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Abstract: This paper deals with bistatic track association and deghosting in the classical frequency
modulation (FM)-based multi-static primary surveillance radar (MSPSR). The main contribution of
this paper is a novel algorithm for bistatic track association and deghosting. The proposed algorithm
is based on a hierarchical model which uses the Indian buffet process (IBP) as the prior probability
distribution for the association matrix. The inference of the association matrix is then performed
using the classical reversible jump Markov chain Monte Carlo (RJMCMC) algorithm with the usage of
a custom set of the moves proposed by the sampler. A detailed description of the moves together with
the underlying theory and the whole model is provided. Using the simulated data, the algorithm is
compared with the two alternative ones and the results show the significantly better performance of
the proposed algorithm in such a simulated setup. The simulated data are also used for the analysis
of the properties of Markov chains produced by the sampler, such as the convergence or the posterior
distribution. At the end of the paper, further research on the proposed method is outlined.

Keywords: FM; radar; MSPSR; Bayesian inference; deghosting; MCMC; reversible jump

1. Introduction

Passive location systems are widely used in both civil and military applications. Due
to their low hardware cost (no transmitters needed), they offer reliable solutions for covert
operations and offer the advantage of fast deployment. Among the passive sensors, the
multi-static primary surveillance radars (MSPSRs) with bistatic geometry offer unique
advantages. Foremost, no target transmission is necessary and due to the bistatic geometry,
it is difficult to design such an aircraft surface, which would prevent the reflected signal
being spread in the receiver direction. The frequency modulation (FM)-based MSPSRs are
used either separately or together with single-frequency network (SFN) systems which
suffer from transmitter uncertainty.

The usual MSPSR data processing architecture, which is also suggested, e.g., in [1]
is as follows. After signal reception and processing, the detection process is performed.
This process produces primary data which is usually comprised of bistatic range and
bistatic velocity. There are systems where the angle of arrival or angle of elevation is
also available, but this requires a special kind of receiving antenna and therefore the
angles are not available in every MSPSR system. Tracking in bistatic coordinates (which is
especially possible in FM-based systems where the transmitter uncertainty is eliminated)
reduces the concentration of false measurements and also increases the precision of target
bistatic coordinates [2]. After the validation phase, bistatic tracks from different receiver–
transmitter pairs are associated and form groups of at least three bistatic tracks from distinct
bistatic spaces. From each group of associated bistatic tracks, a new Cartesian target is
initiated [3]. The bistatic track association process usually includes the deghosting part,
which is a method of false association hypothesis elimination. The deghosting can be either
explicitly performed after forming all of the available hypotheses, or implicitly being part
of the association process.
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There are many solutions for the deghosting problem available in the literature [4–8].
A deghosting algorithm based on the evaluation of all possible bistatic track pair combina-
tions with modified clustering is available in [9]. This algorithm is primarily focused on
SFN systems; however, it can be as effectively used for an FM-based system. A different
approach is chosen in [6] which explores the usage of residual error as a deghosting crite-
rion, however, only in the case of 2D localisation. In [4], another method based on multiple
association algorithms and so-called super targets formation was developed. This method
can also be used for both SFN- and FM-based MSPSR systems. The multidimensional
assignment problem is solved in [10] using the Lagrangian relaxation technique with an
application to target localisation in the network of direction finders.

The majority of the deghosting algorithms available in the literature are based on
the evaluation of as many association hypotheses as possible. These hypotheses are then
reduced using some testing criterion or some association heuristic, such as the linearised
joint probabilistic data association (JPDA) to optimise the results. However, there are
also deghosting approaches which use the Bayesian approach. The Markov chain Monte
Carlo data association (MCMCDA) [11] relies on the specifically designed path in the
association space and defines the prior probability distribution on this association. This
prior probability distribution can be influenced using design parameters such as the
probability of detection or false target concentration, which are hard to estimate in real
scenarios. Other Bayesian approaches such as probability hypothesis density (PHD) [12] or
probabilistic multiple hypothesis track (PMHT) [13] use likelihood functions but do not
formulate any prior or they use it only in the context of false measurements. In this paper,
we also use the Bayesian approach for MSPSR deghosting, however, we define the bistatic
track association as a Bayesian inference problem and develop the Markov chain Monte
Carlo (MCMC) sampler to solve this discrete-continuous inference problem and determine
the most likely solution. To do this, we need to establish prior probability distribution for
the modified association matrix which is introduced in the subsequent sections together
with the proposed sampler. This probabilistic model forms a novel deghosting algorithm
for the MSPSR applications. We then compare the results of our new deghosting method
with results obtained using two alternative deghosting algorithms. The comparison is
performed using simulated data with known truth. We illustrate the superior performance
of our algorithm over the two others and also discuss the achieved results. Moreover,
the simulated data are used in the sampler to produce multiple long runs of the chain
which is later analysed in order to assess its convergence. As this is an extended version
of [14], the detailed convergence assessment and the rest of the detailed analysis is the
additional contribution. Illustration of chain iterations in the Cartesian space and the target
identification space are provided. At the end of the results section, the analysis of the
discovered association hypotheses posterior distribution is presented. At the end of the
paper, the results and methodology are discussed and the paper is concluded with the
outline of further research.

2. Materials and Methods
2.1. Assignment Problem

The assignment problem in target tracking is concerned with obtaining the assignment
matrix A =

(
aij
)

where aij ∈ {0, 1} between two sets of entities V ,W . If aij = 1, then we
decide on assignment between entity i ∈ V and j ∈ W . Usually, we put some constraints
on the form of the assignment matrix, such as the uniqueness of the assignment. Such a
constraint can be formulated using the following conditions:

∑
i

aij ≤ 1,

∑
j

aij ≤ 1,
(1)
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which ensures that entities from one set are not shared between entities from the other set.
However, there are situations where such a constraint is not appropriate, such as assign-
ment between bistatic tracks and Cartesian targets in MSPSR target initiation/deghosting.
If we are concerned with only one bistatic space, then in the simple case, we can put the
constraints (1) on the assignment matrix. In the simple case, we consider using a hard
assignment decision that assigns bistatic detections to tracks and thus ensures probabilis-
tic independence between two different Cartesian targets. For the rest of the paper, we
will assume that this condition be fulfilled. However, one bistatic space is not enough
to estimate the target position and velocity in 3D Cartesian space. Therefore, we usually
need at least three bistatic spaces so that the target initiation/deghosting stage can be
performed. Such a task usually consists of an evaluation of all possible combinations of
bistatic tracks from different bistatic spaces of various cardinality (e.g., two or three tracks)
and the statistical testing of resulting Cartesian target positions. We suggest keeping the
association matrix and establish new constraints, which would only be concerned with a
submatrix representing bistatic tracks from the same bistatic space. From the global point
of view, the first condition in (1) no longer holds; on the contrary, we encourage the bistatic
tracks from different bistatic spaces to share the assignment with the same Cartesian target
(as we previously mentioned, a minimum of three tracks is necessary, however, we want
the target to be tracked in every bistatic space available). We can express the previous
description of MSPSR assignment matrix A as

