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Abstract: This paper proposes a method to embed and extract a watermark on a digital hologram
using a deep neural network. The entire algorithm for watermarking digital holograms consists of
three sub-networks. For the robustness of watermarking, an attack simulation is inserted inside the
deep neural network. By including attack simulation and holographic reconstruction in the network,
the deep neural network for watermarking can simultaneously train invisibility and robustness. We
propose a network training method using hologram and reconstruction. After training the proposed
network, we analyze the robustness of each attack and perform re-training according to this result to
propose a method to improve the robustness. We quantitatively evaluate the results of robustness
against various attacks and show the reliability of the proposed technique.

Keywords: digital hologram; digital watermark; deep neural network (DNN); training dataset;
convolution neural network (CNN)

1. Introduction

The hologram is a record of a fringe pattern that occurs due to interference between
a reference wave as a reference and an object wave reflected on an object and contains
two-dimensional (D) data of a complex plane (real and imaginary numbers, or size and
phase) but contains 3D image information. The digital hologram may be generated by
obtaining an analog hologram in which the interference phenomenon is realized by an
optical device with a digital photographing device or sampling the analog hologram to
generate a digital hologram. However, in recent years, digital holograms are generated
by mathematically modeling and calculating the interference between two waves and by
generating them using deep learning [1–3].

Recently, digital holograms have been widely used due to the digital hologram com-
pression standard of JPEG Pleno [4], the development of hologram printers [5], and the
advent of various holographic displays [6]. With the development of such digital hologram
contents, interest in digital hologram security is also increasing. Algorithm-based methods
have been studied so far for watermarking digital holograms. Javidi et al. published a study
to increase security by generating a 3D object host image and a watermark as a hologram,
embedding the watermark on the host image, and performing dual-phase encoding [7].
Kim and Lee presented a study to find the optimal watermark embed strength to minimize
MSE (mean square error) between the reconstruction image and the original image [8].
Our research team has also proposed several techniques for holographic watermarking
so far. In the first method, a hologram is transformed into a frequency domain using a
discrete wavelet transform with a Mallat-tree subband structure. A bit plane of a specific
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subband is replaced with watermark data [9]. In the second method, a block-based discrete
cosine transform was applied to the hologram, and the edge map was extracted to find
the position to embed the watermark [10]. Recently, we presented a method of making a
hologram into a 2D diffraction pattern using the characteristic of Fresnel transform and
embedding a watermark using Fresnel transform and convergence of traveling waves [11].
In another recent study, Zhou et al. proposed a method to embed a watermark by find-
ing a spatiotemporal edge by using both spatial and temporal continuity as a target for
holographic video [12].

Artificial intelligence technology using deep learning has been widely used in all fields.
Similarly, in the area of digital watermarking, studies using deep learning are increasing.
There is no published technology for digital holograms yet, but deep learning-based
technologies show good performance in the digital watermarking of 2D images. Zhu et al.
proposed a method to embed the watermark globally by duplicating 1D watermark data in
3D [13]. This method consists of an encoder network that embeds a watermark, a decoder
network that extracts a watermark from a watermarked image passed through an attack
layer, and an adversarial network for steganographic analysis. Ahmadi et al. proposed a
method of converting the original image into the frequency domain and embed watermark
data in the frequency domain using the DCT transform network that has already been
trained [14]. In this method, circular convolution is performed to distribute the watermark
data globally. Kim et al. proposed a method to embed the watermark by enlarging the
watermark data to the original image resolution instead of lowering the original image to
the resolution of the watermark data [15]. Deeba et al. also proposed a neural network that
can embed a watermark. This network does not contain attacks and extracts [16].

We intend to try holographic watermarking using deep learning. We show that the
deep neural network can adequately interpret the components of the hologram and prove
that the deep neural network can hide the watermark invisibly in the hologram. It is shown
that the watermark embedded in the hologram can be very robust by including a malicious
attack in the deep neural network’s training process. Since the image quality of hologram
reconstruction is essential, we train the invisibility of reconstruction simultaneously. We
propose a deep neural network (DNN) that performs watermarking of digital holograms
and a training method that considers the characteristics of holograms. In addition, if the
network is vulnerable to a specific attack after the train, we propose a method to improve
the robustness of the attack through re-training.

This paper is organized as follows. In Section 2, the previous works are explained, and
in Section 3, the detailed structure of the proposed network is described. In Section 4, the
method of constructing the train and the dataset used for the test and the training method
are explained, and the experimental results based on this are analyzed. Section 5 concludes
this paper.

2. Previos Works

In this section, we explain the previous studies about hologram watermarking and
deep learning-based watermarking in depth.

