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Abstract: This paper summarizes the OpenEDS 2020 Challenge dataset, the proposed baselines, and
results obtained by the top three winners of each competition: (1) Gaze prediction Challenge, with the
goal of predicting the gaze vector 1 to 5 frames into the future based on a sequence of previous eye
images, and (2) Sparse Temporal Semantic Segmentation Challenge, with the goal of using temporal
information to propagate semantic eye labels to contiguous eye image frames. Both competitions
were based on the OpenEDS2020 dataset, a novel dataset of eye-image sequences captured at a
frame rate of 100 Hz under controlled illumination, using a virtual-reality head-mounted display
with two synchronized eye-facing cameras. The dataset, which we make publicly available for the
research community, consists of 87 subjects performing several gaze-elicited tasks, and is divided into
2 subsets, one for each competition task. The proposed baselines, based on deep learning approaches,
obtained an average angular error of 5.37 degrees for gaze prediction, and a mean intersection
over union score (mIoU) of 84.1% for semantic segmentation. The winning solutions were able
to outperform the baselines, obtaining up to 3.17 degrees for the former task and 95.2% mIoU for
the latter.

Keywords: gaze prediction; semantic segmentation; gaze estimation; video oculography; virtual reality

1. Introduction

Eye tracking has emerged as a powerful tool for several applications, including health
assessment and intervention [1,2], and human behavior and communication analysis [3,4].
Nonetheless, the fields that have recently boosted its potential are virtual reality (VR)
and augmented reality (AR). Indeed, the potential applications of AR/VR technology to
a multitude of sectors such as online education [5], healthcare [6,7], entertainment [8,9],
communication [10,11] and/or gaming industry [12,13] have created an ever-growing
demand for more realistic and immersive AR/VR experiences.

One of the core technologies that enables high-quality immersive VR/AR experiences
while keeping a low computational cost of rendering the environment is called Foveated
Rendering (FR) [14]. FR renders a high-quality picture at the point where a user is looking,
while reducing the quality of the picture in the periphery according to a function of human
visual acuity. This non-uniform image degradation substantially reduces the graphical
pipeline’s power consumption without decreasing the perceptual quality of the generated
picture. Thus, to maintain an optimal user experience, it is crucial for FR to have low-
latency, high-accuracy gaze estimates, which is also a desired feature for other eye tracking
applications such as gaze-based interaction.
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Solutions for image/video-based gaze estimation, also known as video oculography,
can be broadly classified into geometric and appearance-based systems [15]. Geometric
approaches treat the human eye as a sphere-on-sphere model [16], and find the pupil and
glint (Here we use word “glint” rather than 1st Purkinje image. Although, theoretically, the
capture of other Purkinje images is possible [17], it is an extremely unlikely occurrence in
any non-specialized video oculography system. In the setup employed in this work only 1st
Purkinje images are detected and are referred as glints.) locations in a precisely calibrated
system of cameras with infrared (IR) illumination and LEDs to infer the 3D location
of the pupil and the gaze direction. More recent geometric approaches do not require
dedicated systems and/or glints, and make use of 3D morphable models instead [18,19]
with off-the-shelf RGB cameras. On the other hand, appearance-based models are typically
based on end-to-end inference models, such as deep Convolutional Neural Networks
(CNNs) [20,21], to directly estimate the gaze direction in the frame of reference of the
camera. Presently, both geometric and appearance-based approaches usually rely on one
or more deep learning modules to tackle the large variations in eye appearances due to
anatomical differences, lighting, camera viewpoint, use of glasses and/or makeup across
the human population. Whereas current state-of-the-art appearance-based methods exploit
end-to-end deep networks to directly regress gaze from input eye/face images, geometric
methods deploy highly accurate per-pixel (also known as semantic) segmentation networks
to extract key eye regions (namely pupil, iris, sclera, and everything else, also referred to as
background) for further processing [22].

In real-world applications, the input to any gaze estimation system is temporal se-
quences of eye images in the form of a video. However, most popular approaches do not
exploit temporal information and instead estimate gaze direction for each frame separately.
Intuitively, there exists useful temporal information in videos that can be leveraged to im-
prove current gaze estimation approaches, for example, by incorporating spatio-temporal
features captured over a sequence of eye images [23]. Similarly, spatio-temporal modeling
of the eye movements can be leveraged to propagate the segmentation mask from a handful
of frames to a complete sequence for yielding large amounts of high-quality labeled data
for training segmentation networks at a fraction of the per-frame annotation cost and
time. Several works have recently started to exploit this area of research [24,25] using
datasets based on low resolution/sampling rate, remote RGB cameras (e.g., EYEDIAP [26],
EVE [27]). However, there is a lack of high-resolution, real-world datasets with images
sampled at a sufficient sampling rate to capture trajectories of such fast eye movements as
saccades and with accurate ground-truth annotations to advance research on the topic.