A =




A1

A2

...
AnBS


, (2)

where the upper index of submatrices denotes the index of a particular bistatic space and
nBS is the overall number of bistatic spaces available. For any k, we apply conditions (1)
on the submatrix Ak. From (2), it is obvious that the more tracks there are that share
assignment with the same Cartesian target (i.e., the more ones there are in the same
columns while keeping conditions (1)), the fewer columns are necessary to express the
assignment (i.e., the less Cartesian targets will be initiated). This is a desirable property
because the problem with many of the deghosting algorithms is the number of possible
track combinations which provide feasible results (i.e., an estimate of the Cartesian position
with small residual error). One of the ways to incorporate this property into the solution
of the target initiation/deghosting process is the enumeration of all possible associations
of all the cardinalities from nBS to 3. Some of the associations can be dismissed based
on the residual error, and the other can be omitted because its tracks are already part of
the feasible assignment of a larger cardinality, which is preferred. However, in extreme
cases, the combinatorial complexity of this computation is unbearable. Another option is to
incorporate the desired properties of the assignment matrix into its prior and evaluate not
only the probabilities of bistatic track assignments based on the residual error of Cartesian
position, but also the probability of the assignment matrix concerning this prior.

2.2. Indian Buffet Process

Let us recall the properties of the assignment matrix. We want the initiated target
(without loss of generality represented by columns) to be shared by multiple bistatic tracks
from distinct bistatic spaces, and in the hard assignment setting, each bistatic track to be
assigned to at most one initiated target. The number of targets is usually unknown or can
be only roughly estimated. Therefore, another property of a prior for the assignment matrix
is that it should be flexible enough concerning the number of targets. This requirement is
often used in nonparametric Bayesian modelling [15] as the structure of observed data may
not be completely known. This is similar to the case of MSPSR target initiation/deghosting
since we do not know which targets produced detections of a given bistatic track. In the
environment of nonparametric Bayesian statistics, the prior distribution for binary matrices
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with a finite number of rows (the observed data) and a potentially infinite number of
columns (the way the unknown number of columns is modelled) is defined using a simple
generative process called Indian buffet process (IBP). The name of the generative process
is derived from the metaphor used to describe the process. A description of the process
together with its statistical properties can be found in [16]. The probability distribution of
matrices, under which the order of targets is exchangeable, requires us to define classes
of equivalence between assignment matrices in such a way, that two matrices from the
same class represent the same underlying structure in the data. The exchangeability
is also a desired property in MSPSR target initiation/deghosting because the order of
targets is not important, as long as they are represented by the right set of bistatic tracks.
The equivalence classes are defined using the lo f (•) function [17] which represents the
columns of the assignment matrix as binary numbers (assignment represents a true value)
with the first row being the most significant bit before sorting them as integers. For any
association matrix A, we denote its lo f (•) equivalence class as [A]. With assignment
matrices represented by equivalence class, we can define the probability distribution for
different classes. There are two versions of probability distributions for lo f (•) classes
of binary matrices which differ in the number of parameters. The first version [15] only
depends on parameter α. This parameter controls shared assignments between different
bistatic tracks (in our application, with the restriction on bistatic space submatrices from
(1)) and also the expected number of initiated targets. Since in the IBP for each row we
sample from Poisson distribution to add new columns, in the limit case, the number of
columns is Nα where N is the row count of the association matrix (i.e., the number of
bistatic tracks over all of the bistatic spaces). The second probability distribution uses
two parameters—α and β. In this representation, α represents the average number of
assignments for one bistatic track and β controls how the assignments to one particular
target are shared between bistatic tracks (the smaller β is, the more the assignments are
shared). For the rest of the paper, we will use the two-parameter representation, since it
allows better modelling of assignment matrices in MSPSR target initiation/deghosting.

For any assignment matrix A, the probability of its lo f (•) equivalence class is [16]:

P([A]) =
(αβ)K+

∏h≤1 Kh!
exp(−K̄+)

K+

∏
k=1

B(mk, N −mk + β), (3)

where K+ is the number of assignment matrix columns with at least one 1 (i.e., targets with
at least one piece of associated data), mk is the number of associated data for column k, Kh
is the number of identical columns and K̄+ is the expected number of columns for binary
matrix distribution with parameters α and β and is equal to:

K̄+ = α
N

∑
i=1

β

β− i + 1
. (4)

In Figure 1, the different IBP parameter values are visualised for a different number of
targets in four bistatic spaces with an ideal assignment matrix. We can see, as the number
of targets grows, the relative number of shared bistatic tracks decreases and hence the β
parameters value increases.

2.3. Sampler

In the subsequent sections, we describe the sampler used to solve the inference
problem. This custom sampler is based on the design of a set of moves in the Markov chain
that (a) reversibility (explained later) is assured and (b) the set together with respective
proposal distribution allows us to efficiently explore the whole parametric space. In general,
the sampler is based on the reversible jump Markov chain Monte Carlo (RJMCMC) theory,
first introduced in [18]. Since its introduction, this method was extensively studied and
used in many different applications, e.g., [19–22].



Sensors 2021, 21, 4815 5 of 23

1

2

3

2 4 6 8

Number of targets

P
a

ra
m

e
te

r 
va

lu
e

parameter

α

β

IBP parameters for different number of targets

Figure 1. Indian buffet process (IBP) prior parameter values for which the ideal assignment matrix
has maximum probability.

2.4. RJMCMC

The reversible jump Markov chain Monte Carlo (RJMCMC) [18] is an extension of
the MCMC class of algorithms for generating samples from probability distributions. In
particular, RJMCMC extends the Metropolis–Hastings (M-H) [23] algorithm for the case,
when “the number of unknown parameters is one of the unknown parameters” [22]. Such
applications are called transdimensional since during the inference of the parameters, we
are required to sometimes change the dimension of the parametric space. Such a description
is certainly valid for the case of the deghosting problem in the MSPSR system, as it was
presented in the Introduction. The core task is to decide which bistatic tracks belong to each
other and thus effectively decide upon the number of valid combinations, i.e., the number
of modelled targets. From the purely combinatoric perspective, even with the lower limit
of three bistatic tracks per target and the upper limit of at most one bistatic track from one
bistatic space, the number of options is usually very large. The geometrical perspective
eliminates many of these options, however, such a process is computationally exhaustive.

The complications with reduced geometry (i.e., bistatic versus Cartesian space) to-
gether with no information about the possible target locations are one of the main reasons
to use the RJMCMC methodology. The classical model selection methodology would not
be applicable here because enumerating all of the possible models is very expensive. The
comparison of different models would then bring even more difficulties such as how to
ensure the combinations of as many bistatic tracks to be preferred. During the review of this
paper, the use of the approximate Bayesian computation (ABC) [24] was proposed. While
we agree that it could be used to solve the problem at hand, the design of an appropriate
summary statistic would be in our opinion as complex a problem as the design of the
RJMCMC sampler is.