2.1. Hologram Watermarking

Javidi et al. proposed a technique to use digital holography to hide a 3D object
stored in the form of a digital hologram within another 3D object, which generates the
digital hologram of both the hidden 3D object and the host 3D object optically using
phase shift interferometery. Then, the hologram of the hidden 3D object is encoded using
double phase encoding. The encoded hologram of the hidden 3D object is embedded
within the hologram of the host 3D object. The watermarked hologram is double phase
encoded again using a different set of random phase codes. The second double phase
encoding process provides a higher level of security and will guarantee the whiteness of the
transmitted hologram. The watermarked hologram is robust to pixels occlusion in terms of
reconstructing different poses of the 3D object due to the whiteness of the final transmitted
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data. Mathematical analysis and digital experiments showed that the proposed system has
a reasonable performance [7]. Kim and Lee derived a formula for the optimum weighting
factor with which the watermark was embedded into the digital hologram of a 3-D host
object. It was shown that the optimum weighting factor minimized the total mean-square-
error (MSE) of the reconstructed host object and the decoded watermark. The optimum
condition for watermarking the digital hologram of a 3-D host object is analyzed. The
experiment showed that the digital hologram watermarked with the optimum weighting
factor produces the least errors in the reconstructed 3-D host object and the decoded
watermark even in the presence of an occlusion attack [8].

Our team has developed several hologram watermarking methods. We proposed
spatial-domain and a frequency-domain electronic watermarking schemes. The spatial-
domain scheme was only to compare the results to the ones from frequency-domain scheme
and the frequency-domain scheme used two-dimensional mallat-tree discrete wavelet
transform. Both of them showed very high imperceptibility and quite high robustness
against the attacks. Especially the MDWT-domain scheme was very high in robustness
such that the error ratio at the worst case was only 3%. Thus, we expect that it is used
as a good watermarking scheme of digital hologram with high performance. However,
the spatial-domain scheme turned out to be useless when data compression process is
necessary after watermarking [9]. Our team also proposed a hologram domain and a
frequency domain watermarking method. For the frequency domain scheme, we used the
DCT (Discrete Cosine Transform) as the transforming technique: the segmented and DCTed
data space is the target data space to be watermarked. For both schemes, we tried to find
the best watermark positioning and embedding schemes. Between the two watermarking
schemes, it was obvious that the frequency domain scheme was much better except some
extreme cases such as 15% Gaussian noise addition attack [10]. We proposed the Fresnel
transform-based watermarking method. In this method, both of the host hologram and
the watermark were diffracted more than once for each. The results were refracted to
concentrate the diffracted data into the local regions of the transformed plane so that the
regions occupied one of them. From this process we changed and selected the region of the
watermark. We experimented our scheme with various test images for various attacks on
data-manipulating attack and geometric attack. As the experiments, we considered various
attacks for both pixel-value changing attacks and geometric attacks. For all the considered
attacks which do not ruin the host data too much to be useful, the extracted watermarks
were apparently recognizable even though the PSNR values to the original watermark data
seemed quite bad [11].

Zhow et al. proposed a spatiotemporal consistent embedding algorithm for the
holographic video watermarking. Imperceptibility requirement in the holographic video
watermarking is more challenging compared with static holograms because of the temporal
dimension existing in videos. The embedding algorithm should not only consider spatially
embedding strength for each frame of the video but also take the temporal dimension into
account in order to guarantee the visual quality of the moving object. Before embedding,
to defend the imperceptibility of the watermark from the holographic moving object,
the embedding parameters were evaluated by the salient object from the interframe and
intraframe. To ensure the robustness, 3-D watermark converted data (QR code) were
embedded in the cellular automata (CA) domains using 3-D CA filters. The QR codes can
be extracted from the watermarked holographic frames, and the final 3-D watermark can be
digitally reconstructed with different depths’ cue using the computational integral imaging
reconstruction algorithm. The experimental results demonstrated that the proposed method
exhibits superior performance compared to several methods in the literature, especially the
robustness against additive noise and compression attacks [12].

