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Abstract: We present an optical depth imaging system suitable for highly scattering underwater
environments. The system used the time-correlated single-photon counting (TCSPC) technique and
the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a
linear array of single-photon avalanche diode (SPAD) detectors fabricated in a customized silicon
fabrication technology for optimized efficiency, dark count rate, and jitter performance. The bi-static
transceiver comprised a pulsed laser diode source with central wavelength 670 nm, a linear array
of 16 x 1 Si-SPAD detectors, with a dedicated TCSPC acquisition module. Cylindrical lenses were
used to collect the light scattered by the target and image it onto the sensor. These laboratory-based
experiments demonstrated single-photon depth imaging at a range of 1.65 m in highly scattering
conditions, equivalent up to 8.3 attenuation lengths between the system and the target, using average
optical powers of up to 15 mW. The depth and spatial resolution of this sensor were investigated in
different scattering conditions.

Keywords: single-photon; TCSPC; underwater imaging; SPAD; custom technology; 3D imaging;
LIDAR

1. Introduction

Active optical depth imaging in scattering underwater environments finds application
in several fields, including archeology [1,2], autonomous manipulation [3], inspection, and
monitoring [4].

There are several methods to obtain three-dimensional optical images, with triangula-
tion and time-of-flight being commonly used. Triangulation is based on the geometrical
relation between the separated source and receiver and the target, used to obtain a depth
estimation [5]. Direct time-of-flight approaches measure the return time of optical pulses
from transceiver to target, to provide an estimate of depth [6]. These approaches can
be used in conjunction with different optical scanning techniques in order to obtain a
three-dimensional image of the full target area. For example, one of the most used scanning
techniques is based on a synchronous scan approach, which scans the target by using
a highly collimated laser source and synchronously collects the scattered signal with a
receiver having a narrow field of view [7]. When this scanning technique is used with the
triangulation approach, the advantage is improved depth resolution when compared with
time-of-flight sensors at short ranges (less than 3 m) [8]; however, the main challenge is
the calibration process to obtain the correct geometrical parameters of the system [9,10].
The use of the time-of-flight approach overcomes much of the need for a calibration pro-
cess, however, the depth resolution depends on the temporal resolution of the timing
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measurement in addition to accurate estimations of the refractive index of the transmission
medium.

Over the years, several imaging systems were developed by using the synchronous
scanning approach, and most of them use a laser line scanner (LLS) configuration. For
example, the system described by Palomer et al. [10] is a LLS based on triangulation,
and uses a 50 mW average power green laser in conjunction with a CCD camera. The
scanning was performed by using a galvanometer mirror mounted below an underwater
vehicle. Three-dimensional imaging was demonstrated at various distances between
0.5-5 m, depending on water attenuation, as a visual aid for underwater manipulation [11]
and simultaneous localization and mapping (SLAM) [12]. Another example of LLS is
reported in [8,13], which is based on the time-of-flight approach. The receiver was a silicon
photodiode and the source was a pulsed laser with central wavelength of 532 nm. The
scans were performed by two galvanometer mirrors that scanned the laser line over two
directions. This approach demonstrated three-dimensional imaging over a distance in the
range 2-40 m, depending on the local attenuation levels in water. Typically, these systems
require a scanning mechanism to scan the laser line across the field of view. This approach
has been modified to exploit the motion of underwater vehicles to remove the need for
scanning optics in the system [14-16], which greatly simplifies the complexity of the optical
configuration of the transceiver system.

Recently, underwater three-dimensional imaging has been demonstrated by using the
time-of-flight approach in conjunction with the time-correlated single-photon counting
(TCSPC) technique [17]. The TCSPC technique is a statistical sampling approach based on
repeated measurement of the timing difference between the outgoing laser pulse and a tar-
get return photon event triggered by a single-photon detector [18]. The target is illuminated
by a high-repetition rate pulsed laser source, and the scattered signal that arrives back at
the detector is very weak, meaning that the probability of detection from a single laser pulse
is low (typically <<5%). Under these conditions, the timing distribution can provide an
accurate representation of the time-of-flight of the photon return. Typically, a single-photon
lidar system will have a timing jitter of a few hundred picoseconds or lower, however
the depth (or timing) resolution will improve further as the number of return photons is
increased allowing depth resolution which can be considerably better than that predicted
from the timing jitter alone as described by Pellegrini et al. [19]. This leads to a trade-off be-
tween measurement time and depth resolution. With an appropriate photon return, depth
resolution in the sub-millimeter range is possible, allowing for better distinction between
closely spaced surfaces, such as depth profiling of camouflaged targets [20] or objects
partially hidden by foliage [21]. The high optical sensitivity and excellent depth resolution
make this technique particularly suitable for imaging in challenging conditions, such as
depth imaging through smoke or fog [22,23], and kilometer range depth imaging [24,25].

