy-makers with the goal of improving air quality and reducing costs for fuel. This is
the third contribution of this work. One of the main results of this intervention analysis is
to show that a change in the vehicle paths (longer but with a reduced slope) turns into a
decrease in fuel consumption. Other results concern the quantification of the impact on
fuel consumption of air conditioning and of brake usage.

The main difficulty with BN is that the search space of the possible alternative mod-
els increases in a super-exponential way in the number of variables (graph nodes) [17].
Therefore, it is customary to employ approximate algorithms [18–20] driven by heuristics
that are used to rank and evaluate the alternatives. The results are that the algorithms
might converge to different and suboptimal solutions but in tractable times. Their results,
as we experienced and show in this work, might differ. In this paper, we deal with some
representative algorithms for BN synthesis from data that are popular in the BN commu-
nity [19,20]. We use the BIC score [21], a derivation of the likelihood of the data under the
assumed BN model, as a heuristic to evaluate the alternative networks. We revised them
and compared their solutions on the sensor data by providing a brute force alternative.
Brute force converges to the global optimum of the BIC score within the search space.
The brute force alternative is possible (provided the number of variables is kept limited
to some units) thanks to the opportunity that high-performance computing gives us. It
makes the workload efficient by distributing the computation among multiple servers and
CPUs, and their execution in parallel. This is the fourth contribution of this work and one
of the novelties of our approach: a comparison of the results of different algorithms for BN
generation from data that allows us to rank them and to evaluate how closely they reach
the overall optimum of brute force. This is not so common in the BN community, since
BNs are usually initially provided by domain experts and later validated against evidence
from data [22,23]. To overcome the discrepancies among BNs, we compared and ranked
them by proposing and adopting an alternative method: Granger causality [24]. This is
one novelty of our approach and the last, but not least, contribution of our work. Granger
causality and its statistical test employ vector auto-regression (VAR) as a tool to predict
the target in time with the aid of multiple variables (the variables that are in the pathway
from causes to the effect). In its essence, the statistical test in Granger causality method
verifies that the prediction of the target, with the aid of the cause variables, is better than
without them. The application of this latter criterion is possible only when the flow of
values of these variables is stored in time. Granger causality is commonly judged as a
weaker principle than the stricter principle of probabilistic dependency between cause and
effect. With Granger causality, the existence of a causality relation between cause and the
effect is verified only in time thanks to the ability of the cause to predict and anticipate the
effect in time [25,26].

2. Materials and Methods
2.1. Sensor Data

The data set was collected by sensors on a fleet of bus vehicles. The data set contains
records for a fleet of 24 vehicles over 43 dates comprising dates between January and
August 2019. It is publicly available at [14]. Sensors from the on-board diagnostics (OBD)
interface collects kinematic variables such as speed, acceleration, engine speed (RPM), load
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(mass), and road grade. For each vehicle, the sensors perform measurements during a path
from departure to arrival bus-stop; thus, the data are not sampled regularly according to
time. We have a collection of multiple path records for each date on which the vehicle is
driven. (For each vehicle and date, the number of records generally comprises between 100
and 400 units). The variables measured during the path include the physical properties of
the travel (path length, duration, and change of height), time variables (time intervals spent
coasting, braking, or in motion), and the fuel consumption of the vehicle during this time
intervals. Unfortunately, we could not include the weather condition and the road type of
the tracks, even if we assumed that, in the domain of public transportation, the road type
is almost always metropolitan.

Our work aims to apply Bayes networks and Granger causality to study the causal
association between variables, especially on fuel consumption.

2.2. Feature Selection and Construction

We constructed a set of representative features over which we performed our experi-
ments.

• Original feature collection can be grouped as follows:

– Path variables

* HDIFF (m): difference in altitude between departure and arrival bus-stop
* DIST (m): distance covered during the travel
* MASS (kg): mass of vehicle and passengers

– Time Interval variables (s)

* TMTOT: total time of the travel
* TMAIR: time with air-conditioning on
* TMCOAST: time spent coasting
* TMBRAKE: time spent using the brakes
* TMMOTION: time spent with vehicle in motion

From this variables we can derive:

· TMTRACTION: TMMOTION − TMCOAST − TMBRAKE: time spent
in traction, that is, pressing the accelerator pedal

· TMSTOP: TMTOT − TMMOTION: time spent with the stopped vehicle
with the engine on

– Fuel consumption variables (mL)

* FUELSTOP: fuel consumption in TMSTOP time
* FUELMOTION: fuel consumption in TMMOTION time

• New features collection is contructed as follows:

- avg_slope (%): HDIFF/DIST
- mass (ton): MASS/1000
- brake_usage (%): (TMBRAKE − TMCOAST)/TMTOT
- air_cond_ptime (%): TMAIR/TMTOT
- stop_ptime (%): TMSTOP/TMTOT
- fuel_per_km (L/km): (FUELSTOP + FUELMOTION)/DIST
- accel (m/s2): 2 × DIST/(TMMOTION × TMTRACTION)

Concerning the derived variables, we can state the following:

• In the data set, buses travel at all different lengths and durations. We chose to divide
the total fuel consumption by distance to perform a better comparison among buses
traveling at different lengths. For the same reason, we decided to normalize all of the
time variables involved in the analysis so that they represent a fraction of the total
travel time;

• The variable brake_usage was created as an indicator of the good practice of choosing
coasting instead of braking. This variable is negative when the time spent coasting is
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greater than the time spent braking, zero when these fractions are equal, and positive
otherwise;

• The variable stop_ptime includes only the idling time, that is, the time spent with the
vehicle not in motion but with the engine on;

• The variable accel is obtained as the result of a simplified model of bus travel. We
assume that the bus travels starting, at time 0 with v0 = 0. We assume that the
velocity increases linearly with a constant acceleration (that is presumed to be an
important variable for the prediction of fuel consumption) until the time is equal to
TMTRACTION. Then, we assume that the bus velocity starts to decrease linearly for a
time equal to the sum of time spent coasting and braking, so that when time is equal to
TMMOTION (i.e., TMTRACTION+TMBRAKE+TMCOAST), the final velocity turns
out to again be null: v f = 0. The accel value can be easily derived in this simplified
model by observing that the length of the travel is equal to the area of the velocity
graph in a velocity–time diagram or, more formally, by solving s = 1

2 a1t1
2 + v1(t2 − t1) +

1
2 a2(t2 − t1)

2

v1 = a1t1
0 = v1 + a2(t2 − t1)

where s is the travelled distance, t1=TMTRACTION, t2=TMMOTION, v1 is the velocity
at time t1, a1 is the positive acceleration we are looking for, and a2 is a negative
acceleration (not involved in fuel consumption).

We show the main statistics (mean, standard deviation, and min–max range) of the
new feature collection for the data set on which we perform our experiments in Table 1. We
can observe that the vehicles mass is around 20 tons, that the path is generally on a plain
ground (from the mean avg_slope), and that the fuel consumption is around 0.6 L per km.

Table 1. Statistics of the data set features: mean, std (standard deviation), and minimum and
maximum feature values.

Mean Std Min Max

avg_slope (%) 0.00 0.02 −0.30 0.21
mass (ton) 21.19 1.55 17.92 29.85
aircond_ptime (%) 0.0 0.2 0.0 1.0
stop_ptime (%) 0.19 0.15 0.01 0.97
brake_usage (%) 0.20 0.09 −0.06 0.72
accel (m/s2) 0.36 0.21 0.01 1.80
fuel_per_km (L/km) 0.57 0.20 0.02 3.93

2.3. Algorithms for Bayesian Network Learning

In this section, we outline some of the algorithms to learn causal models from the
observed data. Learning a Bayesian network occurs in two steps: structure learning and
parameter learning. Suppose that learning a BN with DAG G and parameters Θ from a data
set D having n observations is driven by the following:

P(G, Θ | D) = P(G | D) · P(Θ | G,D)

Structure learning is involved in learning P(G|D): it aims to find the DAG G that
incorporates the dependence structure between the variables of the data D. In contrast,
parameter learning is focused on P(Θ|G,D) and consists of estimating the parameters Θ
given G. Suppose that the parameters are independent in distributions; then, they can be
learned in parallel for each node Xi as follows:

P(Θ | G,D) =
N

∏
i=1

P(ΘXi | Pai,D)
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where, with Pai, we represent the set of parent nodes of Xi (connected with a directed
edge, incoming in Xi) and, with ΘXi , we represent the set of parameters of the conditional
distribution of Xi given its parents Pai in G. Learning the structure of BN is an NP-
hard problem and computationally challenging. Suppose that there are N nodes; then,
the possible arcs are N(N − 1)/2 and the number of DAGs grow super-exponentially as
the number of nodes N increases. Hence, only a small number of the possible alternative
DAGs can be explored in a reasonable time. There are three main possible approaches used
in the structure learning of the BN: score-based, constraint-based, and hybrid. Each based on a
different statistical criterion.