Motivated from the aforementioned gap in the literature, we organized the OpenEDS
2020 Challenge, the second iteration of the OpenEDS-Eye Tracking for VR and AR Chal-
lenges, to foster research on spatio-temporal methods for gaze estimation, gaze prediction,
and semantic segmentation. In particular, the challenge was divided into 2 competition
tracks: (1) Gaze Prediction, which called for designing solutions to predict future gaze di-
rections by leveraging the spatio-temporal information encoded in a sequence of recorded
eye images; and (2) Sparse Temporal Semantic Segmentation, which called for designing
solutions to propagate semantic segmentation labels for key eye regions, by leveraging
a few hand-labeled frames in a given video sequence of eye images. Both tracks were
based on a novel dataset, OpenEDS2020, a large-scale anonymized dataset of sequences of
high-resolution eye images (640 × 400 pixels) sampled at 100 Hz with semantic segmenta-
tion and gaze direction annotations, which features up to 87 subjects with a wide range
of appearance variability. The dataset was collected using a VR head-mounted display
(VR-HMD) equipped with two synchronized eye-facing IR cameras. Example images of
the dataset are shown in Figure 1.
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Figure 1. Examples of images without glasses (top row) and with glasses (bottom row), representing the variability of the
dataset in terms of accessories, ethnicity, age and gender.

In this paper, we describe the rationale behind both challenges, the methodological
baselines used, and solutions proposed by the challenge winners of both competition tracks.
In addition, we describe in detail the collection and curation process of the OpenEDS2020
dataset, which we publicly release to the research community. We believe this dataset can
be instrumental in advancing the current state of the art in gaze estimation, gaze prediction,
and semantic segmentation research, and benchmarking of existing or future algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the challenge
objectives and evaluation protocol used. Section 3 describes the OpenEDS2020 dataset.
Section 4 describes the methodological baselines used for the challenge. Section 5 summa-
rizes the solutions proposed by the top-3 winners of each competition. Finally, Section 6
concludes the paper.

2. OpenEDS 2020 Challenge: Description

The OpenEDS 2020 Challenge (https://research.fb.com/programs/openeds-2020
-challenge/, accessed on 25 June 2021) was hosted as part of the OpenEyes: Eye gaze
in AR, VR and in the Wild (https://openeyes-workshop.github.io/, accessed on 25 June
2021) workshop, organized at the European Conference on Computer Vision in 2020. The
challenge was divided into 2 competition tracks: (1) Gaze Prediction Challenge, and (2)
Sparse Segmentation Challenge. Both tracks were hosted on the Eval.ai (https://eval.ai,
accessed on 25 June 2021) platform and were active from 1 April through 31 July 2020.
To participate in either of the tracks, participants had to request access to the dataset and
register in the submission platform. Their goal was to devise solutions for either or both
challenge tracks using a defined training/validation set, apply their methods to a test set
with hidden labels, and upload their predictions to the submission platform to obtain the
performance score of the given solution. Such platform included a public leaderboard
where participants could compare the performance of their solution against other teams
and the baselines proposed by the organizers. The competition tracks and their evaluation
protocol are described below.

2.1. Gaze Prediction Challenge

The Human Visual System exhibits a variety of eye movements—fixations, saccades,
smooth pursuits, vestibulo-ocular reflex, vergence, and vestibular and optokinetic nystag-
mus [28]. Among above mentioned eye movements, saccades are the fastest with velocities
reaching up to 700 deg/s, thus transitioning the eye from one point of fixation to the next
very quickly and in a ballistic manner [28].

Various applications for eye tracking, such as FR and gaze-based interaction, benefit
from low-latency gaze estimates. Fast eye movements such as saccades present a challenge

https://research.fb.com/programs/openeds-2020-challenge/
https://research.fb.com/programs/openeds-2020-challenge/
https://openeyes-workshop.github.io/
https://eval.ai
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for FR specifically, due to the transmission and processing delays present in the eye
tracking and graphical pipelines. If such pipelines do not compensate for the delays, fast
eye movements can take the user’s gaze to image areas that are rendered with low quality,
thus degrading the user’s experience. Among the ways of remedying this issue are: a
reduction of delays, which is not always possible; predicting future gaze locations, thus
compensating for the delays; or a combination of both.

Prediction of future gaze locations can be accomplished based on previously estimated
gaze points, understanding of the content of the presented scene (i.e., visual saliency), or a
combination of both. Considering real-time requirements of FR and its goal of reducing
power consumption, the prediction of future gaze points based on a short subsequence of
the already-estimated gaze locations is considered the most fruitful path of exploration. If
predicting future gaze locations with high accuracy is feasible, it would allow an implemen-
tation of an FR method that would match closely with the human visual acuity function. As
a result, it could encode only a tiny part of the image at a high-quality resolution, providing
the highest level of energy savings.