We can think about different numbers of targets as different models. Each target is
parametrised by its position p ∈ R3 and velocity v ∈ R3 which are coupled in to the state
vector x ∈ R6. Thus, different models (different numbers of targets) also differ in the
number of parameters. For the model k, we denote by nk the number of parameters of
the model, which is equal to nk = 6nt

k where nt
k is the number of targets in the model. We

denote the point in the parametric space x = (k, θk) where k is a label of the model and:

θk =
(

xk
1, xk

2, · · · , xk
nt

k

)
. (5)
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The whole parametric space over which the problem is defined is then given by
subspaces Lk = {k} × Rnk for one model, and thus, by taking the union L =

⋃
k Lk,

we obtain all possible parametrisations over the set of all model indices. One of the
assumptions behind the sampling procedure is the decomposition of the joint density,
given the data Z (without specification of what they consist of):

p(k, θk,Z) = p(k)p(θk|k)p(Z|k, θk), (6)

which follows from the idea that the probability density of parameters is easy to specify
once the dimension is given, but otherwise very hard to formulate. In the same way, the
posterior density factorisation is given by [18]

p(k, θk|Z) = p(k|Z)p(θk|k,Z). (7)

Without getting too extensively into the theory of RJMCMC (more details on which
can be found by an interested reader in the references of this section), we only emphasise
that in this paper, it is only used as the extension of the classical M-H algorithm. Let us
denote by x = (k, θk) the current state of the Markov chain. Using some (later specified)
proposal distribution q(x, x′), we propose a new state x′ which is accepted as the new state
that the chain moves to with the probability:

ρ
(
x′, x

)
= min

{
1,

π(x′)q(x′, x)
π(x)q(x, x′)

}
, (8)

where π is the target distribution of the chain, i.e., the distribution we would like the sam-
ples to be sampled from. Please note that (8) is a plain M-H acceptance ratio if for x and x′

the model dimensions do not differ. The acceptance ratio is based on the notion of reversibil-
ity of the constructed chain (which ensures the existence of the stationary distribution)
and also its ergodicity (which ensures the uniqueness of the stationary distribution) [25].
In RJMCMC [20], these assumptions are considered and by the measure-theoretic ap-
proach, these assumptions are extended to much more general state spaces such as L. The
equilibrium equation is formulated using the transition kernel K of the Markov chain:

∫

L
π(dx)K

(
x, dx′

)
= π

(
dx′
)
. (9)

In the same manner, the reversibility for two subsets B,B′ ⊂ L can be expressed as
∫

B
π(dx)K

(
x,B′

)
=
∫

B′
π
(
dx′
)
K
(
x′,B

)
. (10)

This formulation guarantees the desired Markov chain to be constructed even for
transdimensional models. For a more detailed description, please refer to [18–20,22,26].

2.5. Parametric Space

Let us describe the properties of the parametric space before we describe the full
model and the sampler. We now assume that a fixed realisation of A, the association
matrix, is available. We denote the number of columns of A by K, which also represents
the current number of targets in the evaluated model. From the previous section, we can
observe that nk = K; however, we need to drop the model index for the sake of notation
simplicity as the association matrix and thus also the model is fixed. We assume the second
condition in (1) to hold that the association must be consistent. For any i, j the aij = 1
means that the j-th target is associated with (and therefore its position is given by) i-th
bistatic measurement. We assume the measurement errors in bistatic space to come from
a multivariate normal distribution and thus the measurements are sufficiently described
by state vector zi ∈ R2 (in our application. only the bistatic range and bistatic velocity are
measured) and covariance matrix Zi ∈ R2×2. The transformation function hi : R6 → R2 is
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specific for each measurement i and is given by the positions of receivers and transmitters
of the respective bistatic space that the measurement comes from. Note that for the set
of measurements associated with one target, all of the transformation functions need to
be independent. The likelihood function of the j-th target position xj concerning the i-th
measurement can then be written as

p
(
xj|zi, Zi

)
= N

(
h
(
xj
)
|zi, Zi

)
, (11)

where N (x|µ, Σ) denotes the multivariate normal distribution with the mean vector µ and
covariance matrix Σ, evaluated at the point x. The choice of this likelihood function is
natural. The detections in the bistatic space (the bistatic tracks are created using these
detections) have their covariance matrix estimated from the signal properties in their
neighbourhood. In this case, the actual measurement errors should be normally distributed.
Then, if we assume a linear (or almost linear) target movement model in the bistatic space,
normality is preserved. Since the measurements in different bistatic spaces are independent,
the likelihood function of the target position xj conditioned by the whole association matrix
is given by

p
(
xj|A,Z

)
= ∏

aij=1
N
(
hi
(
xj
)
|zi, Zi

)
, (12)

where by Z , we denote the set of all measurements. Therefore, for a fixed realisation of
A, the target estimates θ̂ =

{
x̂j
}K

j=1 can be found using, e.g., the method of maximum
likelihood, by

x̂j = argmax
xj

p
(
xj|A,Z

)
, (13)

and this maximisation can be naturally performed independently for each target in the
model. Such an approach offers two advantages. First, there are numerous methods
specifically designed to solve the problem (13). A straightforward solution for the case
of normal likelihood cannot be used due to the nonlinearity of the function h. Therefore,
the solution has to be found using some iterative maximisation algorithm. Starting point
x̂0

j =
(

p̂0
j , v̂0

j

)
can be found using three bistatic positions [27]

p̂0
j = a + bRt, (14)

where:
a =

(
STS

)−1
STs,

b =
(

STS
)−1

STr,
(15)

and Rt is the distance between the target and central receiver station, r is the vector of
bistatic positions, S is the row matrix of transmitter position coordinates and
s = 1

2
[(

So2 · i
)
− ro2], i ∈ R3×1 is their vector. In the equation for s, the operator Bo2

denotes the Hadamard second power of the matrix B. Details of this approach together
with its derivation and means to compute the velocity estimate can also be found in [2,27].
Once the initial estimate is obtained, the final estimate x̂j can be found through the con-
vex optimisation [28] or using the Newton method [29]. The second advantage of this
approach is the efficient marginalisation of the target parameters from the sampled dis-
tribution. Once the association matrix is sampled, the probability distribution of target
parameters is obtained using the maximum-likelihood method based on the bistatic tracks
assigned. This makes the development of an efficient sampler much easier since we are
only concerned with binary assignment variables. A similar approach was used in [30]
where the transition probabilities in the hidden Markov model were estimated using the
backward–forward algorithm.
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2.6. Model

In the next section, we describe the sampling procedure which we use to perform
moves across the whole parametric space. Here, we simply summarise the graphical
model based on the prior probability distribution for the association matrix (3), which is
formulated using the IBP, and the probability distribution of the data observed, conditioned
on target parameters. The probability model arising from the definition of IBP [17] is
given by

πk|α, β ∼Beta
(

αβ

K
, β

)
,

amk|πk ∼Bernoulli(πk),
(16)

where πk is the latent variable, connected for all of the matrix columns through the IBP
parameters α and β. By amk, we denote the m-th element of k-th column of the association
matrix to prevent confusion with an indexation of bistatic tracks. To complete the proba-
bilistic model, we denote by ti

j the bistatic data of i-th track in j-th bistatic space. Using the
notation of the previous section, we can write:

ti
j|am(i,j)k = 1, xk ∼ N

(
hj(xk), Zm(i,j)

)
, (17)

and here we use m(i, j) : N2 → N as a transformation from a pair of indices (of bistatic
track i in bistatic space j) to a linear index. This is only a formality with no influence on
the model. Having such a transformation simply allows us to differentiate between the
transformation functions of different bistatic spaces. The overall structure of the model in
graphical form is available in Figure 2.
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j and targets xk. By N
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The description of how do we estimate the target parameters once the number of
targets is given has been presented in the Section 2.5. Here we analyse the options for the
sampler to jump between the association matrices, either with the same number of columns
or transdimensionally.