• Score-based approach is a general class of optimization techniques to learn BN struc-
ture. Each learned BN is assigned a network score based on its Goodness-of-Fit; the
algorithm then tries to maximize the network score. Score-based approach examples
include simulated annealing, greedy search [27], genetic algorithms [28], and hill climbing
(HC) [19].

• Constraint-based approach first identifies pairs of nodes (Xi, Xj) that are connected
with an arc, regardless of its orientation. These nodes cannot be separated by other
subsets of nodes; this is tested heuristically using a conditional independence test.
The algorithm then distinguishes the v-structure among all of the pairs of non-adjacent
nodes Xi and Xl with a common neighbor Xj using the separating sets found earlier
and sets the remaining arc directions using the rules from Chickering [20] to obtain
CPDAG (completed partially directed acyclic graph). Some examples include Grow-
Shrink [29] and Interleaved Incremental Association (Inter-IAMB) [30].

• Hybrid approaches are constraint-based and use restriction to reduce the candidate
space of DAGs; they are score-based and use maximize implementations to find the
optimal DAG in the restricted space by implementing any combination of constraint-
based and score-based algorithms. Hybrid approaches include Max-Min Hill Climbing
algorithm (MMHC) [18], Restricted Maximization (RSMAX2) [31], and Hybrid HPC
(H2PC) [32]

2.3.1. Hill Climbing Algorithm

The hill climbing algorithm belongs to the class of greedy search algorithms. Hill
climbing (HC) assigns a network score (Goodness-of-Fit) to the candidate BNs, and heuristic
algorithms strive to maximize the network score, since a higher value means a better fit.
HC starts from a DAG structure, and then it adds, reverses, and deletes arcs until the
network score no longer improves [19]. The network score can be the Bayesian Information
Criterion [33] (BIC) or Akaike Information Criterion [34] (AIC) for both discrete and continuous
data sets.

2.3.2. Restrictive Maximization Algorithm

The restrictive maximization algorithm belongs to the class of hybrid approaches. RM
achieves faster structure learning by restricting the search space and by implementing a
combination of constraint-based and score-based algorithms [31].

2.3.3. Brute Force Algorithm

In this work, we introduce the brute force algorithm to afford the computational
complexity of complete exploration of the search space of the possible BN alternatives. We
take advantage of the parallel computing technology provided by HPC4AI (Turin’s High-
Performance Centre for Artificial Intelligence https://hpc4ai.it/, accessed on 8 July 2021).
The brute force formalization and implementation is one of the original contributions
of this work. We split up the search space for model selection and assign each to an
independent processor that delivers the best BN of the corresponding subspace. Finally,
these results are compared to choose the very best model. Each candidate BN is assigned
with a network score “Goodness-of-fit”. The brute force algorithm returns a BN with the
maximum score since a higher score means a better fit. We used a score derived from the

https://hpc4ai.it/
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Bayesian information criterion (BIC) as implemented in the R Library [35]; this network
score is suitable for both continuous and discrete data sets.

The idea of the brute force algorithm is to partition the space for all possible Bayesian
networks and to allocate each partition to a different processor, such that each processor in
parallel executes the task to evaluate the BIC score of all networks in its partition. Each
network is represented as a vector—a binary configuration of as many bits as the possible
arcs in the networks. Each bit in the vector represents whether the corresponding arc is
present or absent in the network.

The algorithm starts with an input data set D containing N variables. AllArcs is a
matrix (p∗2) with p = N(N − 1)/2 being the number of possible (undirected) arcs. Each
row in the matrix represents an arc (from–to): the first column represents the starting node,
and the second represents the ending node. Each pair of nodes is identified by a matrix
row index from 1 to p.

k1 < p is the number of arcs that are actively considered by each processor, and the
processor is free to vary in anyway in combination with the remaining arcs that instead are
fixed. The different processors have a different configuration in terms of present/absent arcs
that are fixed in the remaining subset of p− k1 arcs. FixedArcsPresence is a vector of length
p− k1 containing information related to the arcs for which the presence/absence is fixed for
that processor. p− k1 is the prearranged arcs (or pairs of nodes). In total, we have 2p−k1 avail-
able processors. Each processor runs the brute force Algorithm 1, with FixedArcsPresence
as an input argument. FixedArcsPresence is a vector of the ordered list representing the
presence/absence of each of the prearranged p − k1 arcs. Each element in this vector
corresponds to a different nodes pair with values 0, 1 such that FixedArcsPresence[i] = 1
if the ith pair of nodes is considered by that processor to be connected; otherwise, it is 0.
The processors are executed in parallel, where each processor has a different realization of
FixedArcsPresence. For each total configuration of arcs present or absent, from the fixed
part and the variable part, the processor evaluates the BIC score of the corresponding
Bayesian network with the goal of finding the one with the maximum value. Regarding the
determination of the arcs’ directions, defined within the algorithm, it establishes whether
each arc is oriented according to the direction taken as the reference in such a matrix or
the other way around and evaluates the BIC score for both arc directions. At the end,
the maximum score among the scores found by the processors is selected and so is the
corresponding Bayesian network.

However, some care should be taken when Bayesian networks are learnt from the data.
It should be kept in mind that networks learned from observational data may establish
some relationships that are hard to explain based on our prior knowledge of the domain.
Some relationships may reveal aspects of phenomena that we did not expect, some may be
explained by introducing exogenous variables acting as confounders, and the influence of
variable Xi on another variable Xj may be mediated by an unobserved variable Xl that is
not included either in the model or in the available data. Moreover, we should take into
account that the model, due to a lack of flexibility, could be unable to accurately describe
the phenomenon. For example, the assumption of Gaussianity may be inadequate for our
data, and adapting the variables to multinomial assumption through discretization may
lead to mutual information loss.

Therefore, we cannot expect to find a rational justification for each connection, but we
can apply critical thinking to extract helpful insights based on what the data supports.

2.4. Granger Causality

We performed a model evaluation of the Bayesian networks employing the statistical
concept of Granger causality that applies to the time-series domain [24]. In the following,
we provide a formalization of the application of the concept of Granger causality to the
evaluation of Bayesian networks. Later, in Section 3.2, we apply this method to the task
of ranking and comparing Bayesian networks, resulting from the application to the same
data of different, approximate, and heuristic-driven algorithms. The provided solution can
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solve a data analyst’s uncertainty for the choice among them. These concepts, to the best of
our knowledge, are original in their application to the validation of Bayesian networks and
in its formalization.