The TCSPC approach has been adapted for use in highly scattering underwater
environments, and depth profiling was achieved using sub-milliwatt average optical
powers with scattering levels up to 9.2 attenuation lengths (AL) between transceiver and
target [17,20], i.e., 18.4 attenuation lengths round-trip (one attenuation length being the
distance the light travels before its intensity is reduced to 1/e of its initial value). The
demonstration of this technique in underwater environments was first performed by an
optically scanning monostatic transceiver fiber-coupled to an individual single-photon
avalanche diode (SPAD) detector. The monostatic transceiver raster scanned the laser
illumination across the target area using two galvanometer mirrors, with the return signal
being transferred to the SPAD along a common optical axis with the outgoing illumination.
This allowed a narrow field of view of approximately 0.5 mrad, meaning that forward
scattering events could be effectively spatially filtered, as they are unlikely to be collected in
the narrow optical field of view of the receiver optics. With picosecond detection resolution,
back-scattered events can be distinguished from the return signal in the time, or depth,
domain. Use of single-pixel detector approach meant that a high spatial resolution of less
than 60 prad was achieved in scattering waters up to 8 AL between the system and the
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target. However, this was at the expense of long acquisition times to acquire the timing
information over the whole target area. In order to avoid time-consuming optical scanning
and achieve shorter acquisition times, later work focused on the use of SPAD detector
arrays, initially using a 192 x 128 pixel SPAD detector array [27]. This SPAD detector array
was fabricated in complementary metal-oxide semiconductor (CMOS) technology, with
timing electronics integrated into each pixel [28]. Taking into account the fill-factor, the
overall detection efficiency of each pixel was 0.9% at A = 670 nm. The average dark count
rate of the array was 28 cps per pixel, and the instrumental response of the system was
approximately 350 ps. Depth imaging in scattering environments equivalent to 6.7 AL
between transceiver and target were achieved, using average optical powers of up to 8 mW.
Although this result is very promising, the optical configuration meant it was not possible
to achieve imaging at the levels of scatter possible with the single-pixel system, since the
larger field of view of the SPAD detector array sensor meant that more scattering events
were detected than in the case of the single-pixel detector geometry. This led to shorter
achievable ranges and reduced spatial resolution when compared with the earlier single-
pixel detector configuration. Critically, the SPAD detector array approach did, however,
allow simultaneous full-field depth measurements at a large pixel format in data acquisition
times as short as 10’s us.

Typically, CMOS SPAD detector arrays give the advantage of a high degree of paral-
lelization [29], but the constraints of the fabrication process mean that the performance
of the SPAD detectors cannot be optimized to the level possible with a customized SPAD
fabrication process [30], which can allow the tailoring of detector characteristics. When
compared with CMOS SPAD detector arrays, SPAD detectors fabricated in custom tech-
nology present several advantages, such as increased single-photon detection efficiency
(above 30% at A = 670 nm [31]), and lower timing jitter (of the order of 35 ps [32]). Addition-
ally, higher maximum count rates and lower dark count rates can also be achieved when
custom fabrication processes are used. For example, a count rate of 120 Mcps and dark
count rate of 9 cps at the temperature T = —20 °C has been demonstrated by Ceccarelli
etal. [33]. It is important to note that when SPAD detectors fabricated in custom technology
are used for time-correlated measurements, external front end and timing electronics are
needed [34-37], potentially limiting the number of pixels. However, at the same time, a
high number of pixels means a high count rate of the module; under such conditions,
readout times become significant and may limit the speed of a TCSPC measurement [38].

In this paper, we investigate a Si-SPAD detector array fabricated in custom technology
optimized for underwater three-dimensional imaging. The hardware consists of two main
parts: a detection head and a TCSPC module. The detection module is based on the
architecture reported in [39,40], with a new firmware specifically developed to meet the
requirements of underwater depth imaging. The TCSPC module asynchronously time-
tagged the events detected by the detection head, providing the timing information needed
to build the depth profile. In this work, the system was kept stationary and the target was
shifted in water with a motorized stage to perform the scan. This is equivalent to a system
integrated in an underwater vehicle and driving the scan by using the direction of travel of
the vehicle, avoiding the use of scanning optical components. The motivation for this work
is to exploit the high data rate possible with SPAD detector arrays fabricated in custom
technology, while reducing the optical field of view to a value much lower than required
with a rectangular SPAD array, as demonstrated previously [27]. Coupled with the lack
of optical scanning, this can mean a high performance depth imaging system capable of
operation in high scattering levels, with the benefit of relatively low size, weight, and
power requirements.