There are two general classes of transdimensional moves available in the literature on
RJMCMC. The first class is the birth-and-death (BD) [18] class of moves and the second
class is split-and-merge moves (SM) [21]. The BD class was introduced together with the
new theory of RJMCMC [18], deeply analysed in the context of other MCMC methods [19]
and appears also in newer papers concerning the RJMCMC theory [22,30,31]. The BD move

Figure 2. Graphical visualisation of the bistatic tracks association model. Parameters α and β define
the Beta distributed (used in the definition of the IBP) hidden variables πk for a matrix of K columns.
Association matrix entries amk define the association between bistatic tracks ti

j and targets xk. By N,
we denote the overall number of bistatic tracks available.

2.7. Basic Moves

The description of how we estimate the target parameters once the number of tar-
gets is given is presented in Section 2.5. Here, we analyse the options for the sampler
to jump between the association matrices, either with the same number of columns or
transdimensionally.

There are two general classes of transdimensional moves available in the literature on
RJMCMC. The first class is the birth-and-death (BD) [18] class of moves and the second
class is split-and-merge moves (SM) [21]. The BD class was introduced together with
the new theory of RJMCMC [18], extensively analysed in the context of other MCMC
methods [19] and also appears in newer papers concerning the RJMCMC theory [22,30,31].
The BD move assumes that if the currently assumed dimension is K (e.g., representing the
number of changepoints in time-series or the number of targets), we can propose either
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a decrease in the dimension (K − 1) or its increase (K + 1). In the applications available
in the literature, such a process usually involves a type of parameter transformation as
the K vectors of parameters are dependent. This is not true for the case of bistatic track
association since we still preserve the second condition of (1) and single targets in the
model are therefore independent (and so are its parameters). It is also possible to propose
the BD move at random, i.e., in the case of the birth move, we can propose a random 6D
vector of the new target parameters. There is no harm in the association consistency since
the new target does not possess any bistatic tracks. However, we argue that concerning the
high-dimensional space of target occurrence, this move would not be efficient. There is also
a problem with the likelihood evaluation for a target without data, and we would need to
propose some arbitrary likelihood function. In the case of a death move, similar problems
arise. Randomly, we can propose some track to be deleted. However, we would end up
with a set of unassigned bistatic tracks. Such an operation would break the consistency
requirement of the association procedure. With this analysis, we decided not to implement
BD moves in our sampler, despite the BD type of moves being considered as basic in the
RJMCMC literature.

The second class of RJMCMC moves, called split-and-merge, was introduced in [32]
and later extended in [21]. Again, the moves are proposed as a reversible pair so that
the detailed balance condition (10) is still fulfilled. We start with the description of the
split move. Let us suppose that K > 1 and we generate random S ≥ 3. By S, we denote
the number of bistatic tracks we randomly select in existing targets (while preserving
the association consistency) and we propose to establish a new target using this set of
tracks. The move also contains the operation of removing selected tracks from their
respective targets. The randomness of S is not necessary and its value should also be
selected concerning the computational effort. Initiation from S = 3 tracks is also possible
and advisable with respect to the closed-form solution (14). In addition, selecting smaller
sets of bistatic tracks rather than some large ones increases the acceptance ratio because the
probability of set contamination by an inconsistent track is lower. Overall, the deterministic
setting S ∈ {1, 3, 4} proved itself to be a good strategy. The case when S = 1 is the special
case of an SM move which serves to sample clutter targets. Such targets do not exist in the
observed space; however, from the chain perspective, they serve as storage of inconsistent
tracks (inconsistent with other targets). Another good modification is to prefer selecting
tracks from those targets, which are either underdetermined, or the data likelihood (i.e.,
the column likelihood) is very low (hence the target is probably very inconsistent). The
merge move is similarly designed. We pick one target at random. For every one of these
target bistatic tracks, we (randomly) select some other target to which we would like to
assign the bistatic track. This way, the pair is reversible since with every move, there is a
way to return to the original state. An example of the SM reversible pair is available in
Figure 3. We will now describe the reversible pair more formally from the point of the MH
acceptance ratio. We denote by A the current association matrix and by A′ the association
matrix which would be the result of the proposed move (i.e., a matrix with K + 1 columns
in the case of the split move and K− 1 columns in the case of the merge move). Similarly,
we denote by θ the current set of target state vectors and by θ′ the set of target state vectors
of the proposed move. The acceptance ratio is then given by

ρ
((

A′, θ′
)
, (A, θ)

)
= min

{
1,

p
(
Z|A′, θ′

)
p(A′|α, β)qm(A′, A)

p(Z|A, θ)p(A|α, β)qm(A, A′)

}
, (18)

where the probability p(A′|α, β) is given by the IBP prior and is evaluated for the whole
lof equivalence class. The proposal distribution qm(A′, A) was described in the previous
paragraph and the specific value depends on the number of targets and bistatic tracks
available. Note that we use the ratio given by proposal distributions qm(A′, A)/qm(A, A′)
of the specific SM move instead of the distribution of all possible moves [21]. This signifi-
cantly simplifies the computations. This transdimensional move changes the parameters of
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some of the existing targets involved in the random selection. However, the parameters are
solely given by the data contained in the bistatic tracks, the likelihood of which is evaluated
as the first term in the acceptance ratio (18). With respect to this observation, we assume
the Jacobian usually contained in the RJMCMC ratio [18] to be the identity matrix. The
data likelihood in (18) arises from (11) as

p(Z|A, θ) = ∏
amk=1

N (zm|hm(x̂k), Zm). (19)

Figure 3. Matrix visualisation of the reversible split-and-merge move. Here, we mainly focus on the
target-to-track association and omit the differences between bistatic spaces (although we assume the
association to be consistent). Columns are labelled by θj, which denotes the j-th target rather than the
target state vector xj or its estimate x̂j.

Concerning the already presented target parameters’ marginalisation, this quantity
always represents the maximum likelihood value (both concerning the target state and the
bistatic track data). Note that the acceptance ratio for proposing new targets can be high,
especially concerning the potential number of false ideal intersections. This would lead to
the constant creation of new targets which, due to the prior probability distribution of the
association matrix, would then be eventually merged with previous estimates of the same
target from a different set of data. To prevent this, we decided to put a small penalisation
λj on the data probability of new targets. The term (19) then becomes:

p(Z|A, θ) = ∏
amk=1

N (zm|hm(x̂k), Zm) exp
(
λj
)
, (20)

where:

λj =

{
λ̄j ∑N

i=1 aij < 4,
0 otherwise.