Algorithm 1 Brute force algorithm for learning the best Bayesian network structure.
Inputs:
D, AllArcs, k1, and FixedArcsPresence
Initialization:

bestG← the current best DAG, initially empty
bestscore← score of the current best DAG (initially empty)

For index(base101) from 0 up to (2k1 − 1) do:
Initialization:

Structure← binary vector of length k1, initially empty, such that each element represents an undirected
arc

ratio←base101

For index i from k1 down to 1 do:
B build the vector defining whether each arc is present or absent.
Structure[i]← ratio mod 2
ratio← ratio divided by 2 but rounded down (integer divide)

Structure← concatenate(Structure,FixedArcsPresence) B append the digits associated with the fixed arcs to
the end of Structure

PresentArcs← the ids of the present arcs (the indexes i such that structure[i] = 1)
B set the arcs in the network according to their default reference direction determined by the matrix AllArcs
Arcs← AllArcs[PresentArcs, ·]
k2 ← length(PresentArcs)
If k2 > 0:

For base102 from 0 up to 2k2 − 1 do:
ratio← base102
If k2 > 1 then:

Directions← binary vector of length k2, initially empty, such that each element represents the
direction of the corresponding arc conditioned on its presence

For i from k2 down to 1 do:
B build the vector determining the orientation of each arc
Directions[i]← ratio mod 2
ratio← ratio divided by 2 but rounded down (integer divide)
If Directions[i]=1 then:

change the orientation by swapping the two elements of Arcs[i, ·]
B else leave the direction as it is

If the graph defined jointly by the matrices Arcs and Directions is a DAG then:
build the corresponding network G
score← score(G)

If score>bestscore:
bestdag← G;
bestscore← score

Return bestG, bestscore

Granger Test

Given a stationarized multivariate time series t(l), including variables A and B, we

want to establish if A
(g)⇒ B. (The time series must satisfy the stationarity condition that is

assessed for each feature by the Augmented Dickey Fuller test (ADF) with significance level
0.05. If the Si feature gives rise to a time series that is not stationary, we iteratively apply
first-differencing Si(t) → [Si(t)− Si(t− 1)] and repeat ADF until we reach stationarity.)
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Notation A
(g)⇒ B denotes that A Granger-causes B. We performed a Granger test by

comparing the two auto-regressive models:

Bt =
q

∑
l=1

βl Bt−l + εt (1)

Bt =
q

∑
l=1

βl Bt−l +
q

∑
l=1

αl At−l + εt (2)

The Granger test is an F-test with null hypothesis H0 := {αl = 0; l = 1, . . . , q}. The

success of the test implies that A
(g)⇒ B, that is, A has a predictive power on B since its lag

coefficients αl in the second auto regressive model are significantly different from 0. For
our multivariate time series t(l), we conducted a Granger test for each possible ordered
distinct pair from feature set {S1, S2, . . . , SN}. Here, we denote the variables with symbols
Si because we want to highlight that each gives rise in a vehicle to a set of time series (one
for each vehicle in time). We stored the result of the t(l) tests in a Granger matrix G(l):

G(l)
i,j =

1 : Si
(g)⇒ Sj for t(l)

0 : else
(3)

We fit a vector auto regressive model (VAR) over the time series t(l), and the maximum-
lag order q was selected automatically according to the AIC criteria. We then performed
a Granger test for each pair (Si, Sj). The related F-test was performed with a significance
level of 0.1. We made this choice because we observed that, with a level of 0.05, we have an
average decrease of 5% in the rate of success of the Granger test over the set of time series
of the experiments.

We frame our data set as a collection of multivariate time series {t(l); l = 1, . . . , T}.
We performed the Granger test for each time series t(l) and for each ordered variable
pair (Si, Sj). The whole test results were then stored as a collection of Granger matrices
{G(l); l = 1, . . . , T}. This collection is successively used for validating the Bayes net-
works.

3. Results
3.1. The Discovered Bayes Networks

We illustrate the Bayes networks discovered from the algorithms introduced in
Section 2.3 applied on the data set with the constructed features described in Section 2.2.
We initially conduct an analysis on the found relationships between data set features based
on our knowledge about the data set domain: public transportation. We then introduce the
diverse applications of Bayes networks such as feature selection for a supervised prediction
task and intervention analysis in order to perform decision making.

3.1.1. Bayesian Networks Analysis

We name the discovered Bayesian networks after the algorithms introduced in
Section 2.3 as employed for their construction:

- HC: Hill climbing
- RM: Restrictive Maximization
- BF: Brute Force

We group the collection of links found by the networks in Table 2 as follows:

- Common Links (CL)
We have 10 links on which the three networks agree both on presence and direction,
identifying reasonable dependencies. Specifically, we have that brake_usage and accel
are both caused by avg_slope and stop_ptime: this can be interpreted with the fact that a
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steep path in which we have to slow down or stop, if necessary, implies more frequent
use of the brakes or, conversely, in order to ride up a steep path, to use the accelerator
pedal. fuel_per_km is caused by variables avg_slope, since a steeper path causes a
greater consumption; stop_ptime, since the fuel consumption of a stopped vehicle
and the engine still on is higher; brake_usage, since more frequent use of the brakes is
related to a greater stop_ptime; mass, since a heavier vehicle (full of passengers) requires
greater fuel consumption; and aircond_ptime, since air-conditioning is expensive in
terms of fuel. Moreover, we have that aircond_ptime is caused by mass; this can be
explained by the fact that a higher mass implies a greater number of persons, which
increases the temperature within the vehicle and requires the use of air-conditioning.

- Common Links with Discordant Direction (CLDD)
We have three variable pairs on which the three networks agree on the link presence
but are discordant on the direction. We discuss the relationship for each of the three
related variable pairs.
For accel and brake_usage, we think that more frequent use of the brakes implies
subsequent use of the accelerator: according to this, brake_usage causes accel, as stated
by HC and RM. BF states the opposite, and it seems reasonable that the use of the
accelerator may lead to successive use of the brakes for decreasing the speed. We
cannot infer the actual direction of the causal relationship between the two variables
without auxiliary information concerning the traffic condition and driving behavior.
Unfortunately, the data set does not contain these features. We only have a proxy of
these conditions from stop_ptime and brake_usage.
For accel and fuel_per_km, we retain that more frequent use of the accelerator causes a
higher consumption, so accel causes fuel_per_km, as stated by HC and BF (while RM
states the opposite).
For mass and brake_usage, we retain that a higher mass of the vehicle implies a higher
probability that someone on the bus requires leaving the vehicle, which follows the
requirement that the bus driver needs to brake and to: so mass causes brake_usage, as
stated by HC and RM (while BF states the opposite).

- Uncommon Links (UL)
We have four links for which the three networks do not agree, both on presence and direc-
tion.
For the variable pair mass and accel, we think that a heavier vehicle requires more
frequent use of the accelerator to reach its destination, so mass causes accel, as stated
by HC, while BF states the opposite and RM does not find a relationship.
The causal relationship between mass and stop_ptime is found only by HC. It appears
reasonable and in agreement with the fact that mass causes brake_usage.
The causal relationship between slope and mass is found only by BF. This link is more
difficult to interpret; maybe the dependence between slope and mass may be explained
by the fact that a low value of slope may be a proxy for identifying a crowded region
of the town, where more people get on the bus and therefore the mass increases.

From our considerations, we observe that the links found by the networks can be
explained with arguments concerning the domain of public transportation. Moreover, we
notice that, for links with a discordant network direction (CLDD), a feedback link over
a variable pair may exist though it is not contemplated by the DAG structure found by
the Bayes network algorithms. That is, given a variable pair and a network construction
algorithm, we find a directed causal relationship that may not be the only one in the
considered domain. For example, we are uncertain on the causal direction for the pair
(brake_usage and accel). Indeed, excessive acceleration may lead to the use of the brakes and
the use of brakes ensures the later use of the accelerator during the same bus path. Therefore,
the true relationship between this pair may be a feedback link (a cycle). Unfortunately, we
know that the network construction algorithm excludes the formation of loops and it will
never be found.
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Table 2. Link collection found by the three Bayes networks: hill climbing (HC), restrictive maxi-
mization (RM), and brute force (BF). The collection is grouped as common links (CL), common links
with discordant direction (CLDD), and uncommon Links (UL). For CLDD and UL, we specify the
networks for which the links are present.

CL CLDD UL

1 avg_slope→ brake_usage accel→ brake_usage (BF) mass→ accel (HC)
2 stop_ptime→ brake_usage brake_usage→ accel (HC, RM) mass→ stop (HC)
3 avg_slope→ accel brake_usage→mass (BF) accel→mass (BF)
4 stop_ptime→ accel mass→ brake_usage (HC, RM) slope→mass (BF)
5 avg_slope→ fuel_per_km fuel_per_km→ accel (RM)
6 stop_ptime→ fuel_per_km accel→ fuel_per_km (HC, BF)
7 brake_usage→ fuel_per_km
8 mass→ fuel_per_km
9 aircond_ptime→ fuel_per_km
10 mass→ aircond_ptime

These observations highlight the difficulty of Bayes networks in determining the
causal direction between variables, which may be chosen after network construction with
the aid of the expert knowledge.