2. Materials and Methods
2.1. Detection Head

The detection head is the core of the detection system. First of all, it hosts a 16 x 1 array
of custom silicon SPADs [41], featuring a photon detection efficiency (PDE) as high as 28%
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at A = 670 nm and an average dark count rate (DCR) of 924 cps. The diameter of each
SPAD is 50 um and the pitch is 250 um. Moreover, a 16 x 1 array of fully-integrated active
quenching circuits (AQCs) is placed close to the SPAD array to minimize parasitics, thus
ensuring a fast sense of the avalanche current, promptly followed by an active quenching
phase. In this way, it is possible to minimize the amount of charge flowing through the
SPAD during an avalanche event, an aspect that is crucial to minimize the afterpulsing
probability [42]. Both the SPAD and the AQC array are placed in a sealed chamber where a
dry atmosphere is created by purging nitrogen through the frontal valves. In this way, it is
possible to cool down the detectors to achieve significant reduction in dark count rates [41],
while avoiding any potential issue due to moisture. A closed loop temperature control
based on a thermo-electric cooler (TEC) allowed us to cool the SPADs down to 0 °C. Finally,
the detection head generates the timing signals which are fed to the TCSPC module via a
high-speed and low-crosstalk differential Samtec cable.

2.2. TCSPC Module

The timing signals extracted from the SPAD array require a time measurement circuit
able to convert such information into a digital word for processing. To this aim, our TCSPC
module is based on four fully-integrated 4-channel arrays of time to amplitude converters
(TACs), featuring the structure reported in [43], followed by two 8-channel commercial
14-bit ADCs (AD9252 from Analog Devices). Overall, the TCSPC module receives the
Start signals from the detection head, each one marking the detection of a photon, and the
Stop signal from the laser. The Start-Stop time interval is converted into a digital word
by the TACs followed by the ADCs, and then sent toward an external PC via USB3.0. In
particular, in this module we developed a new firmware to implement the time-tagging
data transmission method, meaning that each event is described by two strings: a macro
time, i.e., the coarse time elapsed by the start of the measurement which is obtained by
counting the number of laser periods, and the micro time, i.e., the precise position of
the detection event within the laser period which is measured by the TAC. Overall, the
detection system features a timing bin-width of 1.6 ps, a timing jitter of ~60 ps full width at
half maximum (FWHM), and a differential non-linearity (DNL) lower than 4% peak to peak
of the LSB. Each channel provides a conversion rate up to 4 Mcounts/s, thus achieving an
overall rate as high as 64 Mcounts/s.

2.3. Experimental Setup

Figure 1 shows the schematic of the experimental setup. The illumination source used
was a pulsed semiconductor laser diode (PicoQuant LDH-P-C-670M, PicoQuant GmbH,
Berlin, Germany) with central wavelength A = 670 nm, a repetition rate equal to 40 MHz,
and a pulse-width of approximately 120 ps that dominated in the overall temporal response
of the system. The operational wavelength was selected to correspond with the spectral
maximum transmittance in highly scattering environments (>5 AL), as demonstrated
previously [17]. The laser was highly diverging in one axis, which was orientated along
the horizontal axis at the target position. The target was placed in a 1750 mm long, 250 mm
wide, 250 mm high water tank. The distance of the target in water was approximately
1.65 m. During a depth profile measurement, the target was moved along the vertical
direction using a motorized translational stage. The speed of the target was 10 mm/s and
the distance travelled by the target was 100 mm, which meant that all the scans shown in
this initial demonstration were performed by using an overall acquisition time equal to 10 s.

Two cylindrical lenses (CL1 and CL2) were used to collect the light scattered by the
target and focus the illuminated area efficiently onto the linear SPAD detector array. The
lenses had a clear aperture of approximately 23 mm, and focal lengths f; = 75 mm and
f; = 150 mm. These focal lengths were chosen in order to match the laser line dimensions
(35 mm x 2 mm at the target position) to the size of the linear SPAD detector array.
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Target distance in water ~1.65m
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Figure 1. Schematic of the experimental setup. The system comprised a pulsed laser diode source with central wavelength

670 nm, a SPAD detector linear array, and dedicated TCSPC electronics. The scan was performed by moving the target over

the vertical direction with a motorized translational stage, and the light scattered by the target was collected by using two
cylindrical lenses (CL1 and CL2).