2.2. Deep Learning-Based Watermarking

NN-based watermarking schemes have been proposed [13–19], and their character-
istics are described in this section. Zhu proposed a method named as ‘HiDDeN’, which
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consists of WM embedding network, noise layer, WM extracting network, and an adver-
sary network. The adversary network was for the steganographic process, which is an
additional function but it is used for watermarking function, too. The loss function of
adversary network is an adversarial loss, while the embedding and extraction networks
use L2 norm loss. The loss function of the watermarking process is the scaled combination
of the three, but adversary network uses only the adversarial loss [13]. Ahmadi et al.
proposed a scheme to use the DCT frequency domain by implementing and training a
network to perform a DCT separately. The network consists of WM embedding network,
attack simulation, and WM extraction network. Before entering the network, the host
image is reduced to the resolution of WM and DCTed by a DCT network that has been
constructed and trained already [14]. Kim et al. proposed a neural network to perform
an invisible robust blind watermarking for digital images. It is a convolutional neural
network (CNN)-based scheme that consists of pre-processing networks for both host im-
age and watermark, a watermark embedding network, an attack simulation for training,
and a watermark extraction network to extract watermark whenever necessary. It has
three peculiarities for the application aspect: the first is the adaptability of the host image
resolution. It is to apply the proposed method to any resolution of host image and is
performed by composing the network without using any resolution-dependent layer or
component. The second peculiarity is the adaptability of the watermark information [15].
Deeba et al. employed DNN models for digital watermarking Technology. Watermarking
scheme for deep neural networks is proposed which is the black box in terms of verification.
Watermarking is applied to recognize the possession of the copyright of digital contents
such as audio, images, and videos. They performed the experiment watermark embedding
through DNN, in the watermarking process, training the neural network to be as accurate
as possible concerning these randomly chosen layers and neural network formalize the
idea of backdooring a neural network with specific properties. Authors ran experiment
training without the watermark and with the watermark and it turns out that the accuracy
of the neural network is almost the same; it sometimes even increases a bit [16]. Mun et al.
proposed a watermarking method with an AE-structured NN, consisting of residual blocks.
All residual blocks are composed of a unit that performs ReLU after adding CONV(1 ×
1)-ReLU-CONV(3 × 3)-ReLU-CONV(1 × 1) and CONV(1 × 1). For the embedding, the
host image is reduced to the WM’s resolution by the AE encoding process. To each of
the resulting layers, the WM information is added to form the embedding AE’s encoded
data, which is entered into the decoder of the embedding AE. This decoder increases the
resolution to that of the host image and reduces the resulting number of images to the
original host image’s channels [17]. Zhong et al. proposed a scheme to replace the attack
simulation with a Frobenius norm. Each of its embedder and extractor networks consists of
four connected function networks; one layer (invariance layer) connects the two networks.
Thus, each pair network forms a loss function, and the final cost function for training is
constructed with the linear combination of the four by determining the four-loss functions
by determining the scaling factors empirically [18]. Liu et al. proposed a two-stage training
scheme TSDL (two-stage separable deep learning), in which the entire NN with adversary
network is trained without any attack (FEAT, free end-to-end adversary training), at first,
then in the next train only the extractor without the adversary network is re-trained (ADOT,
noise-aware decoder-only training) by adding the attack simulation. In this scheme, the
duplicated binary (here, 1, and −1) to the resolution of the host image is concatenated in
each convolution layer in the embedder network except the last two layers performing
3 × 3 convolution and 1 × 1 convolution, in order [19].
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3. Watermarking Network

This section explains the proposed hologram watermarking network and training methodology.

3.1. Structure of Neural Network

The proposed DNN consists of three sub-networks; resolution-converting network
(RCN), watermark-embedding network (WMN), and watermark-extracting network (WXN).
All networks use 3 × 3 convolutional layer. We show the structure of the DNN for holo-
gram watermarking in Figure 1. The complex data of the host hologram is normalized to
the range of [−1, 1]. The watermark has the binary format type of 1 and −1.

Figure 1. Structure of deep neural network for the proposed watermarking.

The RCN consists of the hologram RCN and the watermark RCN. The hologram
RCN has a convolution layer that keeps the resolution of channels constant and expands
the host hologram to 64 channels. The watermark RCN consists of four convolutional
layers, which increases the resolution of a watermark up to the same resolution of the host
hologram. The former three layers have the structure of convolution-batch normalization-
ReLU(activation)-AP(average pooling), and the last fourth layer has the structure of CONV-
AP. After multiplying the strength factor to the output of the last layer, the feature maps are
output. The strength factor is decided by experiment. The structure of the RCN is shown
in Figure 2.

Figure 2. Network structure of the resolution-converting network (RCN).

The hologram and watermark feature maps with the same resolution are concatenated
and formed to a channel in the WMN. The WMN consists of five CNN blocks, which keeps
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the resolution of the input feature map unchanged. The WMN does not include a pooling
layer. The former four layers of the WMN consist of CONV-BN-ReLU, and the last fifth
layer consists of CONV-tanh. The reason that the last layer uses the tanh as the activation
function is to normalize the output to the range of [−1, 1] to be the same as the host data.
The structure of the WMN is shown in Figure 3.