Concerning fuel consumption, we observe that all of the networks agree on the causal
relationship of the variables (brake_usage, avg_slope, air_cond_ptime, stop_ptime, and mass)
over fuel_per_km while the reasonable relationship of accel causing fuel_per_km is found by
HC and BF. RM states the opposite relationship, which we consider inexact.

In Figure 2, we show the details of the BN that might have been extracted if the
presence of a latent variable on the typology of the location (e.g., downtown) were not
left as a latent information but were explicit. As a consequence of the presence of an
unobserved variable, which is a common cause of other variables (mass and avg_slope), we
observe the situation on the right, with a possible mutual link between the effects that are
not easily explained alone. This common situation is recognized also in the literature [36],
and the BN are deemed as equivalent from the viewpoint of the algorithms (but not by the
experts).

Figure 2. Detail of the uncertainty in Bayesian networks due to the presence of a latent variable.

3.1.2. Feature Selection and Target Prediction with Bayesian Networks

The Bayesian networks can be applied to perform feature selection for a given su-
pervised prediction task; we considered multivariate linear regression of a given fea-
ture node xv, where we say xv is the target. Given the feature set X = {x1, x2, . . . , xN},
we define X−v = X \ {xv} and inquire which features of X−v should be selected to
perform a regression on target xv. Given a Bayes network B, we introduce the feature
set P (B)

v as the set of parent nodes of xv with respect to B (as an example, from Fig-
ure 3, we have for the Brute Force network (BF) that the parent set of brake node is
P (BF)

brake = {accel, stop_ptime, avg_slope}).
We performed feature selection by choosing the features of parent set P (B)

v for the
regression of target xv. We notice that this feature selection is feasible only when P (B)

v 6= ∅.



Sensors 2021, 21, 4733 13 of 27

For example, we observe from Figure 3 that avg_slope does not admit a non-null parent set
for any of the discovered Bayes networks.

Figure 3. Bayes networks discovered by the algorithms (RM, HC, and BF) over the feature set accel
(Accel), avg_slope (Slope), air_cond_ptime (Air), brake_usage (Brake), mass (Mass), fuel_per_km (Fuel),
and stop_ptime (Stop). The set is described in Section 2.2. The green continuous arrows are common
links (CL) between the networks, the yellow dashed arrows are common links with discordant
directions (CLDD), and the red dotted arrows are uncommon links (UL), as presented in Table 2.

We evaluated the performance of the target prediction using the regression model
constructed with the parent feature selection. In the evaluation of the performance, we
applied the 10-fold cross-validation score on the root mean squared error (rmse) of the
regression. We then compared the 10-fold averaged rmse with the mean and standard
deviation of the target feature, which can be obtained from Table 1. We report the rmse
performance for each feature and for each parent set identified by our Bayes network
collection in Table 3.

Table 3. Ten-fold cross validation (CV)-averaged rmse score for each regression of target (column) on possible parent sets
identified by a Bayes network collection: {brute force (BF), hill climbing (HC), or restrictive maximization (RM)}. The first
three rows list the possible parent set and ordered CV scores together with the Bayes networks that generate the given
parent set. Detailed information on the parent set can be retrieved from Figure 3. The last two rows display the target mean
and standard deviation.

Accel fuel_per_km brake_usage stop_ptime aircond_ptime Mass

CV1 0.18 (RM) 0.13 (HC, BF) 0.07 (BF) 0.15 (HC) 0.13 (HC, BF, RM) 1.6 (BF)
CV2 0.18 (HC) 0.14 (RM) 0.08 (HC, RM)
CV3 0.21 (BF)
std 0.21 0.20 0.09 0.15 0.18 1.6
mean 0.37 0.58 0.20 0.19 0.04 21.2

We observe that, for each target feature, the CV scores tend to be of the same order
of magnitude with respect to the target standard deviation and are generally smaller.
Therefore, we can state that the target regression with respect to the parent set tends to
provide reasonably low discrepancy errors. When it is possible, we can employ multiple
CV scores in order to compare the Bayes networks in order to assess their ability to perform
feature selection by identifying different parent sets. To take an example, if we consider
target fuel_per_km, the networks HC and BF have better performances with respect to RM
in terms of parent feature selection for regression. In fact, HC and BF identify a parent set
made by all of the features X−fuel_per_km while the RM parent set does not include the accel
feature.

In order to perform a more comprehensive study on feature selection, we compared
parent set selection with the variance inflation factor (VIF) technique. VIF is a feature-
selection technique [37] that has the goal of reducing multicollinearity in a multivariate
data set given the feature set S = (s1, s2, . . . , sd).

We compute the variance inflation factors collection S (VIF ) = (V1, V2, . . . , Vd). We
evaluate for each feature sl the quantity R2

−l , that is the R-squared of regression of feature sl
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with respect to S−l and the corresponding variance inflation factor Vl = 1/(1− R2
−l). We

remove the feature sm with the highest inflation factor if Vm > 5. (For high Vm we have that
feature sm has high collinearity with respect to the other features and has a scarce impact
in the regression). We then repeat iteratively the same procedure by recomputing the VIF
and removing one feature at each step of the iteration until we reach Vm < 5. We apply
VIF on X−v for feature target xv but we are not able to perform feature removal since the
VIF feature values are of order 10−2 or less, suggesting that our data set does not exhibit
multicollinearity. Therefore we can reasonably use the Bayes networks as an alternative
valid instrument to perform feature parent selection.

3.1.3. Intervention Analysis

One interesting feature of Bayesian networks is the possibility to estimate the impact
of the intervention on variables using just observational data. This is an advantage because
we do not need to perform costly and, in some cases, impossible experiments. We say we
perform an intervention on a variable when we treat it as fixed for the whole data set.
The goal of this task is to estimate the impact on the target of the action of control and to
change the values on one of its causes. This is an original and valuable contribution of
our work since this intervention aims to reduce fuel consumption and provides actionable
knowledge as a result of sensor data analysis.

To estimate the impact of intervention without using the experimental data, we follow
the approach provided in [22,38]. For a Gaussian BN, the causal effect of X on Y is
determined as follows:

• We determine the set of parents of X in the BN graph (we denote it as Pa(X)); it is the
set of variables directly connected to X in the graph.

• We perform a linear regression of Y on X and Pa(X); it computes the target as a
function of the other variables on which it depends; and

• The coefficient of X provides us with the causal effect of X on Y: each coefficient
quantifies the amount of impact of each cause to the target.

Assuming the BN structure obtained using the brute force algorithm to be true and re-
stricting our attention to fuel_per_km as the target variable, we obtain the variables that have
an effect on the target. They are {slope,mass,air_cond_ptime,stop_ptime,brake_usage,
and accel}. Table 4 shows them together with the other variables (the adjustment set). In the
determination of the contribution of each single cause to the effect, we need to maintain the
values of the adjustment set in order to block-out their causal effect on the target and concen-
trate only on a single cause (adjustment criterion) [39]. All of these variables are included as
inputs in the regression for the determination of the target; later, we consider the variation in
the target as a function only of a single causal variable for the quantification of its impact on
the target.

Table 4. Causal effects of variables on target variable fuel_per_km.

Variable Adjustment Set Causal Effect

slope { } 6.635
mass {slope,brake_usage,accel} 0.012
air_cond_ptime {mass} 0.107
stop_ptime { } 0.445
brake_usage {slope,stop_ptime,accel} 0.206
accel {slope,stop_ptime} 0.189

Table 4 summarizes all of the possible impacts that the variables have on the target
fuel_per_km. This is exactly the added value of Bayesian networks compared to the usual
analytical studies based on prediction models: we can forget about the impact on the target
of the remaining variables that are not directly connected to the target because they cannot
have a direct impact on it. The (causal) variables of the target are directly connected to it
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and are exactly those ones that can have an effect on it. This effect is precisely quantified
by the amount called “causal effect”: it measures the increase in the target for any unit of
increase in the corresponding causal variable.

Using the values in Table 4, we can consider the following about the driving styles
that are suitable to reduce fuel consumption:

• If we decrease of one unit air_cond_ptime, we can expect a decrease of 0.107 units in
fuel_per_km;

• If we decrease of one unit brake_usage, we can expect a decrease of 0.206 units in
fuel_per_km; and

• We can obtain similar considerations about mass, obtaining a decrease in fuel_per_km
of 0.012 for each decrease in a ton of mass.