Before each depth profile measurement, the attenuation of the environment was
measured by using the method and setup described in [27]. This method allowed us to
collimate the light from the laser source and measure the average optical power at two
positions, P; and P;, separated by a distance d = 0.5 m in water. From the Beer-Lambert
law [44], the transmittance of the water over half a meter was then calculated as

P —od
T = P e €))
where « is the attenuation coefficient of the environment and ad is the number of attenuation
lengths.

During a depth profile measurement, the TCSPC module asynchronously time-tagged
the detected events and the synchronization signal for the entire duration of the scan. This
meant that the vertical resolution of the image (i.e., the number of lines per scan) was set
by the user during the analysis of the data, and shorter acquisition times per line were
investigated without the need of repeating the measurement.

For each pixel, a histogram was built with the desired acquisition time and a temporal
resolution of approximately 1.6 ps, which was equivalent to 0.18 mm depth in water. A
pixel-wise cross-correlation X was performed between the histogram recorded H and the
normalized instrumental response C recorded for each channel, as

t
X; = ZHiJrk x C;, ke [—t, t] 2)
i=1

where t is the number of timing bins used for the calculation. The maximum of the cross-
correlation for each pixel was used as an estimate of the time-of-flight and provided the
relative depth with respect to the reference. The intensity for each pixel was estimated
by counting the number of events in a time interval of 150 bins width centered on the
maximum value determined by the cross-correlation.

Figure 2 shows the instrumental timing response of the system for each of the detectors.
This instrumental response is the timing response for the entire imaging system, and is the
convolution of the temporal responses of the laser system, the detectors and the timing
electronics. The instrumental response measurement was performed in unfiltered tap water,
using a Lambertian reference flat target with nominal reflectance equal to 99% (Spectralon
Diffuse Reflectance Target, Labsphere, North Sutton, NH, USA). The average optical power
used was 27 nW, and the acquisition time was approximately 40 s. The repetition rate of the
synchronization signal was 40 MHz, corresponding to a period of 25 ns in the histogram.
The instrumental response was measured over the full period; however, Figure 2 displays
a reduced timing interval of approximately 6.5 ns in order to illustrate the instrumental
responses with greater clarity. The relative delays in the peak returns from the flat reference
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target in the instrumental response are fixed delays between the detectors, which are due
to small differences in the output voltages of the integrated pick-up circuit of each detector.
Hence, it is vital to perform the cross-correlation using the raw data and instrumental
timing response from each individual detector, rather than an average timing response
over the whole array. In addition, the histogram in Figure 2 shows a shoulder on the
right side of each peak, which originated from the pulsed laser diode source used in the
experiments. Therefore, to maintain an identical temporal profile of the laser pulse in all
the measurements, the driving current of the laser was chosen in order to maximize the
overall energy in the pulse while maintaining an individual peak in the temporal profile.
The use of higher driving currents would increasingly cause a second peak to become more
dominant, which would eventually affect the timing, and depth, resolution possible. This
meant a maximum average optical power of approximately 15 mW was used for the scans
in highly scattering environments (>6 AL). At lower scattering levels, the average optical
power was reduced with the use of ND filters in order to avoid saturation of the detector.

9.6

10.4 11.2 12 12.8 136 144 15.2 16
Time (ns)

Figure 2. Instrumental response of the 16 detectors recorded in unfiltered tap water using an acquisition time of approxi-

mately 40 s.

The pixel-wise cross-correlation approach gives an accurate estimation of the time-of-
flight of the detected photons when the measurement is performed in favorable conditions
which typically result in a high photon return in the histogram, as in the case of absence of
scattering in water or long acquisition time per pixel. However, shorter acquisition times
or high level of scattering will reduce the signal to noise ratio, which can eventually cause
an incorrect estimation of the depth [19].

Several methods have been developed to improve the depth estimation in the presence
of scattering. For example, the cross-correlation approach can be performed by selecting
the timing bins of the histogram where the photon return from the target is expected. This
approach does not include the backscattering from shorter depths than the target position in
the calculation, which can improve the depth estimation of the area of interest from a cross-
correlation approach. In the results shown in this paper, the cross-correlation approach was
performed by selecting in each channel a timing interval of 1000 bins in the overall 16,384
timing bins recorded in the original histogram. However, this approach assumes that the
approximate location of the target is known in order to select an appropriate timing bin
position. If the target position is not known, advanced computational imaging approaches
can be used to analyze the entire histogram and to reconstruct complex scenarios with very
low numbers of returned photons [45].
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70 mm

The main parameters of the experiment are summarized in Table 1.