Figure 3. Network structure of the watermark-embedding network (WMN).

The input of the WXN is the hologram in which the attack was applied to the wa-
termarked hologram. The input hologram is normalized as in the embed process, and
watermark information is extracted from the normalized hologram. This result is denor-
malized again, converted into binary numbers with only −1 and 1 values, and the final
watermark is extracted.

The WXN consists of four CNN layers, and the resolution is reduced in each layer so
that the output of the last layer has a watermark resolution. The first three layers consist of
CONV-BN-ReLU, and the fourth layer uses CONV-tanh so that the output has a binary
value of [−1, 1]. If the result range of the fourth layer is [0, 1], 1 is assigned, and if the range
is [−1, 0], a value of −1 is assigned. The structure of the WXN is shown in Figure 4.

Figure 4. Network structure of the watermark-extracting network (WXN).

3.2. Training

We propose a training method for hologram watermarking together with the DNN.
We try to increase the robustness of hologram watermarking by including attack simulation
in the training process. The signal processing-based watermarking algorithm has rules
to defend against every predicted attack after analyzing them, but deep learning-based
watermarking considers attacks in the training process. The host hologram itself is very im-
portant, but the reconstruction of the hologram is more critical for invisibility because users
observe not the hologram but the reconstruction. Therefore, we insert the reconstruction
of holograms in the training process. Figure 5 shows the proposed training methodology
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for hologram watermarking. In a 2D or 3D image, the watermark is embedded in the
domain that the user observes, but the embedding domain (hologram) is different from
the observing domain (reconstruction) in the hologram, so the evaluation of invisibility is
conducted in both domains.

Figure 5. Training methodology of the deep neural network for watermarking.

As previously explained, the attack for holograms is included in the training process
to add robustness to the watermarking algorithm. The reconstruction process is also
included because of its importance for invisibility. The pixel-by-pixel correlation between
the real and imaginary parts may be expressed as phase information, and the phase
information corresponds to the stereoscopic information of a hologram. If the watermarking
algorithm does not consider the relationship between real and imaginary parts, it affects
the stereoscopic property regardless of the robustness of watermarking. Therefore, the
amplitude and phase component should be considered together with the real and imaginary
parts to consider the stereoscopic property of the hologram after reconstruction:

• Including attacks for the watermarked holograms.
• Considering reconstruction error of the watermarked holograms.
• Considering stereoscopic quality in reconstruction.

The integrated training method for the DNN is shown in Figure 6. The watermark with
a different resolution is converted to the feature map with the same resolution through the
RCN. The difference between the original host hologram and the watermarked hologram
is used for the first loss function (L1). After reconstructing two holograms, the difference
between the reconstruction results is used as the second loss function (L2). While the
DNN is trained with two loss functions, the watermark-embedded hologram and the
reconstruction have invisibility against the watermark embedding. Since the visual feature
of holograms is like noise, it is very difficult to visually recognize the minute changes of
holograms. Next, when the attack is applied to the watermarked hologram, the attacked
watermarked hologram is generated. The embedded watermark is extracted from the
attacked hologram by the WXN. The difference between the embedded watermark and
extracted watermark is used for the third loss function (L3).

The first loss function L1 is defined as the mean square error (MSE) between the
original hologram (horg) and the watermarked host (hwmd) as described in Equation (1).
M × N is the resolution of the host hologram.

L1 =
1

MN

M

∑
i=1

N

∑
j=1

[horg(i, j)− hwmd(i, j)]2 (1)
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The second loss function L2 is defined in Equation (2), which is calculated using the
mean absolute error (MAE) between the original watermark (WMorg) and the extracted
watermark (WMext).

L2 =
1

XY

X

∑
j=1

Y

∑
i=1
|WMorg(i, j)−WMext(i, j)| (2)

Since the data used in Equation (2) is binary number, we use the MAE in Equation (2)
unlike Equation (1). Through experimental result, we identified that the usage of MAE
provides better training efficiency and improves the performance of the DNN. Since L3
uses the same equation with L1; the equation for L1 is not defined.

Generally, the invisibility of the embedded watermark has trade-off relationship with
robustness. In other words, if a watermark is weakly embedded with small strength
factor, invisibility is increased, but robustness is decreased. Conversely, if the watermark
is strongly embedded with a large strength factor, invisibility decreases and robustness
increases. Since watermarking pursues both invisibility and robustness, two factors cannot
be separated. Therefore, in this paper, the loss function LEMB for watermark embedding is
defined as in Equation (3), and the loss function LEXT for watermark extract is defined as
Equation (4).