We observe that the causal effect for avg_slope is relatively high with respect to the
other variables. This can be explained by the fact that, for the considered angle interval
(0◦, 10◦), the corresponding slope, that is the tangent of the angle, ranges in the interval
(0, 0.18). Then, the corresponding slope variations are of the order 10−1 − 10−2. Therefore,
since the maximum slope variation is 0.18, that is, very small with respect to the unit
value, we have that the corresponding maximum fuel_per_km variation is comparable to
6.635× 0.18 = 1.19 L/km. This latter variation is compliant with the domain knowledge.
Although the mass and avg_slope variables are not under the control of the driver, this
information can still be useful. A decision-maker can use it, for example, to choose
whether it is convenient to choose a path that is longer but with a lower slope. Additional
considerations on this type of intervention follow.

Case Study: Intervention on Slope

From the intervention analysis results, we introduce a simple case study in which
we compare two paths that reach the same destination but have a different configuration.
The first path has a higher slope and a lower length, while the alternative path has a
decrease in slope and therefore a higher length. By the intervention on avg_slope, we
want to study how the fuel consumption varies and if we have a fuel saving under some
configuration of the parameters intervals.

Proof. Path pi has length li and angle αi; we introduce the slope of the path as the tangent
of its angle: si = tanαi.

We formulated the fuel consumption of path pi as Fi = li fi, where fi is the fuel_per_km
consumption related to path pi. According to the causal effect information from Table 4,
we assume that fi increases linearly with the slope si = tanαi. That is, from a positive slope
variation ∆si = ∆tanαi, we have a positive ∆ fi = r∆(tanαi) with r = 6.635. We refer to
paths (1) and (2) of Figure 4, respectively, as p1 and p2. We observed that p1 and p2 are two
possible paths for reaching the same destination (from Figure 4, we observe that path (2) is
equivalent to path (1.a), which reaches the same destination H1 of path (1); model (2) has a
straight path to facilitate the computation of the fuel savings). We can model fuel savings
asR(α1, α2) = F1 − F2 between path (1) and path (2). From this formulation, we ask which
values of (α1,α2), with α2 < α1, have a positive savingR(α1, α2) > 0. Knowing that f1 > f2,
since path (1) has a greater slope than path (2), we have that f1 = f2 + r(tanα1 − tanα2).
Therefore, we have the following:

R(α1, α2) = f1l1 − f2l2
0
= f1l1 − [ f1 − r(tanα1 − tanα2)]l2
1
= l2r(tanα1 − tanα2)− f1(l2 − l1)
2
= rh(tanα1 − tanα2)/sinα2 − f1h(1/sinα2 − 1/sinα1)

(4)
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Passage 2 of Equation (4) is found according to li = h/sinαi. We computed fuel saving
R(α1, α2) by setting the following parameters:

- α1 = 5◦: the angle for initial path p1, which approximately has a 10% inclination,
denotes a very steep path (5◦ is standardized as the maximum slope allowed for
roads).

- h = 0.01 km: a height of 10 m is reached by paths p1 and p2. We have that, for angle
α1, the path p1 has a length of about 100 m.

- f1 ∈ [0.2, 0.5, 0.8] L/km: fuel_per_km consumption values for path p1: we select them
according to Table 1.

- α2 < α1: we investigate fuel saving for paths with a lower inclination and consequently
a higher length.

Figure 4. Two paths for reaching the height z = h: path (1) has a length l1 and an angle α1; path (1.a)
reaches the same destination as (1) by keeping a lower constant slope with a longer length. Path
(2) is used in the proof and is equivalent to path (1.a) in the angle α2 and length l2. The paths are
compared in terms of fuel savings under different configurations, as shown in Figure 5.

From Figure 5, we observe that we have a positive fuel saving for f1 = 0.2 L/km
and f1 = 0.5 L/km, while for f1 = 0.8 L/km, we waste fuel. By remembering that path
p2 has a lower angle α2 but a greater length, from the result, we see that, for greater
values of f1, we do not save fuel because the length of the path has a higher impact on
the consumption. In contrast, for lower values of f1 (starting from a threshold that is
approximately 0.55 L/km), we have a positive saving because the decrease in slope has a
higher impact on fuel consumption.

Figure 5. Fuel consumption saving (l) vs. slope angle α2 (◦) of path (2). The saving is computed
by the difference in the consumption of path (1) (with fixed α1 = 5◦) to path (2) of Figure 4. The
curves in the colors are for different values of f1 ∈ [0.2, 0.5, 0.8] (L/km) (fuel_per_km consumption in
path p1).
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3.2. Bayes Network Validation

We compare the Bayes networks discovered with the results of the Granger experi-
ments described in Section 2.4 on a set of multivariate time series constructed from the
original data set.

Our data set is temporally confined between January and June 2019, and for each
month, we generally have five consecutive dates of measurement. We exploit the temporal
order of the data set and frame it as a multivariate time series collection. The path records
contain information concerning the bus service: DAT (date and time of measurement) and
VehicleID (identifier of the vehicle). We subset the data set into a collection of multivariate
time series {t(l); l = 1, . . . , T} according to VehicleID and the month of DAT. Each
multivariate time series t(l) := tvm corresponds to the time-ordered collection of the path
records measured for a given vehicle v on a given month m (we selected a time series
with more than 20 temporal records and obtained a collection of T = 125 multivariate
time series). By formulating the data set as a time-series collection {t(l) : l = 1, . . . , T},
we obtained a set of boolean Granger matrices {G(l) : l = 1, . . . , T}, which represents the
results of the Granger experiments.

Each Granger matrix G(l), computed from t(l) according to Equation (3), can be
interpreted as the adjacency matrix of a graph G(l). Given a Bayes network B, we compared
it with the set of Granger experiment graphs {G(l)} obtained for each time series of {t(l)}.
That is, we compare the Bayes adjacency matrix B with the set of Granger matrices {G(l)}
by considering each element of the set as a ground truth.

We define a Bayes performance metric m(B, G), and from it, we define M(B, {G(l)}) =
1
T ∑T

l=1 m(B, G(l)) as the average Bayes performance over the collection {G(l)}. We use
M(B, {G(l)}) as a mean of the comparison over our Bayes network collection.

Performance with Respect to Granger Experiments

We frame the adjacency matrices B and G as boolean vectors b and g so that each
vector’s ith entry is a boolean indicator of the presence of link i. We compared two models,
Bayes vector b and Granger vector g, which evaluate the presence for each link on a given
link collection with size L (in our case, for V = 7 variables, we have L = 42 possible links).
If we establish the Granger vector g as the ground truth of this binary classification task, we
can evaluate the binary metrics of b with respect to ground truth g: that is, the number of
links in the collection that are true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). Then, we can construct a set of Bayes performance metrics as shown in
Table 5:

Table 5. Binary metrics of Bayes vector b with respect to ground truth g (b and g are boolean
link-indicator vectors of a link collection of size L). From binary metrics, Bayes performance metrics
are evaluated: sensitivity (sens), specificity (spec), average recall (avg_recall), and accuracy (acc).

Binary Metrics Bayes Network Performance Metrics

TP = ∑L
i=1 I(bi = 1, gi = 1) sens = TP/(TP + FN)

TN = ∑L
i=1 I(bi = 0, gi = 0) spec = TN/(TN + FP)

FP = ∑L
i=1 I(bi = 1, gi = 0) avg_recall = (sens + spec)/2

FN = ∑L
i=1 I(bi = 0, gi = 1) acc = (TP + TN)/(TP + TN + FP + FN)

Sensitivity (sens) measures the ratio of true positives (TP) over the total positives
of ground truth g (TP + FN), that is the percentage of g present links that are correctly
identified by b. Specificity (spec) measures the ratio of true negatives (TN) over the total
negatives of the ground truth g (TN + FP), that is the percentage of g absent links that
are correctly identified by b. Average recall (avg_recall) measures the average between
sensitivity (sens) and specificity (spec). Accuracy (acc) measures the ratio of true positives
and true negatives (TP + TN) over the link collection size L = TP + TN + FP + FN, which
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is the percentage of links, whether absent or present for ground truth g, that are correctly
identified by b.