Instead of predicting gaze locations, for which the accommodation and vergence of
the two eyes would need to be considered, the challenge focused on monocular 3D gaze
direction prediction as a first step of a gaze location prediction approach. In particular,
the challenge called for the following: (a) Predicting future gaze directions based on the
previously estimated gaze direction vectors of the previous eye images; (b) Predicting future
gaze directions by leveraging the spatio-temporal information encoded in the sequence of
previous eye images.

The task consisted in designing a model to predict the 3D gaze direction vector up
to 50 ms into the future, given a sequence of previous eye images. For a dataset recorded
at 100 Hz, 50 ms is equivalent to 5 frames. Participants of the challenge were scored on a
test set, which contained the sequence of previous eye images with hidden ground-truth
vectors, using the performance metric of Prediction Error (PE), defined as:

PE =
PEt

5
, where PEt =

∑
|S|
s d(gt,s, ĝt,s)

|S| for t ∈ [1, 5], (1)

where |S| is the number of sequences in the test set, gt,s is the ground-truth 3D gaze
direction vector at time t*10 ms after the last provided sample of the sequence s, and ĝt,s
is the corresponding gaze prediction. d(·) refers to the per-frame angular error between
estimated and ground-truth gaze vectors, such that:

d(g, ĝ) = arccos
g · ĝ

||g|| · ||ĝ|| . (2)

The 3D gaze direction vector is defined as the 3D unit (normalized) vector in the
direction of the visual axis, represented in the 3D Cartesian coordinate system. For training,
participants were provided with both eye images and ground-truth vectors, so that they
could train appearance-based gaze estimation models using the given dataset. No subject
calibration details were provided.

2.2. Sparse Temporal Semantic Segmentation Challenge

Many eye tracking solutions require accurate estimation of eye features from 2D eye
images. Typically, this is done via semantic segmentation of key eye regions. To generalize
models for per-pixel segmentation of unseen eye images from a diverse population under
different eye states (fully open, half-open, closed) and different makeup conditions, the
model training stage requires large-scale, hand-annotated training data that can be costly
and time-consuming. However, it is easy to obtain a data acquisition setup that captures
medium-to-short duration (5–25 s) video sequences of eye images and manually label a
handful of images (5%) for each sequence.

Then, the goal of the challenge was to solve label propagation with a limited number
of samples per sequence. Solving this problem allows one to have a large set of annotations
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without spending large amounts of resources on human annotation. We posit that the small
fraction of hand-annotated labels can be accurately propagated to the rest of the images in
the sequence by leveraging temporal information along with geometric and photometric
consistencies arising from the eye images of the same person. Such approaches called for
innovative algorithms to leverage the aforementioned cues. Some promising directions
were foreseen to be: (a) Temporal co-segmentation using deep learning; (b) Temporal few-
shot learning framework; (c) Learning and respecting the natural representation, including
the geometry, of human eyes for temporal label propagation; (d) Leveraging synthetic data
generation if and where appropriate.

Participants of the challenge were given sequences of eye images with a small fraction
of them annotated with semantic segmentation masks. The task was to design a model to
perform semantic segmentation on a subset of the images that did not have an annotated
mask, which we refer to as test subset. The performance metric used to evaluate the
proposed solutions was the mean Intersection over Union (mIoU, also known as Jaccard
index) over all the key regions of all the images conforming the test subset.

3. OpenEDS2020 Dataset

We believe that an eye tracking dataset designed for potential spatio-temporal meth-
ods should contain a sufficiently representative gaze angle distribution and appearance
variability to train gaze estimation or semantic segmentation models, while ensuring
variability in terms of eye movements, directions, and velocities to train prediction models.

Due to the complexity of annotating accurate gaze direction and eye movements,
there is a limited number of publicly available datasets of eye-image sequences with high
appearance diversity providing multiple annotations (see Table 1 for a summary). In this
section, we introduce the OpenEDS2020 dataset, a novel dataset of eye-image sequences
from 87 subjects captured at a frame rate of 100 Hz under controlled illumination, using a
VR-HMD. In contrast to other existing datasets, our dataset provides the highest number
of subjects, with a frame rate sufficient to capture different eye movement types (fixations,
saccades, and smooth pursuit).

Table 1. Summary of existing, publicly available eye tracking datasets containing sequences of real eye images obtained
using IR cameras. “Illum.”, illumination; “Res. WxH”, image resolution width × height; “Freq.”, sampling rate; “# Subj.”,
number of subjects; “Head mov.”, head movement allowed during recordings; “#. Seqs.”, number of sequences.

Name Camera
Viewpoint

Illum.
Type

Freq.
(Hz)

Res. W × H
(pixels) # Subj. Head

mov. # Seqs. Annotations Tasks

PoG [29]
(2012)

On-axis
(1 eye) 1 (indoors) 29.97 720 × 480 20 Y 6

per subj.

Target pixel,
3D monitor and

headset locations

Elicited
(fixations and

smooth pursuit)

LPW [30]
(2016)

On-/off-axis
(1 eye)

Continuous
(indoor/
outdoor)

95 720 × 480 22 ? 3 × 20 s
per subj.

