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Abstract: Despite the breakthroughs in accuracy and efficiency of object detection using deep neural
networks, the performance of small object detection is far from satisfactory. Gaze estimation has
developed significantly due to the development of visual sensors. Combining object detection with
gaze estimation can significantly improve the performance of small object detection. This paper
presents a centered multi-task generative adversarial network (CMTGAN), which combines small
object detection and gaze estimation. To achieve this, we propose a generative adversarial network
(GAN) capable of image super-resolution and two-stage small object detection. We exploit a generator
in CMTGAN for image super-resolution and a discriminator for object detection. We introduce an
artificial texture loss into the generator to retain the original feature of small objects. We also use
a centered mask in the generator to make the network focus on the central part of images where
small objects are more likely to appear in our method. We propose a discriminator with detection
loss for two-stage small object detection, which can be adapted to other GANs for object detection.
Compared with existing interpolation methods, the super-resolution images generated by CMTGAN
are more explicit and contain more information. Experiments show that our method exhibits a better
detection performance than mainstream methods.

Keywords: generative adversarial network; two-stage small object detection; image super-resolution

1. Introduction

With visual sensors and computer vision development, gaze estimation technology
can obtain gaze points with high accuracy [1]. However, the application of gaze estimation
is still limited to visual attention analysis [2], assistive technologies for users with motor
disabilities [3], behavior research [4], etc. Meanwhile, object detection algorithms such as
YOLOv4 [5] and Faster RCNN [6] have low confidence and apparent location deviation
in the prediction of small objects. The method of combining object detection and gaze
estimation can significantly improve small object detection performance.

Object detection algorithms have achieved impressive accuracy and efficiency in
detecting large objects. However, the performance with small-sized objects is far from
satisfactory. There is still a big gap between the performances with small and large objects
in recall and accuracy. To achieve a better detection performance when using small objects,
SSD [7] uses feature maps from shallow layers for small objects. FPN [8] exploits a feature
pyramid to combine feature maps at different scales. Bai et al. [9] introduced a generative
adversarial network to implement image super-resolution for small object detection. SOD-
MTGAN [10] takes ROIs as input and predicts the categories and locations of objects.

The shallow feature maps are full of textural information but less discriminative,
which leads to many false positive results in SSD. The up-sampling of FPN and [9] might
generate artifacts which can cover the feature of small objects. SOD-MTGAN takes ROIs
from baseline detectors as input, which means that SOD-MTGAN is only executed as the
second stage of two-stage object detection. The performance of SOD-MTGAN is heavily
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dependent on its baseline detector. SOD-MTGAN exploits deconvolution layers for up-
sampling, which generates fewer artifacts [10]. However, SOD-MTGAN did not propose a
method to suppress artifacts.

In this paper, we proposed a centered multi-task generative adversarial network
(CMTGAN) to improve detection performance on small objects, which exploits points
of interest presented by gaze estimation methods or detectors (e.g., YOLOv4, etc.) for
small object detection. We exploit a gaze estimation method or a detector as a baseline
selector to propose points of interest. CMTGAN crops the selected regions centered by
points of interest and performs two-stage object detection. Following the previous works
on GANs, CMTGAN consists of two subnetworks: a generator and a discriminator. The
generator performs super-resolution on selected regions. The discriminator distinguishes
real images (high-resolution images) from fake images (super-resolution images) and
performs complete two-stage object detection.

Contributions: The contributions can be summarized as follows: (1) We proposed
an end-to-end convolutional network based on classical GAN for small object detection,
which can perform effective single image super-resolution and complete two-stage ob-
ject detection.

Our method can be pre-trained on high-resolution images for super-resolution with-
out extra object information, which helps the generator learn to extract features from
low-resolution images efficiently. The generator performing super-resolution and the dis-
criminator performing object detection can be trained together, which helps them learn to
perform better detections simultaneously.

(2) We introduced artificial texture loss into the generator to suppress the artifacts
generated by up-sampling, which improves the detection performance on small objects.
Artificial texture loss helps the generator reach a balance between textures from original
images and textures generated by super-resolution. (3) We exploit a centered mask in the
network, making the generator pay more attention to the central part of images. (4) The
experiments on VOC datasets reveal that CMTGAN can restore sharper images with more
information from low-resolution images than traditional interpolation methods.

Our method has a better performance than mainstream one-stage and two-stage object
detection methods. It is also more efficient than object detection methods combined with
CNN-based super-resolution methods.

CMTGAN can perform state-of-art detection on small/medium objects.

2. Related Work
2.1. Small Object Detection

Traditional object detection methods are based on handcrafted features and the de-
formable part model [11]. Due to the limitation of handcrafted features, traditional methods
are far less robust than methods based on deep neural networks. Especially for small object
detection, the performance of traditional methods is far from CNN-based methods.