For each performance evaluation m(B, G(l)) related to a given time series t(l) (m :
sens, spec, avg_recall, and acc), we compute the averaged Bayes performance metrics
M(B, {G(l)}) = 1

T ∑T
l=1 m(B, G(l)) over the time series collection {t(l)} (M : SENS, SPEC,

AVG_RECALL, and ACC) for each discovered Bayes Network. We report the average
performances in Table 6, where the error is computed as the standard deviation of perfor-
mance over the Granger matrix collection {G(l)}. Figure 6 shows the distribution of these
performance metrics in the time series, for the various Bayes networks.

Table 6. Bayes average performance metrics over the Granger experiment set {G(l)}: sensitivity
(SENS), specificity (SPEC), average recall (AVG_RECALL), and accuracy (ACC) evaluated for the
Bayes networks (HC, BF, and RM). The metrics represent the level of accordance between the Bayes
causality models and the collection of results obtained by the Granger experiments. In bold the
best results.

SENS SPEC AVG_RECALL ACC

BF 0.42 ± 0.12 0.68 ± 0.06 0.55 ± 0.09 0.58 ± 0.08
HC 0.41 ± 0.09 0.68 ± 0.05 0.54 ± 0.07 0.57 ± 0.06
RM 0.36 ± 0.09 0.72 ± 0.05 0.54 ± 0.07 0.58 ± 0.07

From Table 6, we observe that the Bayes network performances are below 60% for
all metrics except for specificity. A higher sensitivity is reached by brute force (BF) which
on average identifies 42% of present links with respect to the time-series Granger graphs.
A higher specificity is reached by restricted maximization (RM), which identifies 72% of
absent links with respect to the time-series Granger graphs. The average recall, which is
the mean between sensitivity and specificity, is reasonably similar for all the networks and
is around 55%. We have the same for accuracy, which is around 58%.

From Table 6, we can state that we have a poor consistency between the discovered
Bayes networks and the Granger experiments since we have that, on average, these models
have a low percentage of commonly identified causal relationships (e.g., accuracy for all
networks is around 58%).

We can motivate these results by the following arguments:

(1) Time-series properties
The time series may not be correlated with time and may have a consistent random
component. We can verify this with Ljung–Box test [40] with total number of lags
h = 20 and significance level α = 0.05 for each feature of the time series of our
collection {t(l)}. For each feature, we report the percentage of time series for which
we confirm the independence assumption: accel, 71%; avg_slope, 54%; air_cond_ptime,
12%; brake_usage, 57%; mass, 7%; fuel_per_km, 57%; and stop_ptime, 87%. We observe
that most of the features, especially stop_ptime and accel, present a high independence
frequency over the time-series collection except for aircond_ptime and mass. This result
may suggest that our time-series framing may be the reason for the low consistency
between Granger experiments and Bayes networks.

(2) Conceptual causality difference
We may observe that Granger test searches for causality by identifying a past temporal
dependence by means of the vector auto regression model, while Bayes networks
search for a present causality between features, which are collected on the same
temporal level.
Let us take an example. We consider multivariate time-series variables (A, B) for

which the Granger test provides A
(g)⇒ B. We have that A has a predictive power

in forecasting B, but we may not be sure about the existence of a present causal
dependence between A and B, that is the type of causality identified by Bayesian
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networks. We further explore this issue in the following section by instantiating a
synthetic data set collection that reproduces these types of past and present causality.

Figure 6. Bayes network (HC, BF, and RM) performance metric histograms (specificity on the top left,
sensitivity on the top right, average recall on the bottom left, and accuracy on the bottom right) over
the resulting collection of the Granger experiments performed on the multivariate time-series data
set. The average of each performance metric for each Bayes network is reported in Table 6.

3.3. Synthetic Data Study

From the considerations of poor consistency between Bayes networks and Granger
experiments, we decided to perform a study on a collection of synthetic data sets for
which we set the causal relationship. Our synthetic data sets are publicly available at [14].
These data sets have V = 5 features and N = 10.000 records {x(i) = (x(i)0 , .., x(i)4 ) ; i =
1, . . . , N}, and the causal dependencies are illustrated in Figure 7:

Figure 7. Ground truth network (left) and corresponding ground truth adjacency matrix (right). We
generated a collection of synthetic data sets from the ground-truth and compared the causal inference
methods of Bayes networks and Granger causality over it.

3.3.1. Synthetic Data Set Collection

We explored two types of causality: present causality, which is related to Bayes net-
works, and past causality, which is related to Granger causality. We explain these causalities
by illustrating the corresponding data-generating processes:
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- LLC: Lag linear combination

LLC is related to past causality; we have that x(t)d , the d feature value at time step t, is
computed as a linear combination of past lag values of all features plus an error term.
In our case, let p be the maximum lag value; then, we have the following:

x(t)d =
5

∑
d′=1

p

∑
l=1

a(t−l)
dd′ · x

(t−l)
d′ + εd

A multivariate formulation of the data generating process is as follows:

x(t) =
p

∑
l=1

A(l)x(t−l) + ε (5)

The coefficient matrix A(l) = {a(t−l)
dd′ } contains the linear-combination coefficients

for computing x(t)d from lag l feature values in each d row. The error vector ε has
components distributed according to εd ∼ N (0, s).
This data-generating process is in agreement with the past-causality concept and agrees
with the assumptions of the vector auto regression model. Therefore, we expect highly
consistent results between the ground truth and the Granger experiments.

- GCD: Gaussian conditional distribution
GCD is related to present causality; we extracted x(t) from a multivariate joint Gaussian
distribution x(t) ∼ p(x) that can be factorized in accordance with the ground truth
graph as follows:

p(x) =
N

∏
v=1

p
(

xv
∣∣ xpa(v)

)
(6)

For feature node xv, we have that xpa(v) is its parent set.
This data-generating process is in agreement with the present causality concept since
we have no dependence on past feature values as occurs in LLC; we have conditional
dependencies between the feature-present values, as stated by p(x). Moreover, it is
in agreement with the assumption of the algorithms for Bayes network construction
(hill climbing, restrictive maximization, and brute force) for which we expect a better
consistency with the ground truth.

- HYB: Hybrid data set generation

Take two data sets generated in accordance with GCD and LLC: {x(i)
(GCD)

} and {x(i)
(LLC)}.

We constructed an Hybrid data set modulated by parameter α ∈ [0, 1]:

{x(i)
(GCD_LLC_α)

} := {αx(i)
(GCD)

+ (1− α)x(i)
(LLC)} (7)

By modulating the parameter α, we varied the weight of both present and past causality
accomplished, respectively, by GCD and LLC. For low values of α, we expected a
better ground truth consistency with Granger experiments, since the LLC component
is more relevant. In contrast, for increasing values of α, we expect a better ground
truth consistency with the Bayes network algorithms.

3.3.2. Construction Parameters

We constructed five data sets in the following order:

(1) {x(i)
(LLC)}

For LLC generation, we used Equation (5) with only one lag value l = 1. The error
vector components from Equation (5) were distributed according toN (0, 1). Moreover,
from Table 7 and Equation (5), we observe that X0 is a root feature of the data set since
it has no variable on which it depends. We generated X0 signal as 5sin(x/10) with
the addition of noise ε0 ∼ N (0, 1).
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(2) {x(i)
(GCD)

}
For GCD generation, we extracted the mean vector x̄(LLC) and covariance matrix ΣLLC

from {x(i)
(LLC)}. In this way, we have that the statistics of GCD and LLC data sets are

comparable. From the ground truth shown in Table 7, we extracted the topological
order of our feature set, which is (X0, X1, X2, X3, X4). We iteratively generated each
feature according to the topological order. The factors of probability distribution of
Equation (6), given inital condition xpa(v) = z, are expressed as p

(
xv
∣∣ xpa(v) = z

)
∼

N (µ̃v, σ̃v)

µ̃v = µv + sT
1,pa(v)Σ

−1
pa(v),pa(v)(z− µpa(v))

σ̃2
v = σ2

v − sT
1,pa(v)Σ

−1
pa(v),pa(v)s1,pa(v)

From x̄(LLC) and ΣLLC, we extracted the following quantities: µpa(v) and Σpa(v),pa(v)

are, respectively, the mean vector and covariance matrix of xpa(v); µv and σ2
v are,

respectively, the mean and variance of xv; and s1,pa(v) is the covariance vector between
xv and xpa(v).