LEMB = λ1L1 + λ2L2 + λ3L3 (3)

LEXT = λ4L2 (4)

In Equations (3) and (4), λ1, λ2, λ3, and λ4 are hyperparameters of the DNN which
are decided by experiment.

3.3. Re-Training by Robustness Analysis

The proposed DNN can improve its robustness through various training methods. The
structure and depth of the network can be variously adjusted, and the dataset for a train can
be variously modified. In addition, the form and type of attack can be variously modified,
and the performance of the network can be improved by adjusting hyperparameters. We
propose a method to improve the robustness by performing re-training for a specific attack
after analyzing the robustness against an attack. After training the network, the inference
is performed using the trained network. An attack with weak robustness may be selected
from the inference result compared to other attacks, or an attack requiring higher robustness
may be selected. This process is expressed as robustness analysis in Figure 5. Next, after
increasing the frequency of attacks with weak toughness, a re-train is performed. When
performing re-training, the number of trains is determined while observing the train results
with the desired robustness. Because the tendency of the train depends on the type of attack
and the required robustness, the number of trains should be determined experimentally by
the researcher.

4. Experimental Result
4.1. Environment

The proposed DNN was programmed using Python and Tensorflow and implemented
in the computing environment of Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz with
180 GB RAM and NVIDIA Tesla V100-SXM2-32GB GPU. A hundred digital hologram
patches were used for mini-batch. The training was carried out up to 400 epoch, and
the value of 0.0001 was used for the learning rate. For optimization the Adam optimizer
(β1 = 0.5, β2 = 0.999) was used, and λ1, λ2, λ3, and λ4 were 45, 0.2, 20, and 45, which were
decided by the experiment.

To measure the watermarking performance, we evaluated the invisibility of holograms
and reconstruction and the robustness of the extracted watermark. The invisibility was
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estimated using the peak signal-to-noise ratio (PSNR) of Equation (5), where m and n are
the height and width of a hologram, and maxI is the maximum value of a hologram. i is a
pixel of an original hologram, and I′ is a pixel of a watermarked hologram. The robustness
was assessed using the bit error ratio (BER) which is defined as the number of bit errors. The
PSNR of the invisibility was calculated using the original hologram (or the reconstruction)
and the watermark-embedded hologram (or the watermark-embedded reconstruction).
The BER of the robustness was calculated using the original watermark and the extracted
watermark. After dividing holograms into patches of 128× 128 size, 5000 patches randomly
selected were used for the training dataset. Through the same method, 1000 patches for
the verification and the inference datasets were selected, respectively. The watermark of
8 × 8 size was used, which has a binary format with only −1 and 1 value.

PSNR = 10 log10

 max2
I

1
mn ∑m−1

i=0 ∑n−1
j=0 |I(i, j)− I′(i, j)|2

 (5)

4.2. JPEG Pleno Dataset

JPEG Pleno is an organization that studies the standard compression framework for
new image representation formats such as texture-plus-depth, light field, point cloud, and
hologram [20]. JPEG pleno constructs and provides a database with various academic
institutions and companies [21]. Holograms provided by JPEG Pleno are largely divided
into four types: ERC, B-com, UBI, and WUT datasets according to the organization and
production technology, and WUT color digital holograms were recently added [22–29].
Table 1 shows the JPEG Pleno dataset. In this paper, we use three sets, excluding the WUT.

Table 1. Structure of the JPEG Pleno Dataset.

Class Hologram Number

ERC 6

Interfere - I [22] 5
Interfere - II [23] 12
Interfere - III [24] 7
Interfere - IV [25] 8

B-com [26,27] 32

UBI EmergImg-HoloGrail-v1 [28] 4
EmergImg-HoloGrail-v2 [28] 6

WUT [29] 2

Among datasets provided by JPEG pleno, three datasets (ERC, B-com, and UBI) used
in this paper include 46 kinds of holograms. We regard the real and imaginary part of
the complex hologram with R, G, and B channels as an independent hologram, which
means that we can use 172 holograms for our study. Figure 6 shows Sphere3 hologram
with the resolution of 1920 × 1080. The pixel pitch for the SLM is 8 µm and the distance of
reconstruction is from 0.2783 to 0.2817 m. The hologram has 32-bit floating point format.
Figure 6d is the result of optical reconstruction using a spatial light modulator (SLM) with
a pixel pitch of 8.0 um. The wavelength is 532 nm.
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(a) (b)

(c) (d)
Figure 6. Sphere3 hologram provided by JPEG pleno (a) real and (b) imaginary hologram, (c) ampli-
tude of the reconstruction hologram, (d) optical reconstruction.