Table 1. Main parameters of the experiments.

Parameter Value
Laser source Laser diode (PicoQuant, Germany)
INlumination wavelength 670 nm
Repetition rate 40 MHz

3.3 uW-15 mW (power varied with ND filters
at the output of the laser head)

Stand-off distance in water 1.65m

Mlumination beam at target 35 x 2mm

16 x 1 silicon SPAD detector fabricated in

Average optical power

Detector
custom technology
Timing module Dedicated TCSPC electronics
Histogram bin width 1.6 ps in average
Instrumental response at FWHM
(includes laser, detectors, and timing 121 ps on average across the array
electronics)
Optical field of view (full-angle) 18.9 x 0.4 mrad
Dark counts 923.8 cps
Overall backgrognd light in clear water (incl. 1354.6 cps
ark counts)
Scan area 33 x 100 mm
Target speed 10 mm/s

3. Results

The target used in the depth and intensity measurements is shown in Figure 3a. This
target was a commercial plastic fitting pipe connector, 70 mm long and with external
diameter equal to 30 mm. The depth resolution of the system was investigated in different
scattering environments using the depth target shown schematically in Figure 3b. The
depth target was designed and 3D printed in order to have depth features in the range
from 2.5 to 30 mm. The third target shown in Figure 3c is a flat black and white target
printed on adhesive vinyl. The target consisted of a set of horizontal lines with different
thicknesses, varying from 0.312 to 10 mm, and it was used to study the spatial resolution
of the system when a user defined number of lines was used to reconstruct the image in
unfiltered tap water and scattering environments.

15 mm
7.5 mm \
7

-
30
- I 5
I 2.5 mMm
|

20 mm
42.5mm — ]2 5 mm
10 mmI 2 = 0.625mm
©0.312 mm

Figure 3. Targets used in the experiments. (a) Photograph of a plastic pipe connection. (b) Schematic of target used to
investigate the depth resolution of the system in scattering environments. (c) Schematic of target used to investigate spatial
resolution of the system in a number of scattering conditions.
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Depth

Intensity

3.1. Depth Imaging in Non-Scattering Water

The performance of the system was initially investigated in unfiltered tap water using
the plastic pipe target shown in Figure 3a. In this environment, the attenuation between
the system and the target was relatively low, equivalent to 1.2 AL at A = 670 nm. For
this measurement, the average optical power entering the water tank was 9 uW. The
overall acquisition time of the scan was 10 s, and the data were analyzed by selecting a
vertical resolution of 1000 lines, which was equivalent to 10 ms acquisition time per line.
Additionally, shorter acquisition times were extracted by the recorded histograms and
analyzed with the pixel-wise cross-correlation approach.

The depth and intensity profiles are shown in Figure 4 in the top line and bottom
line, respectively. The results are shown for decreasing acquisition times from 10 ms to
1 ps. The depth and intensity profiles at the longest acquisition time of 10 ms show the
sub-millimeter depth resolution achievable by the system. As the acquisition time per line
is decreased, the resolution of the image decreases accordingly. However, the target can be
reconstructed at the acquisition time per line of 5 ps, and still be detected at the acquisition
time per line of 1 ps.

0.05 ms 0.01 ms 0.005ms  0.001ms Depth
mm)
v
£
g I I
o
Counts Counts Counts Counts Counts
2 0 8 5 3
6
Q
£ 4
g
a
2

0

Figure 4. Depth (top line) and intensity (bottom line) profiles of the plastic pipe target in unfiltered tap water (1.2 AL). The
acquisition time per line was varied by software from 10 ms to 1 us, and the average optical power was equivalent to 9 pW.
Under these conditions, the average target return rate for this measurement was approximately 1231 counts per pixel per
10 ms acquisition time, obtained performing the average over 8 SPAD detectors in the central part of the target.

3.2. Depth Imaging in Scattering Underwater Environments

The second experiment investigated the depth imaging capabilities of the system in a
number of scattering environments. In order to increase the level of scattering of the water,
an antacid medicine (Maalox suspension) was used as scattering agent [46].

The plastic pipe target was kept at the distance of 1.65 m in water; however, by adding
the scattering agent to unfiltered tap water, the number of attenuation lengths between the
transceiver and the target increased as described by Equation (1).