(3) {x(i)
(GCD_LLC_α)

}; (α = 0.2, 0.5, 0.8)

We then constructed three Hybrid data sets from {x(i)
(GCD)

} and {x(i)
(LLC)} by choosing

α values 0.2 , 0.5, and 0.8.

Table 7. First lag matrix for LLC synthetic data set generation from Equation (5): row Xm contains

the linear combination coefficients of the first lag values (x(t−1)
0 , . . . , x(t−1)

4 ) for generating the m
component of vector x(t).

X0 X1 X2 X3 X4

X0 0 0 0 0 0
X1 1.2 0 0 0 0
X2 −1.05 0 0 0 0
X3 2.3 −1.15 0 0 0
X4 0 0 0 0.71 0

We display an initial portion of each synthetic data set in Figure 8. We observe that
LLC features tend to have an oscillating trend since we set X0 as a sinusoidal function;
GCD features are distributed in the same range of LLC, but given its data-generation
process, the features do not have a correlation with time. We observe that, for GCD_LLC_α,
initially, the data set displays the oscillating trend of LLC, but as α increases, it tends to be
more similar to GCD.



Sensors 2021, 21, 4733 22 of 27

Figure 8. Illustrative multivariate time-series plot for each element of the synthetic data set collection.
Lag linear combination (LLC) on the top left, Gaussian conditional distribution (GCD) on the top
right, and hybrid (GCD_LLC_α) on the bottom for α values 0.2, 0.5, and 0.8 from left to right. We
compared the Bayes network algorithms and Granger causality methods over this collection.

3.3.3. Results on Synthetic Data

For each synthetic data set, we evaluated the performance of the Granger causality
and of Bayes networks with respect to the ground truth of Figure 7. The performance
metrics are evaluated in the same way as in Table 5 with the only difference being that the
ground truth is known.

We computed the Granger graph for each synthetic data set according to Equation (3)
and denoted it as GC. From Section 2.4, we observe that, if we obtain a lag-value equal to 0
by fitting the VAR model with the AIC criteria, we cannot perform the Granger test (since
we cannot compare auto-regressive models with 0 lags). This is the case for the GCD data
set. We can observe this from Table 8, where the performance for GC is missing.

We note that, for each data set, the brute force algorithm returns a collection of nBF
networks that we index as BFi; i = [1, . . . , nBF]. This is due to the fact that brute force
searches for the network with the optimal BIC score. This score can generally be obtained by
more than one network. Moreover, we observe that, in most of the data sets, the discovered
Bayes networks may be equal to each other. In order to avoid redundancy, we denote equal
networks under the same unique name. Under this name, it groups the list of algorithms
generating equal networks.

We present the collection of discovered Bayes networks for each data set:

- LLC: BF1, BF2, BF3 = HC = RM (3 networks)
- GCD: BF1, BF2 = HC = RM (2 networks)
- GCD_LLC_0.2: BF1, BF2, HC = RM (2 networks)
- GCD_LLC_0.5: BF1, BF2 = HC = RM (2 networks)
- GCD_LLC_0.8: BF1, BF2, BF3 = HC, RM (4 networks)

We note that the brute force algorithm finds two or three networks: generally, one
of the BFi networks is equal to the networks obtained from HC and/or RM (except for
data set GCD_LLC_0.2). The HC and RM networks are always equal except for data set
GCD_LLC_0.8, where they differ for the presence of a link X2 → X4.

In Table 8, we can observe the Bayes network performances over data sets GCD and
LLC. For LLC, we note that Granger causality reaches better performances with respect to
the Bayes networks. This result is consistent since the data-generating process of LLC is in
agreement with the VAR model under which the Granger tests are performed.

For GCD, we have an incomplete comparison since GC cannot be performed because
the lag value obtained by fitting the VAR model on the GCD data set with the AIC criteria
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is 0. In these conditions, the Granger test cannot be performed on a VAR model with zero
lag. We note that the networks (BF2=HC=RM) perfectly discover the ground truth graph
from Figure 7. This result is consistent with the data-generating process of GCD, which is
in agreement with the assumptions upon which the Bayes network algorithms rely.

Table 8. Granger causality (GC) and Bayes networks (brute force networks (BFi) and hill climbing
(HC)) performances with respect to the synthetic (Table 7) data sets LLC and GCD.

LLC GCD

BF1 BF2 BF3 = HC = RM GC BF1 BF2 = HC = RM

SENS 0.40 0.60 0.80 1.00 0.60 1.0
SPEC 0.75 0.80 0.85 0.90 0.90 1.0
ACC 0.68 0.76 0.84 0.92 0.84 1.0
AVG_RECALL 0.57 0.70 0.82 0.95 0.75 1.0

From Table 9 , we can observe the performance of Bayes networks and Granger causal-
ity GC over the hybrid data sets GCD_LLC_α modulated by parameter α ∈ [0.2, 0.5, 0.8].
We can also note from Figure 7 that, as α increases, the contribution of GCD increases while
that of LLC diminishes.

In fact, we can see that, for α = 0.8, where the impact of GCD is higher, the Bayes
networks (BF3 = HC and RM) obtain excellent performances in identifying the ground
truth. In contrast, we note a better Granger causality (GC) performance for α = 0.2, where
the impact of LLC is greater.

Table 9. Granger causality (GC) and Bayes networks (brute force networks (BFi) and hill climbing (HC)) performances with
respect to the synthetic ground truth (Table 7) for data sets GCD_LLC_α for α = (0.2, 0.5, 0.8).

α = 0.2 α = 0.5 α = 0.8

BF1 BF2 HC = RM GC BF1 BF2 = HC = RM GC BF1 BF2 BF3 = HC RM GC

SENS 0.60 0.60 0.80 1.00 0.80 0.80 1.00 0.80 0.60 1.00 1.0 0.80
SPEC 0.80 0.80 0.85 0.90 0.85 0.85 0.50 0.90 0.85 0.95 1.0 0.75
ACC 0.76 0.76 0.84 0.92 0.84 0.84 0.60 0.88 0.80 0.96 1.0 0.76
AVG_RECALL 0.70 0.70 0.82 0.95 0.82 0.82 0.75 0.85 0.72 0.98 1.0 0.78

Bayes Network Validation with Granger Causality

A comparison with the ground truth is feasible since we know the data-generating
process. This is not the case for the real data set. In fact, in Section 3.2, we compared the
Bayes networks with the collection of Granger graphs {G(l)} obtained from the Granger
tests over the multivariate time-series collection {t(l)}. According to this previous method,
we performed a Bayes network comparison for each synthetic data set with respect to the
Granger graph constructed for each data set of our synthetic collection. We note that this
comparison can be performed on all data sets of the synthetic collection except for GCD.

We present the Bayes network performances by identifying the Granger graph ground
truth for each synthetic data set in Table 10. First, we note that the Bayes network perfor-
mances are generally lower with respect to those in Tables 8 and 9. This may also be due to
the fact that we do not validate the networks with the real ground truth of Table 7 but with
the Granger causality experiments, which may not properly reflect the effective ground
truth. By focusing on the average recall AVG_RECALL, we do not have a noticeable positive
performance variation between the data sets, except for networks (HC = RM) for which we
have 0.9 average recall on a hybrid data set with α = 0.2.
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Table 10. Bayes network (brute force networks (BFi) and hill climbing (HC)) performances with respect to Granger graph
ground truth computed rfor each synthetic data set: LLC and GCD_LLC_α for α = (0.2, 0.5, 0.8)

LLC α = 0.2 α = 0.5 α = 0.8

BF1 BF2 BF3 = HC = RM BF1 BF2 HC = RM BF1 BF2 = HC = RM BF1 BF2 BF3 = HC RM

SENS 0.43 0.43 0.57 0.43 0.57 0.86 0.40 0.47 0.44 0.33 0.44 0.44
SPEC 0.78 0.78 0.83 0.78 0.83 0.94 0.90 1.00 0.88 0.81 0.88 0.94
ACC 0.68 0.68 0.76 0.68 0.76 0.92 0.60 0.68 0.72 0.64 0.72 0.76
AVG_RECALL 0.60 0.60 0.70 0.60 0.70 0.90 0.65 0.73 0.66 0.57 0.66 0.69

Identification of Ground Truth Links

In order to make a more detailed study of the Bayes and Granger experiments over
the synthetic data set, we perform a grouping of the results for each ground truth link from
Figure 7 and for each link state in the resulting network. The link state in the result graph
can be Present (present link with correct direction), Inverse (present link but with inverse
direction), or Absent (absent link), as we can observe from Table 11.