2D pupil position,
segment. masks

(provided by [31])
Elicited

NVGaze [32]
(2019)

On-/off-axis
(2 eyes)

Constant/
varying

(indoors)
120 640 × 480 30 N 56

2D gaze direction,
pupil position,

blink labels

Elicited
(fixations)

GW [33]
(2020)

Off-axis
(2 eyes)

Continuous
(indoor/
outdoor)

120 640 × 480 19 Y 9 min.
per subj.

Eye mov. types,
3D gaze vector,

head pose

4 real-world
tasks

Multimodal
Eye

Movement
[34] (2021)

Off-axis
(1 eye)

Continuous
(indoor/
outdoor)

25 192 × 144 19 Y 30 min.
per subj.

Eye mov. types,
eye params.,

segment. masks ([35]),
optical vectors ([36])

Car ride
(real and

simulated)

Ours
(OpenEDS

2020)

On-axis
(1 eye) 1 (VR) 100 640 × 400 87 N ∼9160

3D gaze vector, target,
point of gaze,
cornea center,

segment. masks

Elicited
(fixations,
saccades,

smooth pursuit)

The dataset, which we are releasing to the broader research community, is divided
into 2 subsets, one for each competition track of the challenge. Although there is an overlap
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between the subjects included in each subset (67 out of 87 appear in both subsets), the
recordings from which the eye-image sequences are obtained are unique to each subset.
Apart from the data used in the challenge, the new public version of the dataset is en-
riched with additional per-image/per-sequence annotations. The data collection procedure,
curation process of each data subset, and annotations provided are described below.

3.1. Data Collection

The dataset was captured from 90 voluntary subjects of ages between 20 and 70 years
old with appearance variability in terms of ethnicity, gender, and age, and some of them
wearing glasses, contact lenses, and/or makeup. There was no assessment by an eye
health professional or cut-off by visual performance. These subjects were all recruited
internally, and provided written informed consent for using their eye images for research
and commercial purposes before taking part in the data collection stage. Subjects were
asked to wear a VR-HMD, mounted with two synchronized eye-facing IR cameras at a
frame rate of 100 Hz, and were recorded while gazing at specific dot patterns displayed
on a blank screen with different target movements. Each recording, lasting approximately
5 min, consisted of a set of patterns: (a) Ring-shaped patterns at ±20 degrees eliciting
smooth pursuit movements, at different depths; (b) Random point changes to induce
saccades, where the targets were moved in a ±20 degree cone from 50 cm in depth to
600 cm. The background illumination was constant throughout each recording. The dataset
was anonymized to remove any personally identifiable information on the subjects for
further processing. Original recordings were later divided into one recording per subject
and pattern used.

3.2. Gaze Prediction

This subset of data are aimed at fostering research on spatio-temporal methods for
gaze estimation and prediction for tasks involving different eye movements, such as
saccades, fixations, and smooth pursuit. Examples of different eye movements included
in the dataset are illustrated in Figure 2. Two important variables to take into account
in the design of a prediction-oriented dataset are: (1) the observable time window (i.e.,
the number of frames used to initialize a gaze prediction model); and (2) the prediction
window (i.e., the number of frames to predict). Based on the average fixation time between
150 and 300 ms [37] and saccades generally being between 20 and 200 ms [38], we provide
50 frames (500 ms) as observable window and hypothesize that it is a reasonable number
to set as the maximum number of frames that can be used to initialize a gaze prediction
model. Furthermore, based on the eye movement characteristics [39] and the frame rate of
our dataset, we propose to predict 1 to 5 frames (10 to 50 ms) into the future, which is a
useful range in AR/VR applications [40].

Figure 2. Example of saccadic (top row) and smooth pursuit (bottom row) eye movements during 100 ms.

3.2.1. Dataset Curation

Two types of patterns were selected for this data subset, due to the differences in
eye movement dynamics associated with them: (a) Ring-shaped smooth pursuit-elicited
pattern, intertwining 1s fixations at a fixed depth with 1s-long smooth pursuit movements
as smooth transitions between fixation points, with a total of 17 fixations and 16 transitions
per recording; (b) Saccade-elicited pattern, with 1s-long randomly located target fixations
at different depths and instantaneous (0.1 s) target transitions, with up to 20 fixations per
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recording. All subjects were recorded following both pattern types. The former pattern
was the same for all subjects, while the latter was always different due to its random
nature. However, note that although the ring-shaped pattern was the same, the elicited
gaze trajectories were different across subjects due the subject-dependent nature of eye
movement dynamics [41].