The scans were acquired with an overall acquisition time of 10 s and the data were
analyzed choosing a vertical resolution of 1000 lines. Hence, the histograms were built
using an acquisition time per line of 10 ms, and then analyzed by performing the pixel-wise
cross-correlation approach to reconstruct the depth and intensity profiles of the target.
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The main results are shown in Figure 5. The first column shows the case of unfiltered
tap water, which was equivalent to an attenuation of 1.2 AL between the transceiver and
the target. The next columns show the increasing level of scattering in water up to 8.8 AL.
As the level of scattering is increased, the depth resolution of the depth profile decreases
because of the lower photon return from the target and the higher level of background.
With additional attenuation, the backscatter increases the background count level as well as
reducing the signal strength, leading to a deterioration in the quality of the reconstructed
image. However, the results show that the target can be reconstructed with the cross-
correlation approach up to 8 AL. At higher levels of scattering, the target can be detected
up to 8.3 AL but then the target cannot be distinguished from the background, preventing
the depth estimation. The average optical power of each scan was adjusted using ND
filters depending on the level of scattering, to optimize the return from the target without
saturating the SPAD detector array. The average target return in each environment indicates
the average return from the target calculated by adding the events in a timing interval of
150 bins width centered on the timing bin with the maximum value of the cross-correlation.
In addition, the contribution of the background was subtracted by the return peak, and it
was calculated over 150 bins next to the return peak from the target. Then, the average was
performed over the 8 SPAD detectors in the central part of the target only.

4.7 AL 5.3 AL 6.2 AL 6.8 AL 7.5AL 8AL 83 AL 8.8 AL
P,=17mW P,=142mW P,=147mW P,=144mW P, =151mW P, =145mW P, =15.4mW P, =14 mW
Depth
498 (mm)

301

£ 50

40

30

20

10

Counts Counts
00

1000 12
E :

Counts Counts Counts
200

150 150 =
- 100 {100 E
50 ‘50 B
0 0 :

800

600

400

200

Figure 5. Depth (top line) and intensity (bottom line) profiles of the plastic pipe target in unfiltered tap water and several
concentrations of scattering agent. The data were analyzed with the pixel-wise cross-correlation approach, the acquisition
time per line was set to 10 ms, and the average optical power was adjusted from 9 uW to 15.4 mW, depending on the level

of scattering in water. The average target return for each scan was obtained by averaging the count rate of the 8 SPAD

detectors in the central part of the target over the 10 ms acquisition time.

At the same time, the intensity map was reconstructed by counting the number of
events around the maximum of the cross-correlation. The profiles in different scattering
environments are shown in the bottom line of Figure 5, where it is possible to discern the
target up to 6.8 AL but then the target gradually disappears as the level of scattering is
further increased.

Table 2 shows the average target return per pixel without the background contribution,
and the signal-to-background ratio (SBR) defined as the ratio between number of counts in
highest bin in the peak and the average background per bin. The values in the table were
calculated and averaged over 10 ms acquisition time for the central 8 pixels of the detector
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array. When the SBR >2, there is no loss of information from the target and the image is
fully reconstructed. At increased level of scattering (>7 AL), the SBR decreases because
of the attenuation of the signal from the target and the higher background, meaning that
for SBR <1.2 the target cannot be detected with the cross-correlation approach. However,
depth information retrieval can be achieved with bespoke image processing techniques
that exploit spatial correlation between adjacent pixels. This was shown in previous
work in highly scattering environments [47]. In addition, it is important to note that the
main contribution to the background level is due to scattering events, with a negligible
contribution from detector dark counts. The average detector dark count is 0.09 counts
over 150 bins in a 10 ms acquisition time, meaning that under these conditions the level
of scattered background events is approximately 100 times the contribution from detector
dark events alone.

Table 2. Average target return per pixel and signal-to-background ratio (SBR) for the scans shown in
Figure 5. The averages were calculated by considering the central 8 SPAD detectors for those pixels
coincident with the target.

Average Optical Power Average Target Return Per

Attenuation Lengths (mW) from Source Pixel in 10 ms Acquisition SBR

1.2 0.009 1231 6.8
4.7 1.7 498 6.0
53 14.2 605 4.3
6.2 14.7 301 3.4
6.8 144 167 25
7.5 15.1 101 1.9

8 14.5 78 15
8.3 154 66 1.2

3.3. Depth and Spatial Resolution

In order to investigate the depth resolution achievable by the system in different
scattering environments, several scans of the depth target (Figure 3b) were performed by
varying the level of scattering in water. Figure 6 shows the depth profiles of the depth target
in a number of scattering environments. The average optical power of the measurements
was varied in the range from 3.3 pW to 15 mW, depending on the level of scattering of the
water. The data were analyzed with the cross-correlation approach by using 1000 lines
and an acquisition time per line of 10 ms. The profile Figure 6a shows the height of each
block of the target with respect to the base of the target as seen from the system. In ideal
conditions such as long acquisition times and absence of scattering, the depth resolution
of the profile is limited only by the timing resolution of the system and the number of
counts detected. In these experiments, the timing histogram bin width used was 1.6 ps,
which allows to achieve sub-millimeter depth resolution. However, the aim of this study is
to quantify the degradation of the depth resolution with scattering, and hence the target
was designed and printed in order to have depth features of the order of few millimeters
(>2.5 mm).