Table 11. Grouping of causality graphs obtained from the Bayes networks and Granger experiments (GC) for each synthetic
data set. We compared the graph links with the ground truth links (columns) in Figure 7. The link can be Present (present
link in the graph and ground truth), Inverse (present link with an inverse direction), Absent (absent link in the graph and
present in ground truth).

Ground Truth Links

Data Set X0→ X1 X0→X2 X0→X3 X1→X3 X3→X4

Present Link

LLC BF3 = HC = RM; GC BF2; BF3 = HC = RM; GC BF1; BF2; BF3 = HC = RM; GC BF1; BF2; BF3 = HC = RM; GC GC
GCD BF2 = HC = RM BF1; BF2 = HC = RM BF2 = HC = RM BF1; BF2 = HC = RM BF1; BF2 = HC = RM
GCD_LLC0.2 BF1; BF2; HC = RM; GC BF1; BF2; HC = RM; GC BF1; BF2; HC = RM; GC HC = RM; GC GC
GCD_LLC0.5 BF1; BF2 = HC = RM; GC BF1; BF2 = HC = RM; GC BF1; BF2 = HC = RM; GC BF1; BF2 = HC = RM; GC GC
GCD_LLC0.8 BF1; BF3 = HC; RM; GC BF2; BF3 = HC; RM; GC BF1; BF3 = HC; RM; GC BF1; BF2; BF3 = HC; RM; GC BF1; BF2; BF3 = HC; RM

Inverse Link

LLC BF1; BF2 BF1
GCD BF1 BF1
GCD_LLC0.2 BF1; BF2
GCD_LLC0.5 GC BF1; BF2 = HC = RM; GC
GCD_LLC0.8 BF2; GC BF1; GC BF2

Absent Link

LLC BF1; BF2; BF3 = HC = RM
GCD
GCD_LLC0.2 BF1; BF2; HC = RM
GCD_LLC0.5
GCD_LLC0.8 GC

From Table 11, we observe that, for each ground truth link, most of the resulting
graphs identify the links. This is also confirmed by the satisfactory performances of
Tables 8 and 9. We have that some resulting graphs identify the link but with inverse
directions, especially some of the brute force networks and, less frequently, the Granger
causality and the HC and RM networks. Finally, we have that the only ground truth link
found to be absent by some resulting graphs is X3→ X4.

Concerning the false-positive links: they are links identified by the resulting graphs
but not present in the ground truth. We have that, for LLC, all BF nets find the link X1→ X4
while GC finds X4→ X1. For GCD, no false-positive links are found. This means that the
Bayes networks are very precise in determining the ground truth, mainly because GCD
is the data-generating process for which they are more in agreement. For GCD_LLC_0.2,
GC finds X0 → X4 and X1 → X4. For GCD_LLC_0.5, all Bayes networks find the links
X1→ X2 (except for BF1, which finds X2→ X1) and X0→ X4. For GCD_LLC_0.8, all of
the resulting graphs find the links X2→ X4 (except for RM). GC also finds X2→ X3. We
can say that this apparent causal relationship may be found because we can find a path in
the ground truth graph in Figure 7 that connects the cause and the effect variables. As an
example, we observe that the link X0→ X4 does not exist but the that two variables have
a path joining them through X1 and X3.
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4. Conclusions

This work presents different contributions with the purpose of analyzing the condi-
tions at which fuel consumption occurs in vehicles and of understanding how to reduce it
by intervening in the scenario. We provided a collection of data from sensors installed on
buses used as public transport. Thanks to the sensor data analysis, we discovered that, in
some contextual conditions (with a fuel consumption per kilometer that does not exceed
the value of 0.75 L per kilometer), it is preferable to choose a longer but less steep path than
a shorter one. As a consequence of the analysis of cause–effect relationships between the
variables and the target, we precisely quantified the impact of all causes on the target: with
a decrease of one unit of air_cond_ptime (percentage of travel time with air conditioning),
we can can expect a decrease of 0.107 units in fuel_per_km; with a decrease of one unit
of the percentage of time with brake_usage, we can expect a decrease of 0.206 units in
fuel_per_km; and with a decrease of a unit in stop_ptime (stop percentage time with
engine on), we can expect a decrease of 0.445 units in fuel_per_km. In the literature [6],
the important effect of this variable was confirmed.

We tested both approximate algorithms, driven by the BIC score and brute force with
the purpose of comparing the ability of the algorithms to converge to the same resulting
networks. We evaluated their results with the adoption of Granger causality, a third-party
criterion, based on the time series formed in time by the observed variables. This is an
original contribution to the scientific community of Bayesian networks that are usually
scored by BIC or K2. According to the Granger causality, we are also able to rank the
alternatives, even in the case where multiple BNs share the same score. We compared BNs
also by using their ability to perform feature selection and to predict the target variable.

We also provided a synthetic data set that we created with a known ground truth of
which the purpose is to test the algorithms of synthesis of BN from data and to verify their
convergence toward the ground truth. We discussed the comparison results. The networks
sometimes agree, and other times, they do not. This mismatch perhaps is due to the
multiple maxima that sometimes exist in the large search space of the solutions: this occurs
especially in the synthetic data in which the ground truth is known and in which the data
determine similar links between cause and effect, but in opposite directions. The observed
mismatches on the edges might also be a consequence of the heuristics. Heuristics are
indeed used to eliminate multiple rankings of the alternatives, in choosing edge directions
(choice of the cause and the effect that often requires the experts’ advises), and for avoiding
cycles in the BN graphs.

In summary, the contributions of our work are as follows:

1. Bayesian networks were applied for the analysis of fuel consumption. Past studies on
fuel consumption in vehicles (reported in Section 1) applied only machine learning
predictive models (based on SVR, ANN, random forest, or gradient boosting). All of
them have the sole goal of predicting the target value. None provide machine learning
models that are able to also perform the following: (a) describing and discovering the
cause–effect relationships between variables and the target (Section 3) and
(b) performing an intervention analysis on the causes, with the goal of achieving a
desired impact on the target and quantifying this impact (Section 3.1.3).
Bayesian networks are powerful and we used them to reach multiple goals: per-
form feature selection (Section 3.1.2) whose outcomes we compared with another
standard method (VIF [37]); perform predictive modeling (target estimation, whose
results are shown in Table 3), scenario simulation (Section 3.3.1), intervention analysis
(Section 3.1.3) and counterfactual analysis (what-if analysis).

2. Comparing the results of approximate algorithms (heuristic-driven) for Bayesian
networks with a brute force algorithm, an original one, implemented for this work
(Algorithm 1) was made possible thanks to the availability of high-performance
computing technology that permits us to afford an extremely high computational
load of traversing the huge search space of the possible networks by partitioning
it and spreading evaluations of the alternative graphs throughout many servers.
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The outcome of this comparison (Section 3.2) can help analysts with the uncertainty
of which Bayesian network to use.

3. The use of the Granger causality concept was introduced and formalized for an
evaluation of Bayesian networks (Section 2.4). Granger causality was used as an
independent, third party notion to compare, evaluate, and rank the different Bayesian
networks, generated from the same data by different algorithms.

4. Bayesian network discovery is customarily used to test the domain knowledge, previ-
ously distilled under the form of an already available graph [22,23,36,41]. Differently,
in this paper, we did not start from an already available graph but directly started
from the collected (sensor) data and provided experts with assumptions about this
knowledge (cause–effect relationships) under the form of a Bayesian network.

5. Last but not least, we provided two public data sets to the scientific community [14]
with real data from buses and a synthetic data set with ground truths, useful for
testing Bayesian network algorithms and time series analyses.
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