(21)

The penalisation constant λ̄j is chosen in such a way that the accepted proposals do
not cause the fragmentation of the larger internally consistent group into smaller subsets
of measurements. Our experiments show the importance of such a penalisation.
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A different approach was taken in the case of the second type of moves we used.
We call them reassignment (R). This move is not transdimensional because it does not
change the number of targets in the model. Hence, the regular MH acceptance ratio applies.
From the current assignment matrix, A, we randomly select one entry aij and propose its
change to a complement value āij. Since the association consistency has to be preserved,
we also select some ail , which, in the current state of the chain, has the value ail = āij. The
complement value is defined as

āij =

{
1 aij = 0,
0 aij = 1.

(22)

Note that for the first case of (22), there is only one l possessing the complement value,
while for the second case, any l 6= j is available. This, together with the actual values of
N and K, defines the transition distributions qm of this move. There is also the option to
propose the assignment change in a deterministic way. For every aij, there is either K− 1
or 1 options to change the assignment. The number of entry selections is NK and therefore
the complexity of such a deterministic proposal would beO

(
NK2). Note, however, that the

proposals are not independent and for the reversibility to be preserved, different conditions
need to be developed. The probability of the assignment matrix having the value aij = 1
follows from the two-parametric IBP prior to the distribution [33] and is given by

p
(
aij = 1|A, α, β

)
=

m−ij

N −m−ij − β
, (23)

where m−ij is computed as the number of tracks assigned to the target j excluding the track i.
As in the case of SM move, we denote here by A′ the new assignment matrix with changed
value a′ij and a′il at their respective positions. The acceptance ratio in general would be
(with the modified proposal distribution qm) the same as in (18). However, there is a large
space for the optimisation of computational cost. For both directions of this MCMC move,
only the i-th and l-th columns of the association matrix are changed. Due to this, only x̂j
and x̂l change value and therefore change the data likelihood. Moreover, the probability
with respect to the prior is given by (23) rather than (3) which also significantly simplifies
the computation. We also exploited the independence of single columns concerning the
data likelihood and therefore we can write the acceptance ratio in the following form:

ρ
((

A′, θ′
)
, (A, θ)

)
= min


1,

∏k∈{j,l}
[
∏i,a′ik

N
(
zi|h

(
x̂′k
)
, Zi
)]

p
(

a′ij = āij, a′il = aij|A′, α, β
)

qm(A′, A)

∏k∈{j,l}
[
∏i,aik

N (zi|h(x̂k), Zi)
]

p
(
aij = āij, ail = aij|A, α, β

)
qm(A, A′)


. (24)

2.8. Sampling Procedure

In this section, we illustrate the sampling algorithm which is composed of all steps
presented in the previous sections.

The initiation is given by the generative process of the IBP distribution, which is
described in detail in [16]. This generative process is naturally modified so that the
conditions (1) are fulfilled (concerning the bistatic space and the proposed targets). The
result of this procedure is the association matrix A, the columns of which represent the
proposed targets. Target parameters are estimated with regard to the number of associated
tracks. In Section 2.2, we denoted mk the number of ones in k-th column of the association
matrix. In our application, this quantity also represents the number of bistatic tracks
assigned to the k-th target. If mk ∈ {1, 2} we are unable to initiate the target with full
parameters. Therefore, we randomly generate the 6D target position in the area of measure-
ment and find its projection onto the ellipsoid surface (mk = 1) or onto the ellipse obtained
as the curve of two ellipsoid intersections (mk = 2). This random initiation serves mainly
visualisation purposes as the target position is marginalised again once a new measurement
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is added or some measurement is removed. If mk ≥ 3 and all of the measurements share
a common receiver or transmitter, the initiation is solved using Equations (14) and (15).
Otherwise, if mk ≥ 3 but there is no common focus of the ellipsoids of measurement, the
initiation is solved in a more general way, using (13) where the maximisation itself is solved
using the log-likelihood and gradient descent algorithms. The same initiation scheme is
used through the whole sampling process whenever target position estimation is needed.

The sampling process, given the initial chain state, proceeds as follows. At each
iteration, we try to propose one SM move and one R move. Proposal distributions of these
moves were described in the previous section together with their respective acceptance
probabilities. If the proposal is accepted (i.e., if the realisation of the random variable
U ∼ Uniform (0, 1) is smaller or equal to the ratio ρ

((
A′, θ′

)
, (A, θ)

)
) the affected columns

are modified together with the corresponding target positions. This way, the sampler
travels through the parametric space described in Section 2.5. Some of the samples will
have different dimensions (i.e., the number of targets) than the others. Note that even if
two samples have the same dimension, it does not mean that the target positions have to be
the same, since the assignment of tracks to targets can be completely different. For tracking
purposes, however, we do not need the whole distribution (described by the obtained set
of samples), but rather the “best estimate”, in some sense, is required. Obvious and widely
used choices are the maximum aposteriori (MAP) estimate and the maximum likelihood
(ML) estimate. In our experiments, the ML estimate was used, which also corresponds to
the way in which the target positions are marginalised.

We illustrate the way in which the chain moves between dimensions using one specific
chain. The simulation parameters are not important in this case, as we are only concerned
with the way the chain moves in the parametric space. The algorithm performance analysis,
for which the simulation parameters are important, is provided in the results section of
this paper. There were four targets simulated in the area of measurement, three of them
with measurements in four bistatic spaces, one of them with only three measurements, and
no false measurements were included.

Four different chain states (target positions in the x− y plane) together with the actual
target positions are available in Figure 4. Note that even though we illustrated the target
states in the x− y plane, the whole computation was performed in the 6D space described
in Section 2.5 and the simulated targets also have different z coordinates. As we can see,
the chain was initiated with highly separated bistatic measurements (10 one measurement
targets, 1 two measurement target and 1 three measurement target) and with the initial
dimension nt

1 = 12. Note that only one of the initial target states corresponds to the actual
target position. During the first few iterations, mainly the SM moves were accepted, which
led to the creation of the first four measurement targets at iteration 13 and the second
one at iteration 20. Both of these targets correspond to the actual targets. In the later
iterations, SM and R moves are accepted at approximately the same rate and at iteration 25,
all actual target positions were resolved. This illustrates the capability of the sampler to
travel through the states with different dimensions. Even though we selected interesting
iterations for illustration purposes, the dimension can also grow between iterations. This is
solely dependent on the value of the acceptance ratio.
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(a) (b)

(c) (d)
Figure 4. Four different iterations of the chain. At each iteration, we differentiate between estimates with the different
number of bistatic measurements (red for one bistatic measurement, blue for two, green for three and yellow for four
bistatic measurements). Dot marks are used for estimated positions and boxes for the true target positions: (a) chain state
at the first iteration with 12 initiated targets, none of the four measurement targets and only one nearby the true target
location; (b) chain state at the 13th iteration with 9 estimated targets, one of them consisting of four measurements; (c) chain
state at the 20th iteration with 7 estimated targets, two of them consisting of four measurements, both of them nearby
the true target’s location; and (d) chain state at the 25th iteration with 4 estimated targets, each corresponding to the true
target’s location.