Frames with invalid ground-truth gaze vector, due to either subject distractions, blinks
or incorrect detections (see Section 3.2.2), were manually discarded, maintaining 80 out of
the initial 90 subjects. The remaining data were further processed by randomly selecting s
non-overlapping sequences of f contiguous frames each per recording, with a maximum
of 100 frames (1 s) per sequence. This way, each sequence can contain either fixations
only, smooth pursuit movement only, a combination of fixation and smooth pursuit, or a
combination of fixation and saccadic movement, depending on the pattern segment they
fall within. Each eye was processed individually, and right eye (from the camera point of
view) and respective ground-truth vectors were flipped horizontally to seamlessly augment
the data. These processing steps also allowed to break the symmetry of the ring-shaped
pattern, making it difficult to recover the original pattern shape. For the challenge, the type
of pattern used for each sequence was not provided, to prevent challenge participants from
using that prior information for their proposed gaze prediction methodologies.

We devised three different subject-independent partitions of our dataset, with 32 sub-
jects for training, 8 for validation and 40 for test. To do so, we performed stratified sampling
in terms of gender, ethnicity, age, and glasses, to ensure a representative sample for testing.
The training subset consists of 10 100-frame sequences per eye, type of pattern, and subject,
with a total of 4000 images per subject and 128,000 images in total. Assuming that we can
use up to 50 frames to initialize a gaze prediction model to predict up to 5 frames into the
future, using a sliding window of stride 1 allows us to obtain up to 46 subsequences in a
100-frame sequence, which sums up to 58,880 final sequences in the training set (i.e., 1280
100-frame sequences in which a sliding window of stride 1 and size 55 is used to create
subsequences). For validation and test subsets, however, we chose to provide 55-frame
sequences to have one set of initialization frames and predictions per sequence, which
facilitates evaluation and analysis. To compensate for the difference in number of effective
sequences with respect to the training set, we selected approximately 80 55-frame sequences
per type of pattern and subject, with 70,400 images for validation and 352,000 for test. For
subjects for which there was not enough valid data to obtain such 80 sequences per pattern,
the maximum number of valid sequences was selected, and the remaining sequences were
obtained from other subjects until we obtained the desired number of sequences, 1280 and
6400, respectively. Please note that the goal of training and validation subsets is both gaze
estimation and prediction, while the goal of the test subset is gaze prediction. Therefore,
even though the number of images is substantially bigger for the test set, the number of
sequences is what we focus on.

The distribution of ground-truth gaze angles (horizontal and vertical components
of gaze) for each data split is depicted in Figure 3, and their general statistics in terms of
subject variability and number of images and sequences per split shown in Table 2.

Table 2. Statistics of the gaze prediction data subset.

Gender Ethnicity Age Accessories Number of
Female Male Asian Caucasian Other 21–25 26–30 31–40 41+ Glasses Makeup Images Seqs.

Train 9 23 10 15 7 6 7 13 6 8 5 128K 1280 (×46)
Val. 3 5 1 4 3 2 1 3 2 2 0 70.4K 1280
Test 12 28 16 17 7 10 10 14 6 11 5 352K 6400
Total 24 56 27 36 17 18 18 30 14 21 10 550.4K 8960 (66,560)
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Figure 3. 2D gaze angle distributions for train (left), validation (center) and test (right) splits of the Gaze Prediction
data subset.

3.2.2. Annotations

Each eye image was provided along with its respective ground-truth 3D gaze vector,
corresponding to the visual axis, in the headset coordinate system (origin of coordinates
located at the midpoint between the eye boxes of left and right eye, and oriented such
that X-axis points left, Y-axis points up, and Z-axis points forward, from the person’s
perspective). Gaze vectors and cornea centers of each eye were obtained using a hybrid
model, which combines a deep eye-segmentation model (see Section 4.2) with a classical
user-calibrated glint-based model [16], similarly to commercial eye trackers. Since these
models are frame-based and thus may produce fluctuating estimates, a median filter of
window size 5 was used to temporally smooth resulting gaze vectors. An offset correction
was further applied to them per subject and pattern, by subtracting the average difference
between cornea-to-target vectors and gaze vectors.

Besides the eye-image sequences and associated gaze vectors provided for the chal-
lenge, we are including additional metadata, namely: type of pattern used (saccade-based
or smooth pursuit-based), 3D target coordinates, target status (i.e., if the target is static,
moving, or just finished moving to allow for eye catch-up/readjustment), 3D point of gaze,
3D cornea center coordinates, internal (anonymized) subject ID, and sequence ID.

3.3. Semantic Eye Segmentation

This subset of data is aimed at exploiting the temporal information available in the
form of short temporal sequences of eye images to improve the semantic segmentation
accuracy achieved by treating each frame separately. Although there could be multiple
approaches to exploit temporal information for improving semantic segmentation, we
resort to a simple and practically useful problem of accurate label propagation from
a few labeled images to all the frames in a sequence. On the one hand, this problem
can serve as a testbed for future improvements in the latest deep-learning-based spatio-
temporal models for real-time inference in videos, few-shot learning, geometry-constrained
semantic segmentation, and/or co-segmentation. On the other hand, this problem also
helps in generating high-quality pseudo-ground-truth data generation for training semantic
segmentation networks.