4.3. Training Result

First, we explain the training result of the DNN for watermarking. The training
is mainly classified into two cases of reconstruction included and reconstruction not
included. Figure 7 shows the training result in which the DNN does not include the
reconstruction process. In each subfigure, the blue, red, green, and purple lines correspond
to the validation accuracy, training accuracy, validation loss, and training loss, respectively.
The performance is converged in about the 4000th epoch. Figure 7a is for embedding a
watermark to the real part of a hologram, and Figure 7b is for embedding a watermark
to the amplitude part. Figure 7c,d are for the watermark extractions from the real and
amplitude parts. The training for extraction in Figure 7c,d includes attack simulation for
robustness. In embedding the amplitude part of a hologram, the embedding process affects
both the real and imaginary parts, so hologram data changes a lot. In embedding the real
part, since the watermark is not embedded in the imaginary part, the PSNR of a hologram
may be relatively high. However, it may adversely affect the reconstruction result.

Table 2 shows the results of the invisibility test (inference) performed using the trained
watermarking network. In the case of embedding in the real part, the invisibility of the
hologram was higher by about 2.2 dB, and the reconstruction result was lower by about
1.5 dB when embedding in the amplitude part. In embedding in the real part, we can
predict that the phase correlation of the complex hologram has deteriorated, so it may have
affected the reconstruction. Based on the invisibility of the reconstruction result, we found
that it is better to train by embedding a watermark in the amplitude part.

Table 2. Invisibility of the hologram and reconstruction without reconstruction in training.

Domain Dataset PSNR [dB]

Real
Hologram 40.598
Hologram Phase 12.092
Reconstruction 38.216

Amplitude
Hologram 38.389
Hologram Phase 33.733
Reconstruction 39.731
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(a) (b)

(c) (d)
Figure 7. Training result without reconstruction (a) watermark embedding (real), (b) watermark embedding (amplitude),
(c) extracting (real), (d) extracting (amplitude).

(a) (b)

(c) (d)
Figure 8. Training result with reconstruction (a) watermark embedding (real), (b) watermark embedding (amplitude),
(c) extracting (real), (d) extracting (amplitude).

Figure 8 is the result of training with reconstruction added, and it has the same
configuration as Figure 7. In Figure 8, the invisibility is somewhat lower in embedding
the watermark in the amplitude part than in the case of embedding the watermark in the
real part.
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In the test (inference) results for invisibility in Table 3, the invisibility of the hologram
was 1.0 dB lower in the case of embedding the watermark in the amplitude part than in the
case of embedding the watermark in the real part, but the invisibility of the reconstruction
was 3.4 dB high. When considering the results of invisibility comprehensively, embedding
a watermark in the amplitude part while including the reconstruction process in the train
showed the best result at 40.836 dB.

Table 3. Invisibility of the hologram and reconstruction with reconstruction in training.

Domain Dataset PSNR [dB]

Real
Hologram 40.125
Hologram Phase 11.748
Reconstruction 37.423

Amplitude
Hologram 39.195
Hologram Phase 33.862
Reconstruction 40.836

4.4. Robustness Result

Table 4 shows the robustness results for the four types of watermarking described
above. We included various attacks in the watermarking training process, and most of the
results show excellent robustness. We performed a test of 1000 holograms, measured the
BER of the extracted watermark, and calculated the average. In Table 4, the last two columns
represent the difference in BER results (without reconstruction—with reconstruction) when
reconstruction is not included in training and when reconstruction is included. In the
average result of the last row, the case where the reconstruction included training showed
better results (BER: 7.143, 10.151), and the case where the reconstruction was embedded in
the amplitude part showed better results. In the invisibility results, the best results were
obtained when reconstruction was included in training and the watermark was embedded
in amplitude. In the robustness results, the best results (BER: 7.143) were shown when
embedding in the real parts under the same conditions. However, in the case of embedding
in amplitude, it is difficult to conclude which one has better performance because the image
quality of the reconstruction is 3.4 dB higher.