In recent years, object detection methods based on deep neural networks have ex-
hibited superior performances. Currently, CNN-based object detection methods can be
categorized as one of two frameworks: the two-stage framework (e.g., Faster RCNN [6],
FPN citefpn, etc.) and the one-stage framework (e.g., YOLO [5,12,13], SSD [7], etc.). Faster
RCNN [6], a milestone of the two-stage framework, performs object detection with two
stages. Faster RCNN proposes ROIs in the first stage, then predicts categories and regresses
bounding boxes in the second stage. The one-stage frameworks such as YOLO convert
object detection to regression problems, significantly improving detection speed. However,
Faster RCNN and YOLOv4 still show unsatisfactory performance on small object detection.

To detect small objects better, SSD uses feature maps from the shallow layer. Although
shallow feature maps contain more texture information, they lack semantic information,
leading to false positive results in SSD. Compared to SSD-like detectors, our discriminator
uses deep, strong semantic features to represent small objects, thus reducing the false
positive rate.
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FPN exploits the feature pyramid to combine low-resolution, semantically strong
features with high-resolution, semantically weak features. With the feature pyramid, FPN
exhibits a superior performance over Faster RCNN for small object detection. However,
FPN up-samples low-resolution features to fit with high-resolution features, a process that
introduces artifacts into the features and consequently degrades the detection performance.
SOD-MTGAN [10] uses deconvolution layers for up-sampling, which introduces fewer
artifacts into features. However, SOD-MTGAN has not proposed a specific method to
suppress artifacts.

Xiang et al. [14] proposed a one-stage space-time video super-resolution framework.
It exploits a ConvLSTM method to super-resolve videos, but it is not suitable for single
image super-resolution. Su et al. [15] proposed a progressive mixture model for single
image super-resolution, which achieved impressive performance on super-resolution.

Compared to FPN and the generator of SOD-MTGAN, our method proposes a method
to suppress artificial textures. We exploit deconvolution layers for up-sampling like SOD-
GAN and propose artificial texture loss to suppress artifacts, which helps our network
balance original textures and super-resolution textures.

Different from [15], we combine single image super-resolution and object detection in
a CNN-based framework, which means they can be trained together.

2.2. Generative Adversarial Networks

In the primary work, the generative adversarial network generates realistic-looking
images from random noise input [16]. GAN exhibits an impressive performance in image
super-resolution [17,18], image editing [19,20], image generation, style transfer [21,22],
representation learning [23,24], object detection [9,10,25], and so on. GAN includes a
generator and a discriminator: the generator generates images, and the discriminator
determines the authenticity of images. During training, the generator tries to generate
more realistic-looking images, and the discriminator struggles to discover the difference
between real images and fake images. After that, the well-trained generator can be used to
generate realistic-looking images.

Ledig et al. [17] proposed a generative adversarial network for image super-resolution.
The generator takes low-resolution images as input to generate super-resolution images.
Real high-resolution images and fake images (e.g., super-resolution images) are delivered
to the discriminator. The discriminator the difference between real images and fake
images. Bai et al. [10] introduces SOD-MTGAN for image super-resolution and small object
detection. The generator of SOD-MTGAN takes ROIs proposed by a baseline detector (e.g.,
Faster RCNN) as input and performs super-resolution on ROIs. The discriminator of SOD-
MTGAN has three tasks: judging the authenticity of the image, predicting categories, and
fine-tuning bounding boxes. The discriminator plays a role as the second-stage subnetwork
in the two-stage framework. Therefore, the baseline detector has a significant influence on
the detection performance of SOD-MTGAN.

Compared to SOD-MTGAN, the discriminator of our method performs complete two-
stage small object detection. The generator of CMTGAN takes selected regions as input
and performs super-resolution. Then the discriminator proposes ROIs on super-resolution
images in the first stage, predicts object categories and regresses object locations in the
second stage. The baseline selector only proposes points of interest, which means that
CMTGAN has less reliance on the selector.

3. Proposed Method

CMTGAN includes a generator and a discriminator. As shown in Figure 1, the baseline
selector creates points of interest on the input containing small objects. We cropped the
selected regions centered by points of interest as high-resolution images (HR images) and
down-sampled the HR images to obtain low-resolution images (LR images). The generator
takes the LR images to generate super-resolution images (SR images). The HR/SR images
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are delivered to the discriminator. The discriminator categorizes the input as real or fake
and detects small objects.

Selected RegionBaseline Selector

Gaze

Estimation

Detector

CMTGAN

Cls

HR/SR

Loc
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Generator

Discriminator

Input Image

Low-Resolution

High-Resolution

Super-Resolution
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Figure 1. Workflow of CMTGAN.