3.3.1. Dataset Curation

We start the curation process with the initial data, i.e., a total of ∼600,000 images in
the form of 594 temporal sequences and 11,476 hand-annotated semantic segmentation
masks chosen randomly for annotation. All sequences belong to the ring-shaped pattern
category, with target depths ranging from 50 cm to 600 cm. Let us define the label-ratio,
R, as:

Ri =
Ni

label
Ni

total
× 100%, (3)

where Ni
label and Ni

total are the number of labeled samples and the total number of samples
in the ith sequence Si, respectively. For this dataset, we decided to set R ≈ 5%, or in other
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words, provide ∼5% labeled samples for each sequence. This choice is motivated from the
practical considerations of the size of the available dataset and annotations. To maintain
R ≈ 5% for training, we subsampled the data at 5 Hz and chose the top 200 sequences
sorted in decreasing order of R, which resulted in ∼150 frames (∼30 s of recording) for
a total of 29,476 frames with 2605 semantic segmentation annotation masks. Figure 4
shows the ratio of labels vs. total number of samples for all the 594 sequences. Out of
the total 2605 annotations, we randomly hide 5 samples per sequence as the test samples,
which eventually leads to R ≈ 5% for training and 3% for testing. The 200 sequences were
obtained from 74 different subjects. Additional statistics for this dataset can be found in
Table 3. Please note that the statistics are presented at a complete sequence level and not at
frame level.

Figure 4. The ratio of labels vs. total number of samples for all the 594 sequences shown in the
decreasing order.

Table 3. Statistics of the subjects featured in the 200 selected sequences for the eye-segmentation subset.

Gender Ethnicity Eye Color Age Accessories
Female Male Asian Caucasian Other Brown Blue Hazel Green 21–25 26–30 31–40 41+ Glasses Makeup

27 47 31 30 13 50 14 4 6 17 15 25 16 21 14

3.3.2. Annotations

Human annotations are provided in the form of pixel-level segmentation masks with
the following labels: (1) eye region, (2) iris, and (3) pupil. Annotation quality was evaluated
by estimating the mIoU score of annotations, ensuring that no labels produced by at least
two annotators have less than 80% mIoU. The right eye was flipped horizontally to align
lacrimal caruncles across left and right eye annotations, so the annotators have consistency.
The lacrimal caruncles were labeled as part of the eye region. In half occlusions, the
annotations only include visible parts of the pupil and iris, and eyelashes are labeled as
part of the underlying pupil or iris region. Finally, during blinks a thin sliver of the eye
region is labeled. Examples of human annotations are provided in Figure 5.

Figure 5. For each pair of images, examples of human annotations (left) and baseline model performance (right) for eye
semantic segmentation (best viewed in color).

Besides the eye images and associated segmentation masks provided for the chal-
lenge, we are also releasing the internal subject ID associated with each sequence, so that
sequences corresponding to the same subject can be linked.
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4. Baseline Methodologies

In this section, we describe and evaluate a set of baseline models for each data subset
to demonstrate the usefulness and validity of the data for the suggested tasks.

4.1. Gaze Prediction

We propose a simple baseline model for the Gaze Prediction subset, in which spatio-
temporal information is not jointly leveraged. Instead, we disentangle gaze estimation
from prediction, estimating first the line of gaze from each eye image individually, and
then performing gaze prediction based on the previously estimated gaze vectors.

First, we convert the ground-truth 3D gaze vectors to 2D spherical coordinates, repre-
senting yaw (horizontal component of gaze) and pitch (vertical component of gaze) angles.
For gaze estimation, we train a deep-CNN based on a modified ResNet of 13 convolutional
layers, as in [23]. The CNN backbone was coupled with a 32-hidden unit fully connected
layer (FC) and a 2-hidden unit FC linear regression layer, to estimate 2D gaze angles. To
compensate for the gaussian-like distribution of the data, we fit a multivariate Gaussian
to the training set and weight the samples with their inverse probability. The network
was trained end-to-end on 75% of the training data following such weighting scheme for
50 epochs with ADAM optimizer, initial learning rate of 0.001 and batch size of 32. For
training, data were randomly augmented in terms of brightness, horizontal and vertical
shifts, and rotation. Model training and inference was performed on downsampled images
of 160 × 100 pixels. The total number of parameters of the model was 206K and the result-
ing model size is 828 KB. The trained gaze estimation network is tested on the validation
set, obtaining an average angular error of 4.58 degrees, which is in line with state-of-the-art
subject-independent approaches [24].