4.5. Re-Training for Robustness

From the results of Table 4, the proposed DNN has a good characteristic with a BER of
7∼10% of the extracted watermark while having invisibility of 37∼41 dB. However, some
results in Table 4 also show a relatively poor BER of 20∼30%. We proposed a network
re-training method to improve such partial low performance. Figure 9 shows the training
results for the proposed re-training. In Table 4, when reconstruction is included in training
and the watermark is embedded in amplitude, the BER of salt and pepper noise is high.
Therefore, we performed 10 epoch re-training for this attack. Although it is possible to
obtain a lower BER through more re-training, our purpose is to show that the robustness
of the network trained against attacks can be improved through re-training, so only re-
training of 10 epochs is performed. The training was conducted by increasing the frequency
of training for salt and pepper noise by about 2 times in re-training. In the re-training result
of Figure 9, the BER was improved.
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Table 4. Robustness result for the extracted watermark (average BER).

Attack Strength
Without Reconstruction With Reconstruction Difference

Real Amplitude Real Amplitude Real Amplitude

Identity 0.929 0.673 0.957 0.088 −0.028 −0.215

Gaussian
Blurring

1 2.151 1.359 2.504 1.675 −0.353 −0.316
2 2.559 6.86 2.535 8.865 0.024 −2.005
3 18.216 32.35 7.138 33.542 11.078 −1.192
4 20.484 41.098 32.6 39.918 −12.116 1.18

Average
Filtering

5× 5 2.895 5.098 2.711 3.539 0.184 1.559
3 × 3 2.335 1.265 2.784 1.526 −0.449 −0.261

Median
Filtering

3 × 3 0.935 2.007 0.909 2.198 0.026 −0.191
5 × 5 1.736 4.353 1.233 5.004 0.503 −0.651
7 × 7 32.932 30.473 15.126 34.457 17.806 −3.984

Salt and
Pepper
Noise

0.1 3.433 25.425 2.999 20.484 0.434 4.491
0.08 2.465 22.995 2.259 17.954 0.2066 5.041
0.06 2.177 20.673 1.723 15.918 0.454 4.755
0.04 1.977 13.798 1.563 15.278 0.414 −1.48
0.02 1.293 11.934 1.406 9.603 −0.113 2.331

Gaussian
Noise

0.1 13.822 17.059 11.968 13.327 1.854 3.732
0.08 9.501 13.262 7.391 9.586 2.11 3.676
0.05 2.784 6.812 1.903 4.334 0.881 2.478
0.03 1.048 2.478 1.035 1.769 0.013 0.709
0.01 0.935 0.697 0.964 0.903 −0.029 −0.206

Sharpening 9 2.088 1.306 2.233 1.378 −0.145 −0.072
5 2.122 1.272 2.257 1.309 −0.135 −0.037

Restoration

1 10.137 8.917 9.616 8.401 0.521 0.516
2 10.818 8.813 10.085 8.561 0.733 0.252
3 5.495 5.171 4.878 4.36 0.617 0.811
4 3.702 3.305 3.57 3.407 0.132 −0.102
5 2.53 2.372 3.175 2.448 −0.645 −0.076
6 2.166 3.639 2.852 4.497 −0.686 −0.858

Crop Out

0.8 27.908 35.052 23.396 35.605 4.512 −0.553
0.6 19.201 25.23 15.464 24.924 3.737 0.306
0.4 12.415 17.517 11.243 15.51 1.172 2.007
0.2 4.681 5.911 5.33 7.641 −0.649 −1.73

Rotation

15 4.499 5.119 4.021 6.313 0.478 −1.194
30 8.531 8.585 7.402 8.826 1.129 −0.241
45 9.829 9.905 8.433 12.63 1.396 −2.725
60 8.776 9.572 8.073 9.62 0.703 −0.048
75 5.516 5.532 3.707 4.01 1.809 1.522
90 0.929 0.673 0.957 0.888 −0.028 −0.215

JPEG

10 46.558 26.597 37.337 32.077 9.221 −5.48
20 37.35 31.105 33.125 31.031 4.225 0.074
30 17.732 28.974 27.886 7.181 −10.154 21.793
40 2.862 26.903 6.033 6.046 −3.171 20.857
50 2.207 4.319 2.552 2.669 −0.345 1.65
60 1.827 4.473 2.062 2.257 −0.235 2.216
70 1.528 0.972 1.623 1.94 −0.095 −0.968
80 1.198 2.27 1.322 0.97 −0.124 1.3
90 1.05 0.684 1.044 0.914 0.006 −0.23

100 1.376 0.76 1.489 1.048 −0.113 −0.288

Average 7.909 11.367 7.143 10.151 0.766 1.216
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Figure 9. Re-training result for the salt and pepper noise.

Table 5 shows the test results using the weight of the 7th epoch showing the lowest
BER among the training of 10 epochs. Through re-training, it was possible to reduce the
BER by an average of 62.5%. By combining re-training and various training methods, it is
proved that the proposed network can have better robustness.