3.1. Network Architecture
3.1.1. Generator

As shown in Figure 2 and Table 1, we adopted a deep CNN architecture which has
shown impressive performance in tiny face detection [9] and super-resolution [17].
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Figure 2. Architecture of CMTGAN.



Sensors 2021, 21, 5194 5 of 19

Table 1. Architecture of the generator in CMTGAN.

Layer Conv Res-Block x5 Conv De-Conv De-Conv Conv Skip

Kernel Num. 64 64 64 256 256 3 64
Kernel Size 9 3 3 3 3 9 1

Stride 1 1 1 2 2 1 1

There is one skip connection layer, one RPN layer, one sigmoid layer, two deconvolu-
tion layers, three convolution layers, and five residual blocks in the generator. Differently
from [9], we introduced a skip connection layer into the generator, which brings texture
information from shallow layers to up-sampling layers. Differently from the up-sampling
layers in [9,17], we exploited deconvolution layers for up-sampling, which achieves a
higher efficiency and generates fewer artifacts [10]. Every deconvolution layer performs
up-sampling with a factor of 4, which means that the size of SR images is four times that
of LR images. We exploit a sigmoid layer to limit the output, which can avoid gradient
exploding problems in training.

3.1.2. Discriminator

As shown in Figure 2 and Table 2, we employed ResNet-50 as our backbone network in
the discriminator. ResNet-50 is not the only choice, which can be replaced with ResNet-101,
AlexNet, or VGGNet for different objects. We introduced an ROI layer into the backbone
network to propose ROIs. We used an average pooling layer following the backbone
network for down-sampling. We used three parallel fully connected layers behind the
average pooling layer, which distinguish the real HR images from the generated SR images,
predicting object categories, and regressing bounding boxes.

Table 2. Architecture of the discriminator in CMTGAN. K denotes the number of object categories.

Layer Conv Max-Pool Layer 1 Layer 2 Layer 3 RPN Layer 4 Avg-Pool FC 1 FC 2 FC 3

Kernel Num. 64 - 128 256 512 512 1024 - 2 K + 1 4(K + 1)
Kernel Size 7 3 1 1 1 3 1 7 - - -

Stride 2 2 1 2 2 1 2 1 - - -

The discriminator takes HR images and SR images as input. The backbone net-
work extracts features from input and proposes ROIs. Figure 3a shows the tuple
u =

(
ux1, uy1, ux2, uy2

)
of ROI. Behind the average pooling layer, the first fully con-

nected layer (FCAdv) uses softmax to predict the probability (PHR) of the input image
being a real HR image. The second fully connected layer (FCCls) also uses softmax, which
outputs the probability PCls = (p0, ..., pK) of the ROI, each being part of the K + 1 object
categories. The third fully connected layer (FCLoc) outputs the bounding box offset tuple
t = (tx, ty, tw, th). As shown in Figure 3b, the offset tuple t = (tx, ty, tw, th) corresponds to
the bounding box.

Compared to the discriminator in [17,23], our discriminator not only distinguishes
real images from fake images but also detects objects in the images. The discriminator
in [9] predicts the probability of the input being a face. The discriminator in [10] predicts
the probability of the input being each of the categories and fine-tunes the bounding
boxes. Compared to [9] and [10], our discriminator performs complete two-stage object
detection, proposing ROIs, predicting object categories, and regressing bounding boxes.
The difference between our method and [10] means that we only need a point of interest to
detect a small object, while [10] needs an ROI proposed by its baseline detector.
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Figure 3. ROI and bounding box. The red point denotes the point of interest proposed by the baseline
selector, and the red box indicates the selected region centered by the point of interest. Due to the
error of the baseline selector, the point of interest cannot properly coincide with the center of the
ground-truth bounding box. The blue box shows the ROI proposed by the discriminator. The green
box denotes the predicted bounding box, and the green point represents the center of the predicted
bounding box.

3.2. Loss Function

We incorporated the loss functions from some state-of-art GAN approaches and
propose centered content loss that satisfies the needs of small object detection. Centered
content loss consists of pixel-wise loss, perception loss, and artificial texture loss. Centered
content loss cooperates with adversarial loss, guiding the generator to generate realistic-
looking images easier for small object detection. Furthermore, we propose two-stage
detection loss, including ROI loss, classification loss, and regression loss. On the one hand,
two-stage detection loss enables the discriminator to perform two-stage object detection.
On the other hand, two-stage detection loss drives the generator to recover fine details
from LR images for easier detection, as shown in Figure 2. In the following, we describe
the centered content loss and the adversarial loss. Furthermore, we define the objective
functions of the generator and the discriminator.