The results in Figure 6 show that depth resolution of better than 2.5 mm is maintained
up to 6.6 AL and it starts degrading at 7.3 AL. Depth features of the order of 1 cm can still
be retrieved at 7.9 AL, but at higher levels of scattering the depth structure of the target
cannot be discerned, and the target cannot be detected at all at attenuation levels above
8.3 AL.

In order to quantify the degradation of the depth resolution with scattering, the
depth estimation in each environment was compared with the measurement performed in
unfiltered tap water by using the range root mean square error, defined as [48]:

®)
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where x is the depth estimated in the profiles, and d is the depth estimated in the reference
scan, which was the case of unfiltered tap water and acquisition time per line equal to
10 ms. The comparison was performed only over the pixels corresponding to the target
area, which means that the backplane was not considered in the calculations and the
number of pixels n in Equation (3) was varied in the target area from line 200 to line 600, i.e.,
N = 6400. In addition, shorter acquisition times were investigated for each environment
and compared with the chosen ground truth. The RMSEs calculated for each set of data
are shown in Figure 7, along with the achievable depth resolution obtained by inspecting
the depth profiles retrieved with the cross-correlation approach. The graph shows that the
depth resolution of the image in unfiltered tap water starts to deteriorate at the acquisition
time per line of 0.5 ms, and centimeter resolution is achievable at 0.01 ms. At shorter
acquisition times, the target can be resolved using acquisition times per line up to 0.005 ms,
and cannot be detected beyond this limit. In the case of the pipe connector target, detection
was possible at shorter acquisition times due to the higher reflectivity of the target.

The spatial resolution of the system was investigated performing the scan of the
variable lines resolution target (Figure 3c) in several scattering environments. The data
were analyzed with the cross-correlation approach, choosing 1000 lines and an acquisition
time per line of 10 ms, which are the same parameters used in the previous sections. The
intensity maps of the target are shown in Figure 8, and the average optical power of
the scans were adjusted according to the level of scattering of the water, varying in the
range from 3.3 W to 15 mW. The lines of thickness equal to 0.312 mm can be resolved in
attenuation levels up to 4.8 AL, which is equivalent to an angular resolution of 175 prad.
However, due to the forward scattering events detected, the achievable angular resolution
increases to 5.7 mrad at 8.1 AL, and at higher attenuation levels it is not possible to resolve
the target in the intensity map.

5.6 AL 6.6 AL 7.3 AL 7.9AL 8.3 AL 8.8 AL

P.=33uW P,=117mW P,=153mW P, =142mW P,=152mW P, =14mW P, =144mW

800

150 115

Depth

I I (mm

Figure 6. (a) Depth profile of the depth target in unfiltered tap water, equivalent to 1 AL between the system and the target.
The figure shows the height of each block in mm with respect to the base of the target. (b) Depth profiles of the depth
resolution target in unfiltered tap water and several concentrations of scattering agent. The data were analyzed with the

pixel-wise cross-correlation approach, the acquisition time per line was set to 10 ms, and the average optical power was

adjusted from 3.3 uW to 15.3 mW, depending on the level of scattering in water. The average target return per pixel was

calculated over the entire array for each scan, from line 200 to 600, using an acquisition time of 10 ms.



Sensors 2021, 21, 4850 12 of 16

16 ———
# z: : < 8.3AL
14 R T < <« : ¢+ 79AL
\‘ ! Ve B Detection | 7.3 AL
- A - 10 mm resolution A 66 AL
— A ¥ e 6 AL
g 10 \ @ 7.5mmresolution | w1 AL
P oS
5 81 = A ¥
S | " v
= = 5 mm resolution
6 @
| L e -,
u
4 > .
2 _ = > 2.5 mm resolution
e S —
0.001 0.01 0.1 1 10

Acquisition time (ms)

Figure 7. RMSE versus acquisition time for several underwater scattering environments. The colored regions of the graph
highlight the achievable depth resolution for each RMSE range value.
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Figure 8. Intensity profiles of the variable lines resolution target (as shown in Figure 3c) in unfiltered tap water and several
concentrations of scattering agent. The acquisition time per line was set to 10 ms, and the average optical power was
adjusted from 3.3 to 15.3 mW, depending on the level of scattering in water.