Table 5. Robustness comparison after re-training the proposed network for the attack (salt and
pepper noise) with weak robustness.

Attack Strength Re-Training Reduced RateBefore After 7 Epoch

Salt and Pepper Noise

0.1 20.484 11.947 41.676%
0.09 24.262 10.894 55.099%
0.08 17.954 13.175 26.618%
0.07 22.211 5.701 74.333%
0.06 15.918 8.848 44.415%
0.05 18.414 6.980 62.094%
0.04 15.278 3.967 74.035%
0.03 17.281 4.084 76.367%
0.02 9.603 1.968 79.506%
0.01 9.004 0.816 90.937%

Average 62.508%

4.6. Visual Analysis

Figure 10 shows the result of embedding the watermark in the real part of the holo-
gram. Figure 10a,b show the real and imaginary parts of the hologram, and the resolution
of the hologram used in the experiment is 1920 × 1080. Figure 10c is an image obtained
by numerical reconstruction at a distance of 0.2785 m. Figure 10d is the result of optical
reconstruction with a pixel pitch of 8.0 um and the wavelength of 532 nm.
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(a) (b)

(c) (d)
Figure 10. Visual result of the hologram which is watermarked in the real part (a) original and
(b) watermark embedded hologram, (c) numerical and (d) optical reconstruction result (hologram :
37.829 dB, phase : 26.983 dB, reconstruction : 34.563 dB).

Figure 11 shows the result of embedding the hologram into the amplitude of the
hologram. The experimental conditions are the same as in Figure 10. When comparing
Figure 10 and Figure 11 with Figure 1, the numerical and optical reconstruction results
show high invisibility for watermarking embedding.

Figure 12 shows the extracted watermarks for several attacks. Although the watermark
has a binary format, when it is input to the network and extracted, it is input as 8 bits, so
gray components appear in the extracted image. However, numerical measurements are
performed using BER. For most attacks, the original information of the extracted watermark
can be visually confirmed.

(a) (b)

(c) (d)
Figure 11. Visual result of the hologram which is watermarked in the amplitude domain (a) original
and (b) watermark embedded hologram, (c) numerical and (d) optical reconstruction result (hologram
: 38.619 dB, phase : 34.874 dB, reconstruction : 41.659 dB).
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 12. Extracted watermark for various attacks (a) original watermark, (b) Gaussian blur 3.0,
(c) averaging (3 × 3), (d) sharpening c = 9, (e) salt and pepper noise 0.02, (f) median filtering (3 × 3),
(g) JPEG coding (40), (h) grid cropping (0.8).

5. Conclusions

This paper showed that watermarks could be successfully embedded and extracted
in digital holograms using deep learning. For digital holograms, the quality of the recon-
structed image is essential, and the three-dimensional effect of the hologram is essential.
We included the image quality of reconstruction in training to improve invisibility in the
reconstruction of digital holograms. In 2D or 3D images, the quality of the domain itself in
which the watermark is embedded is essential. Since the user observes the information
reconstructed through the interference and diffraction of the hologram, not the hologram
itself, we proposed a training model for the deep neural network by reflecting the unique
characteristics of the hologram. We conducted training for both the case where the recon-
struction domain was not included in the training and the case where the reconstruction
domain was included. As a result, it was confirmed that the robustness was higher when
the reconstruction domain was included. In addition, according to the hologram format, it
was confirmed that embedding in the amplitude component showed higher robustness
and invisibility than embedding in the complex part. According to the result of analyzing
the robustness of the attack, it was shown that performance could be improved by re-
training the weak attack. Therefore, it was shown that the proposed method can have high
versatility for watermarking and it has adaptive characteristics against various attacks.
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29. Gołoś, A.; Zaperty, W.; Finke, G.; Makowski, P.L.; Kozacki, T. Fourier RGB synthetic aperture color holographic capture for wide
angle holographic display. In Optics and Photonics for Information Processing X; International Society for Optics and Photonics:
Bellingham, WA, USA, 2016; Volume 9970, pp. 9970E. [CrossRef]

http://dx.doi.org/10.1109/ICMEW.2016.7574699
http://dx.doi.org/10.1016/j.image.2018.08.006
http://dx.doi.org/10.1117/12.2237317

	Introduction
	 Previos Works 
	Hologram Watermarking
	Deep Learning-Based Watermarking

	Watermarking Network
	Structure of Neural Network
	Training
	Re-Training by Robustness Analysis

	Experimental Result
	Environment
	JPEG Pleno Dataset
	Training Result
	Robustness Result
	Re-Training for Robustness
	Visual Analysis

	Conclusions
	References