3. Results

In this section, we evaluate the performance of our new proposed algorithm. The
evaluation was performed using simulated data since these allow us to compare results
with the actual truth, which is usually not available when dealing with data from the
real system. For the data simulation, we set up an MSPSR system with two receivers
and two transmitters, i.e., the system comprises four bistatic spaces. Positions of the sites
are available in Table 1. We simulated targets in a local 3D Cartesian space (position and
velocity) uniformly in a block-shaped space. The number of simulated targets ranges from
2 to 8. To make the situation closer to reality, all simulated targets were detected and
tracked in all bistatic spaces, however, there were also bistatic tracks that did not represent
any of the simulated targets. The number of additional false bistatic tracks is always
equal to the number of simulated targets. The bistatic space in which those bistatic tracks
were simulated was randomly and uniformly chosen. Bistatic positions of the tracks were
provided to the association with a diagonal covariance matrix, with the variance of bistatic
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range σ2
r = 1000 m and the variance of bistatic velocity σ2

v = 4 m/s. Using the repeated
Monte Carlo simulation of data for a different simulated number of targets (and additional
false bistatic tracks), we evaluated the number of true-positive (TP) associations, which
is the number of associations created by the algorithm which correspond with the actual
simulated targets. We also evaluated the number of false-positive (FP) associations, which
is the number of associations created by the algorithm, which did not correspond with any
of the simulated targets. The last important quantity is the number of false-negative (FN)
associations, which is the number of simulated targets which the algorithm did not resolve.
These three quantities were evaluated in each Monte Carlo run. The IBP hyperparameters
were set to α = 0.25 and β = 1.9.

Table 1. Cartesian coordinates of four site positions, two receivers (Rx) and two transmitters (Tx).

Site Type x (m) y (m) z (m)

Rx 8311.076 −3793.234 246.0192

Rx −9001.145 −1833.460 267.4876

Tx 1260.241 5365.893 233.9839

Tx −1260.366 −9750.959 306.8714

3.1. Reference Deghosting Algorithms

To make the evaluation more beneficial, we decided to employ two other deghosting
algorithms on the same simulated data. The first of the algorithms is a modification of
the deghosting algorithm for a single frequency network (SFN) [9]. This algorithm can be
easily used for FM-based MSPSR system with the advantage of the absence of transmitter
uncertainty. Due to the number of bistatic spaces available (the simulated system comprises
four bistatic spaces), we initiated the Cartesian estimates from pairs of bistatic tracks in
the chosen z coordinate. The clustering procedure was then performed by the likelihood
ratio test suggested in [9] with spatial false return density ρF = 1e−11 and pD = 0.9 for all
bistatic spaces. In [5], it is suggested to take into account the error caused by replacing
the unknown height with a constant. The correction was done in the covariance matrix
through the linearisation of the model, which may not work well with different geometries.
This in particular may be responsible for quite a high number of false-positive associations
(since they could not be merged with their actual neighbours). We refer to this method as
the ellipse intersection method (EI method).

The second compared method is loosely based on a similar principle. However, instead
of initiating from two measurements and coping with errors caused by unknown height,
we initiate targets from all combinations of the three measurements. If there is a target
with more than three measurements, the estimates from subsets of three measurements
should be relatively close and we can test that using the estimated Cartesian covariance
matrices and Mahalanobis distance between the estimates. On the other hand, if there are
two triplets from two different targets, they should be far apart from each other. By fusing
the close groups and simple fusion rules (the larger the group the better, and the smaller
the Mahalanobis distance the better), we can create a feasible association algorithm. We
refer to this algorithm as the three-dimensional method (3D method).

3.2. Results

As we already mentioned, the performance comparison was performed using sim-
ulated data. We evaluated the number of true-positive (TP) associations, the number of
false-negative (FN) associations, and the number of false-positive (FP) associations. The TP
and FN quantities are complementary and together they sum up the number of simulated
targets. The achieved values for all of the three metrics for the new proposed algorithm are
available in Table 2.
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Table 2. Association results for the new proposed method. Average numbers of true-positive (TP),
false-positive (FP), and false-negative (FN) associations from 100 Monte Carlo simulations are shown.

n. of Targets/Case TP Assoc. FP Assoc. FN Assoc.

2 2.0 0.0 0.0

3 3.0 0.0 0.0

4 4.0 0.4 0.0

5 5.0 0.0 0.0

6 6.0 1.0 0.0

7 7.0 1.2 0.0

8 7.4 2.1 0.6

The displayed values are the average from 100 Monte Carlo simulations of different
target positions and bistatic spaces of false measurements, both of which were chosen at
random with uniform distribution. As we can see, up to five targets can be clearly resolved,
without almost any FP associations and no unresolved target.

The number of unresolved targets stays low even for a higher number of simulated
targets, however, due to the increased concentration of false bistatic tracks, the number
of FP associations (non-existent targets) grows. This is mainly because in our MSPSR
geometry, there are plenty of false intersections of the three ellipsoids. Many of them
could be dismissed using kinematic limits and limits for the area of the target position.
However, such restrictions were not applied in any of the methods used. Another possible
reason for the number of FP associations is the natural inclination of the mixture models
to the overestimation of the number of components. Our findings are consistent with the
theoretical analysis provided in [34].

To compare the performance of our new algorithm, we must run the same simulations
for the other two deghosting methods, i.e., the ellipsoid intersection (EI) method and three-
dimensional (3D) method, with the same setup and number of Monte Carlo simulations.
The comparison of all of the three methods is in Figure 5. Methods are differentiated using
line type (new method = solid, EI method = dashed, 3D method = dash-dotted) and TP
and FN quantities are differentiated using line colour (TP = blue, FN = red). As we can
see, in all cases, the new method outperforms the other algorithms, i.e., the number of
successfully resolved targets is always the highest for the new method, while the number of
unresolved targets is always the lowest. These results are valid for the simulated geometry
and parameters, however, the simulation illustrates the ability of the method to perform
the correct association under the given conditions.

3.3. Convergence Analysis

In this section, we present the results concerning the convergence of the proposed
sampler. The results obtained using the simulated data presented in the previous section
suggest a good performance in comparison with the alternative algorithms as well as the
ability of the proposed method to associate true targets while avoiding the creation of false
ones. However, positive results (even if it would be using data from a real radar system) do
not guarantee the correctness of the sampler. By the correctness of the sampler, we usually
mean that the stationary distribution of the chain produced by the sampler corresponds to
the desired one and whether the chain (of a certain length) may have achieved its stationary
distribution. Answering both questions simultaneously is very difficult. In this section, we
focus on the latter one, i.e., we analyse whether there is some stationary distribution which
is eventually achieved by each chain of a certain length that the sampler produces. There
are two different ways to perform such an analysis [35]. The first of them assumes some
information about the target density being available, which is then incorporated into the
analysis. The second way is purely experimental and is based on running multiple different
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chains and then analysing the differences between the results achieved by the chains. We
chose the second way for incorporating information about the target density would be
very difficult. The methods for the analysis of multiple runs of the Markov chain were also
adapted for the purposes of transdimensional Monte Carlo methods [36]. However, this
modification is not suitable in our case, as it requires us to select a set of parameters which
retain the same meaning across all possible models.