4. Conclusions

This work demonstrates underwater optical imaging based on the time-of-flight
approach and the TCSPC technique using a SPAD detector linear array built in custom
technology. The detection module comprised a 16 x 1 array of custom fabricated silicon
SPADs with high detection efficiency and low timing jitter. The array was connected to a
dedicated TCSPC module that provided the timing information with timing bins of only
1.6 ps, with a maximum overall count rate of 64 Mcps.

Laboratory based experiments were performed over a distance of 1.65 m in water,
with a non-scanning optical configuration and the system asynchronously streaming time-
tagged events from a moving target. This configuration was chosen in order to simplify the
optical configuration of the system, which avoided the need for scanning optics. Addition-
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ally, it simulated a configuration where the system is integrated on an underwater vehicle,
driving the scan of the target area with the direction of travel. A number of acquisition
times per line were investigated to study the shortest acquisition times that allowed the
reconstruction of depth profiles of the moving target, demonstrating depth profiles at
acquisition times as short as 1 ps per line in clear water. In addition, depth and intensity
profiles of targets were obtained in a variety of underwater scattering environments, which
demonstrated depth reconstruction in scattering conditions equivalent up to 8.3 AL be-
tween the transceiver and the target. These experiments were performed in controlled
laboratory conditions, with an intentionally low ambient background light level. In an
outdoor underwater environment, there will be a contribution from the solar background
which will add uncorrelated background events to the histogram. However, the optical
setup of the transceiver can be modified in order to include optical bandpass filters to
reduce the detection of ambient light in the receive channel, as demonstrated in previous
work in free space single-photon lidar performed in high ambient light levels in the near
and short-wave infrared [22-25,49].

Depth and spatial resolutions were investigated using reference targets. The depth
profiles demonstrated that millimeter depth resolution was preserved in highly scattering
environments up to 6.6 AL between transceiver and target, whereas centimeter depth
resolution can be obtained up to 8 AL. At higher levels of scattering, detection is possible
up to 8.3 AL but the profile of the target cannot be reconstructed beyond this limit. At
the same time, the spatial resolution was investigated in several scattering environments,
showing that the angular resolution was equal to 175 prad up to 4.8 AL, and gradually
degraded to 5.7 mrad at 8 AL. However, it is important to note that the results obtained in
this work were analyzed by using the pixel-wise cross-correlation approach and did not
use bespoke image processing techniques which can greatly improve the depth and spatial
resolution of the reconstructed image and allow image reconstruction at lower levels of
return photon [22,45,47,50,51].

When compared with the single pixel scanning transceiver system based on the TCSPC
technique [17], the use of a linear array of Si-SPAD detectors built in custom technology
gives the advantage of achieving faster overall acquisition times, but the use of a wider
FOV means that more scattering events are detected limiting the depth reconstruction
up to 8.3 AL, against the 9.2 AL achievable with the single-pixel approach [47]. Faster
acquisition times were achieved with an optical system based on a CMOS SPAD detector
array [27], which allowed depth profiling up to 6.7 AL using synchronous data acquisition
at 500 Hz. This system gave the advantage of a large pixel format (192 x 128), but the
CMOS SPAD detector array fabrication process meant a lower performance of each SPAD
detector, which in conjunction with the larger FOV required by the geometry of the array
limited the depth profiling capabilities in highly scattering underwater environments. The
results presented in this work show that SPAD linear detector arrays have the potential for
the detection of low scattering return due to the comparatively narrow optical field of view,
while maintaining a high data rate. These linear detector array configurations can act as an
ideal compromise between the narrow field of view and slow acquisition of single-pixel
systems, and the high data rate of rectangular detector arrays which have reduced contrast
and spatial resolution due to greatly increased detection of excess scattering events caused
by their necessarily large optical field of view. Such linear SPAD detector arrays have the
advantage of more easily allowing the use of custom fabrication technology, permitting
optimized single-photon performance. The use of linear detector arrays can also remove
any requirement for bulky scanning optics when using the forward movement of the
underwater vehicle.

Future work will investigate the possibility of developing larger linear arrays of cus-
tom Si-SPAD detectors optimized for this application. Further improvements will include
the investigation of a fast gating signal to switch the detectors on for a short temporal
window to reduce the overall detection of backscatter events, and the development of
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bespoke image processing algorithms to retrieve the depth and intensity profile in highly
scattering conditions.
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