Our gaze prediction approach relies on linear regression. In particular, we use a
window of 50 estimated gaze angles to compute the regression parameters using 2 in-
dependent regression models, i.e., one per gaze axis in 2D. The estimated parameters
are used to predict the next 5 frames into the future. We apply our trained gaze estima-
tion network on the test subset to estimate gaze for the first 50 frames of each sequence,
compute linear regression parameters on them and predict the next 5 frames. Table 4
summarizes the obtained results. We can see that the error increases with time, which is
expected. Furthermore, we can also observe that such a simple approach works fairly well
for fixation and smooth pursuit sequences, which account for most of the dataset samples.
However, the obtained error for saccades is large, as observed from p95 values. This is also
expected mainly for two reasons. First, saccades usually follow a ballistic trajectory, thus
not properly modeled with a linear model. Second, saccades have a duration of about 20 to
200 ms; therefore, linear regression cannot predict extremely short saccades that happen
after the initialization window. We decided to include saccades in the challenge despite
saccadic suppression to keep it generally applicable for uses cases where the suppression
is not sufficient.

Table 4. Baseline performance for gaze prediction, reported in terms of Prediction Error (PE) between
predicted and ground-truth 3D gaze vectors, in degrees. p50, p75, and p95 scores denote the 50th,
75th, and 95th percentile scores of the PEt distribution, respectively.

Time Step PEt p50 p75 p95

1 (10 ms) 5.28 4.56 6.73 11.89
2 (20 ms) 5.32 4.57 6.79 11.99
3 (30 ms) 5.37 4.61 6.83 12.13
4 (40 ms) 5.41 4.63 6.87 12.30
5 (50 ms) 5.46 4.65 6.92 12.48

Average 5.37 4.60 6.83 12.16
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4.2. Semantic Eye Segmentation

To set a baseline for spatio-temporal eye-segmentation algorithms, we chose to train a
deep-CNN on 1605 images whose corresponding hand-annotated semantic segmentation
masks are provided. The network follows an encoder-decoder architecture loosely based
on SegNet [42]. Modifications include a power-efficient version containing 7 downscaler
blocks for the encoder and 7 upscaler blocks for the decoder. Each block contains separable
convolution that factorizes depth-wise convolution and a 1 × 1 convolution to optimize
for computation cost. We use LeakyReLU activation and multiplicative skip connections
with guide layers that reduce the layers to a single channel to pass to the decoder, which
again reduces computational cost.

We trained the network for 150 epochs with ADAM optimizer, with initial learning
rate of 0.004 and batch size of 128. We used random rotation and intensity scaling for
augmentations. Model training and inference was performed on downsampled images
of size 128 × 128 pixels. The total number of parameters of the model was 40K and the
resulting model size was only 300 KB.

The trained network is tested on the hidden set of test samples without exploiting any
temporal information, achieving a mIoU score of 0.841 (see Table 5 for complete results).

Table 5. Baseline performance (mIoU) for sparse semantic segmentation without the use of tempo-
ral information.

Background Sclera Iris Pupil Average

0.971 0.674 0.882 0.835 0.841

5. Challenge Participation and Winning Solutions

The Gaze Prediction challenge received a total of 13 valid entries, while the Sparse
Semantic Segmentation challenge received 22 valid entries. From them, the code implemen-
tations of the top-3 winning teams of each competition track were evaluated and the final
winners announced at the workshop (See https://research.fb.com/programs/openeds-
2020-challenge/, last accessed on 25 June 2021, for more details). What follows below is
a brief description of the methods explored by the winning teams and the performance
numbers produced.

5.1. Gaze Prediction Challenge Winners

In Table 6, we show the average gaze prediction error achieved by the top 3 winners,
in comparison to the baseline model as described in Section 4.1.

Table 6. Performance numbers from the top-3 winning entries to the OpenEDS 2020 Gaze Prediction
challenge, reported in terms of Prediction Error, in degrees.

Model PE

1st place winner (team random_b) 3.078
2nd place winner (team EyMazing) 3.313

3rd place winner (team DmitryKonolov) 3.347

Baseline 5.368

All three top winning teams used a two-stage strategy to produce their winning
solution. The first stage comprised of building a regression model to estimate the gaze
vector per image for the sequence of training images. The output of the first stage was fed
into a prediction network (or algorithm) to predict the future frames. Both team random_b
and team EyMazing found the Resnet18 module [43] to work best to estimate per-image
gaze vectors. Team random_b was able to optimize the estimation network using a hard data
augmentation strategy, whereby for every image augmentation that involved rotation of the

https://research.fb.com/programs/openeds-2020-challenge/
https://research.fb.com/programs/openeds-2020-challenge/
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input image, the rotation matrix was also applied to the target gaze vector. Team Eymazing,
on the other hand, relied on using standard data augmentation methods. However, they
used a cosine loss function [44] applied to the normalized gaze vector coordinates, as
opposed to the traditional mean-squared-error loss function used by team random_b. In
contrast, team Dmitrykonolov used an EfficientNet-B0 backbone [45] to train their gaze
vector estimation model coupled with a custom loss function derived from their prior
work [46].