0

2

4

6

2 4 6 8

Number of targets

M
e

a
n

 v
a

lu
e

 [
ta

rg
e

ts
]

method

new method

EI method

3D method

value type

TP

FN

Performance comparison between methods

Figure 5. Performance comparison between the three methods. Two quantities, the number of true-
positive (TP) resolved targets (blue) and false-negative (FN) unresolved targets (red) are visualised.
Solid line together with circular points are used for the new algorithm, dashed line with triangular
points for the ellipse intersection (EI) method and dash-dotted line with cross points for the three-
dimensional (3D) method.

As we described in Section 2.5, the target positions, which are continuous variables by
nature, are marginalised using maximum-likelihood estimates, which helps the sampler
as it does not have to propose the positions at random. This also means that we do not
need to include these parameters in the analysis of the chain convergence and we only
need to deal with the assignment matrix which defines them completely. Since dealing
with the two-dimensional assignment matrix is impractical, we can reduce it to a one-
dimensional vector variable. This reduction directly follows from the usage of the IBP
prior mentioned in Section 2.2, where the probability distribution is formulated for the
whole class of equivalence. This is achieved by transforming the columns of the association
matrix into binary numbers, where the first row is interpreted as the most significant bit.
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By forming the actual integers, for each association matrix Ai
j at the j-th iteration of i-th

chain, we obtain a vector of integers:

τi
j =

(
τi

j1, τi
j2, · · · , τjKi

j

)
(25)

where Ki
j is the number of columns of the matrix Ai

j. By preserving the conditions (1), we

guarantee the numbers obtained in one iteration being unique, i.e., τi
jk 6= τi

jl for any k 6= l.

The analysis of τi
j between different chains or parts of one particular chain generates two

problems. First of all, the variable τi
j varies in dimension (just as the association matrix

does) not only between chains but also between different iterations of one particular chain.
The second problem arises from the integral nature of the values in the vector τi

j. For

integer values, usual test statistics such as R̂ [35] are impractical. An overview of test
procedures for Markov chains taking values from a categorical variable is presented in [37].
We used the χ2 test originally proposed in [38] which states the null hypothesis H0 that
all of the analysed chain segments contain sequences of random samples obtained using
a common distribution to all chains in the analysis. The alternative hypothesis H1 is that
the distributions of single chains are different. Note that even if the single chains achieved
a stationary distribution, the test would reject the null hypothesis provided that they are
not the same for all chains. The rejection of the null hypothesis therefore either states that
the sampler does not provide chains with a stationary distribution or that it is different
for each chain. For now, let us reduce the association matrix at each iteration j of each
chain i into the single number Ki

j. This way, the chains consist of scalar discrete variables.
Let us have s different chain segments and the set of all unique observed target counts
κ = (κ1, κ2, · · · , κr). For each chain i, we evaluated f i

kl as the number of transitions from
dimension κk to dimension κl . The test statistic of the null hypothesis was then given
by [37]

X2
f =

s

∑
i=1

r

∑
k=1

∑
l∈Rk

f i
k
(

p̂i
kl − p̂kl

)2

p̂kl
(26)

where:

f i
k =

r

∑
l=1

f i
kl

p̂kl =
∑s

i=1 f i
kl

∑s
i=1 f i

k

p̂i
kl =

f i
kl
f i
k

Rk ={k| p̂kl > 0}.

(27)

According to [38], this test statistic follows the χ2 distribution with the degrees of
freedom given by

r

∑
k=1

(ak − 1)(bk − 1) (28)

where:
ak =|

{
i : f i

k > 0
}
|

bk =|{l : p̂kl > 0}|.
(29)

We generated 10 independent chains from the sampler, using simulated data from the
previous section. Each of the chains contained 10,000 samples (i.e., we worked with long
runs of the sampler). The analysed segments were then obtained by taking the second half
of each chain, i.e., each segment contained 5000 samples. Then, the test statistic (26) was
calculated and the value X2

f = 8.33 with n = 10 degrees of freedom was obtained. Since
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the assumed probability distribution of the test statistic was χ2, the value of the cumulative
density function is 0.40. Therefore, the p-value is 0.60 which allows us to accept the null
hypothesis with the usual significance level α = 0.05 and even α = 0.1. This test has shown
us that the sampler proposed in Section 2 produces chains, which converge to a common
stationary distribution concerning the assignment matrix dimension.

An appropriate method for the analysis of vectors τi
j is not known to the authors of

this paper. However, once we validate the convergence concerning the number of targets,
we can perform the graphical validation of the obtained targets using the histogram of their
counts in different chains. Such a histogram is presented in Figure 6. As the chain travels
through the parametric space, it discovers multiple different target proposals expressed as
columns of the association matrix. Each column can be transformed using the procedure
described in Section 2.2, which is used to form classes of equivalence over association
matrices. These codes are common even for different runs of the sampler because they are
bound to the source data, provided that the ordering of bistatic tracks was not changed.
Note that this does not have anything to do with the exchangeability property of the IBP
prior, but rather it is a necessary condition for the identification of the specific associated
groups of bistatic tracks across the iterations of single chains as well as between multiple
chains. We can see that the first six targets in each histogram are the same codes, only with
different ordering and counts. These six codes correspond to the true simulated targets and
two separated clutter measurements. The rest of the histograms are random targets with
rather small counts, which are results of the probabilistic nature of the MCMC method.

Another interesting question is, once the convergence has been verified, what is the
uncertainty of the model posterior probabilities estimated from the chains produced by
the sampler. For this purpose, we decided to use the approach developed in [39]. The
analysis is based on the estimation of the Markov chain transition matrix where the states
represent the current model. In our case, each model is differentiated by its vector of lof
codes presented in Section 2.2. Note that each model can have a different dimension and
therefore the number of codes can be also different. We assigned one numeric label to
each unique model and these labels were used in the sampler output. Then, the matrix of
frequencies N consisting of entries nij was built, which represent the number of transitions
from a model with label i to a model with label j. The matrix N is then used as input to the
sampled transition matrix P(r) prior distribution, which was proposed to be:

p(r)
i ∼ D(ni1 + ε, ni2 + ε, · · · , niI) (30)

where p(r)
i denotes the i-th row of the sampled transition matrix P(r), I denotes the overall

number of models, D denotes the Dirichlet distribution and ε is the prior parameter. The
prior parameter was set to ε = 1/I, as it is suggested in [39] for better numerical stability.
The samples of the stationary distribution are generated using the normalised eigenvector
of P(r) corresponding to the unit eigenvalue. For the rest of the procedure, please refer to
the original paper [39]. The resulting model posterior probabilities, together with the fifth
and the ninety-fifth percentiles (vertical black bar) are plotted in Figure 7.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
Figure 6. Histogram of top 10 count target lof codes: (a) histogram from chain no. 1; (b) histogram from chain no. 2;
(c) histogram from chain no. 3; (d) histogram from chain no. 4; (e) histogram from chain no. 5; (f) histogram from chain
no. 6; (g) histogram from chain no. 7; (h) histogram from chain no. 8; (i) histogram from chain no. 9; and (j) histogram from
chain no. 10.
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Figure 7. Stationary distribution over the models encountered in the chains produced by the sampler.
Red points represent the median and the black bars represent the range between the 5th and 95th
percentile. The model labels were assigned again after the posterior evaluation so that they are sorted
in descending order. The distinction between the first and the rest of the models is visible and holds
even with respect to the precision.