To train the prediction network, team random_b chose a rather simple strategy: check if
there is a fast change in gradient of the gaze vectors in the last 7 frames of the sequence and
if so, add the computed gradient linearly to the predicted frames, otherwise use moving
average gaze vector derived from the last 3 frames. The proposed algorithm was applied
independently to each axis of the gaze vector. Team Eymazing and team Dmitrykonolov,
on the other hand, chose to train a standard Long-Short-Term Memory (LSTM) recurrent
neural network [47] to predict the future gaze vector frames. Team Eymazing, again, used
the cosine loss function for their LSTM network, computed only on the predicted frames,
while team Dmitrykonolov relied on their pre-designed custom loss function.

The following general observations can be drawn from the experience of these three
winning teams. First, training estimation and prediction networks separately. Second,
overfitting was a significant challenge, especially when using complex backbone neural
architectures for training the estimation network. As such, Resnet18 with suitable data
augmentation methods or the choice of a suitable loss function worked best. Finally, a
rather simple prediction algorithm, as proposed by team random_b, seemed to work best,
producing their winning model. This team, however, noted after the competition was
over that they were able to produce even better performance numbers using a LSTM
recurrent network for training. This conforms with the findings by team Eymazing as well
as team Dmitrykonolov.

5.2. Sparse Semantic Segmentation Challenge Winners

In Table 7, we show the mIoU scores produced by the top-3 winning teams for the
Sparse Semantic Segmentation Challenge in relation to the baseline score.

Table 7. Performance (mIOU) from the top-3 winning entries to the OpenEDS 2020 Sparse Semantic
Segmentation Challenge.

Model mIOU Score

1st place winner (team BTS Digital) 0.9517
2nd place winner (team tetelias) 0.9512

3rd place winner (team JHU) 0.9502

Baseline 0.841

The Sparse Semantic Segmentation challenge called for propagation of semantic labels
in a video sequence of eye images. However, none of the winning teams produced a
solution to leverage the temporal information in the video sequence of images. Instead,
a common theme running across the solution developed by all 3 winning teams was
the use of a rather simple encoder-decoder neural network architecture, extensive data
augmentations, pseudo-labeling on unlabeled images and model ensemble. Specifically,
the first-place winner, team BTS Digital, used a UNet segmentation network [48] to train a
semantic segmentation model on a weighted combination of binary cross-entropy loss, focal
loss [49] and dice loss [50]. Two rounds of pseudo-labeling [51] with 90 % of unlabeled
data coupled with an ensemble of models trained on different cross-validation splits
produced their winning entry. The second-place winner, team tetelias, on the other hand
used a DABNet backbone [52] pre-trained on the Cityscapes dataset [53] for training the
eye semantic segmentation model. Their winning solution heavily relied on advanced
data augmentation methods such as GridMask [54] and FMix [55] followed by ensemble
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averaging on multiple trained network models. The third-place winner, team JHU, trained
an ensemble of UNet models followed by heavy dose of pseudo-labeling on all the available
unlabeled images.

In summary, contrary to our original motivation for seeking novel ideas to propagate
knowledge from sequences of eye images to augment semantic segmentation for video
frames with missing labels, pseudo-labeling with ensemble averaging proved to be the
winning recipe to produce winning solution to the proposed problem. Although the
winning numbers are impressive, we still believe that there is room for improvement on
this task, should novel methods to leverage sequence information be devised.

6. Conclusions

In this paper, we have reviewed the OpenEDS 2020 Challenge motivation, baselines
proposed, winning solutions and findings. Moreover, we have described the OpenEDS
2020 Dataset, a novel dataset of eye-image sequences consisting of up to 87 subjects of
varied appearance performing different gaze-elicited tasks. The dataset consists of two
subsets of data, one for each competition track of the challenge, i.e., one devoted to gaze
prediction and another devoted to eye semantic segmentation, with the goal of fostering
the exploitation of spatio-temporal information to improve the current state of the art on
both tasks. Obtained results with proposed baseline methods and winning solutions, all of
them based on deep learning techniques, demonstrate the usefulness of the data, and serve
as a benchmark for future approaches coming from computer vision, machine learning and
eye tracking fields.

In particular, the learnings from the outcome of the Gaze Prediction challenge helped
us refine the formulation for the OpenEDS 2021 Gaze Prediction challenge (OpenEDS
2021 Eye Tracking Challenge https://research.fb.com/programs/facebook-openeds-2021
-challenge/, accessed on 25 June 2021). Based on the observation that all winning teams
for the OpenEDS 2020 Gaze Prediction challenge trained the estimation network first and
then followed up with the training of the prediction network, the 2021 Gaze Prediction
challenge is solely focused on the framing of the prediction problem. The time series of
gaze is derived from individuals freely exploring two virtual environments participating
in varying activities such as reading, drawing, shooting and object manipulation [56]. The
challenge calls for predicting the gaze using the trajectory of available gaze data. We
equally anticipate that the findings from the 2020 Challenge will spur innovative solutions
for the OpenEDS 2021 Gaze Prediction challenge.
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