4. Discussion

The bistatic track association and deghosting method presented in this paper relies on
two techniques. The first of them was the IBP prior distribution for the association matrix
and the second one is the RJMCMC inference procedure with a custom set of moves related
to the bistatic track association problem.

The suitability of the IBP prior was analysed in Section 2.2. The main argument for
its usage is the exchangeability property, which allows us to compose targets and tracks
with arbitrary ordering without any influence on the results. The second argument would
be the two-parameter version of the distribution. The two parameters can be used to
set the expected number of the association matrix columns (i.e., the expected number of
targets). This property can also be observed in the results for the simulated data where
the number of false-positive targets (i.e., the number of excess columns) is kept relatively
low, even for a higher number of tracks. The real-world justification of this approach
is the direct connection between the number of targets assumed to be present in the
area of measurement and the association scheme (i.e., the association between bistatic
and Cartesian spaces). Such a connection is usually missing in the classical deghosting
algorithms and we see this as an improvement achieved by the proposed method.

In Section 3, the method assessment using the simulated data was presented. First
of, the ability of the proposed method to solve the association problem was tested. This
was achieved through the repeated simulation of target measurements and the resolved
targets were compared with the known truth. The evaluation of true-positive and false-
negative associations suggests a good ability of the method to successfully resolve the
actual targets. This is emphasised via a comparison with two alternative algorithms, both
of which are outperformed by the proposed method. However, due to the geometrical
properties of the bistatic geometry and the nature of the method, the number of false-
positive associations grows with the number of actual targets and the number of false
measurements. Note, however, that the growth is slower than in the case of the compared
algorithms. Since the proposed method is a Markov chain Monte Carlo (MCMC) method, it
was considered necessary to assess the convergence of the chains produced by the sampler
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and to analyse the resulting stationary distribution. This assessment was performed in
two steps, both of which used 10 long runs of the sampler with 10,000 iterations (but only
the second half of each chain was used in the analysis). In the first part of the analysis,
the convergence with respect to the number of resolved targets was performed. For this
purpose, the χ2 test for categorical data was utilised and the calculated test statistic verified
with a high level of significance that the chains were from a common distribution of the
number of targets. The second part of the chain analysis was based on the estimation of the
transition matrix between different models (i.e., different association matrices), which is
suitable for the transdimensional MCMC. The models with a varying number of parameters
were reduced to a single number, the model label. In addition, using the Dirichlet prior
for the transition probabilities between models, this analysis allowed us to assess the
model posterior probabilities as well as the precision of these probabilities. The graphical
results suggest that there is only one model with significant posterior probability and this
probability is known with relatively high precision. All of the three analyses verified the
good performance of the proposed bistatic track association and deghosting method.

From the modelling perspective, as it was pointed out by the reviewers, the sensitivity
of the results with respect to the prior and proposal probability distribution was not
analysed. However, as a matter of future work, we plan to provide a comparison of the
results using different priors on the association matrix, as this is the key component of our
model. However, as far as we know, there are not many probability distributions which do
possess the same properties as the two parametric IBP probability distributions. One of the
interesting options would be to use the prior used in [11] and compare the results.

The most computationally expensive part is the marginalisation of the target states.
At every proposed step, the association of bistatic tracks is changed for a certain subset
of targets. For every target influenced by this change in association, we need to compute
again the target position in the maximum likelihood sense. The starting point of each such
maximisation is computed using the closed form method (14), where the most computa-
tionally expensive operation is the multiplication of the coordinate matrix S transposed
by itself. The inverse of this product is just an inverse of 3× 3 matrix and this inverse
is used in the rest of the computation for one target. Only a few iterations are required
to correct this initial estimate, if necessary (e.g., if there are measurements which do not
fit into the closed form initiation scheme). The number of iterations is also dependent
on the precision that is required. We argue that, with respect to the usual targets, if the
change in position is less than 0.01 m, the iterations can be stopped. If the maximisation
is performed iteratively, the most computationally expensive part is the evaluation of the
normal likelihood function, where the exponent corresponds to the Mahalanobis distance.
The inversion of the measurement matrix can be solved by precomputation (the data do
not change during the inference) and is even easier in the case where we have the same
measurement precision for all data. Partial derivatives of the projections from the Cartesian
to any of the bistatic spaces can be expressed in closed form. For the rest of the computation,
the complexity is comparable to any other classical MCMC method.

The main limitation of the experiments performed in this paper is the bistatic setup.
The simulation of the real setup used two transmitters and two receivers. There are sys-
tems with many more sites of both kinds, however, they are rarely used in the literature,
e.g., [1–5]. In this regard, the setup with more than one receiver and more than one trans-
mitter seems to be more general. The limitation with respect to the number of simulated
targets is also present, since the simulation results were only evaluated up to eight simu-
lated targets. However, this is not so uncommon in the tracking literature [1,2] and others.
Together with the limitations in the simulation setup design, one of the limitations is the
simulation itself. However, the experiments with real data were spared as a matter of
future work, since the results’ analysis and data description would take up most of the
manuscript. Other limitations such as the fixed choice of the proposal distribution were
already mentioned; however, we do believe that the results are nonetheless convincing.
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5. Conclusions

In this paper, we developed a new bistatic track association and deghosting algorithm.
The core of the algorithm is based on the Bayesian approach, namely the hierarchical model
which utilises Indian buffet process (IBP) as the prior distribution for the association matrix
between the bistatic and Cartesian spaces. The inference of the targets was performed using
the reversible jump Markov chain Monte Carlo (RJMCMC), which allowed the method to
naturally traverse across association hypotheses with a varying number of targets. In this
paper, detailed descriptions of the Bayesian model, the parametric space and the sampler
moves are provided. The method assessment was performed using a simulated bistatic
setup where the simulated data contained both missing and false measurements. The
results show a good performance in comparison with two alternative algorithms. The
simulated data were also used to analyse the statistical properties of the chains produced
by the sampler in terms of convergence and posterior probabilities. Using statistical testing,
the convergence with respect to the number of targets was verified. Further research will
be concerned with the sensitivity analysis with respect to the prior probability distribution
and assessment of the method using data from a real radar system.
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