3.2.1. Centered Content Loss

As shown in Figure 1, the selected regions contain small objects in the central part.
We introduced a centered mask which makes the content loss more sensitive to the central
part of SR images. The centered mask is shown in Equation (1), and Figure 4 shows the
suppression effect of our centered mask.

Mx,y = cos

π

√(
x

W
− 1

2

)2
+

(
y
H
− 1

2

)2
 (1)

Here, W and H denote the size of SR images.
Pixel-wise loss: Instead of the generator in [16] taking random noise as input, our

generator creates SR images from LR images. A natural and straightforward way is to
enforce the generator’s output to be the ground-truth images by minimizing the pixel-wise
loss, which has been proved effective in some state-of-the-art approaches [26,27]. The
pixel-wise loss is computed as Equation (2).

lpixel−wise =
1

WH

W

∑
x=1

H

∑
y=1

Mx,y ·
(

IHR
x,y − Gω

(
ILR
)

x,y

)2
(2)

Here, Mx,y denotes the centered mask. IHR and Gω

(
ILR) denote real HR images and

generated SR images. G represents the generator, and ω denotes its parameters. W and H
denote the size of HR/SR images and the centered mask.
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Figure 4. Centered mask.

Perception loss: Solutions of MSE optimization problems often lack high-frequency
content, which results in images covered with overly smooth textures. Therefore, we
adopted the perception loss based on the pre-trained ResNet [28]. The pixel-wise loss is
computed as Equation (3).

lperception =
1

wh

w

∑
x=1

h

∑
y=1

Mx,y ·
(

R
(

IHR
)

x,y
− R

(
Gω

(
ILR
))

x,y

)2
(3)

Here, R denotes the pre-trained ResNet. w and h indicate the size of the feature map
created by R.

Artificial texture loss: The perception loss increases high-frequency content in SR
images, making them sharper. However, perception loss without suppression tends to
introduce artificial textures into images, which do not exist in HR images. These artificial
textures significantly reduce the perception loss, but they also obscure the original textures
of images, which is fatal for small object detection. Artificial texture loss is proposed to
suppress the artificial textures encouraged by perception loss. The artificial texture loss is
computed as Equation (4).

ltexture =
1

W − 1

W−1

∑
x=1

Mx ·
(

Gω

(
ILR
)

x+1,∗
− Gω

(
ILR
)

x,∗

)2
+

1
H − 1

H−1

∑
y=1

My ·
(

Gω

(
ILR
)
∗,y+1

− Gω

(
ILR
)
∗,y

)2 (4)

in which

Mx = cos
(

π

∣∣∣∣ x
W
− 1

2

∣∣∣∣)
My = cos

(
π

∣∣∣∣ y
H
− 1

2

∣∣∣∣) (5)

where Mx and My are the variants of Mx,y to the direction of x and y. W and H denote the
size of the super-resolution image. Gω

(
ILR)

x,∗ is the sum of the pixel values of the x-th
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row in the generated image. Gω

(
ILR)

∗,y denotes the sum of the pixel values of the y-th
column in the generated image.

3.2.2. Adversarial Loss

We adopted an adversarial loss to generate more realistic-looking SR images, which
has been proved to be efficient in [23]. The adversarial loss is defined as Equation (6):

ladv = log
(

Dθ

(
IHR

))
+ log

(
1− Dθ

(
Gw

(
ILR
)))

(6)

where D represents the discriminator and θ denotes its parameters. Dθ

(
IHR) denotes the

probability of the input IHR being a real HR image.
The adversarial loss encourages the discriminator to have a stronger discriminative

ability to distinguish real HR images from generated SR images. At the same time, the
adversarial loss drives the generator to produce images with fine details.

3.2.3. Detection Loss

As shown in Figure 2, our discriminator is a two-stage object detection method. First,
the discriminator proposes ROIs from the input. Second, the discriminator predicts object
categories and regresses bounding boxes on ROIs. To achieve this, we propose detection
loss, including ROI loss, classification loss, and regression loss.

ROI Loss: To complete the task of proposing ROIs and ensuring the generated images
are in more detail, we introduced the ROI loss to the overall objective. The ROI loss is
defined as Equation (7):

lROI = ∑
i∈(x1,y1,x2,y2)

SL1(ri − ui) (7)

in which

SL1(x) =
{

0.5x2 |x| < 1
|x| − 0.5 |x| < 1

(8)

where r =
(
rx1, ry1, rx2, ry2

)
denotes a tuple of the true ROI regression target, and u =(

ux1, uy1, ux2, uy2
)

denotes the proposed ROI tuple u shown in Figure 3a.
In our method, ROI loss plays two roles. First, it guides the discriminator to propose

ROIs from the input, regardless of whether they are real HR images or generated SR images.
Second, it promotes the generator to recover images with more detail, making it easier to
propose ROIs.

Classification Loss. In order to complete the object categorization, we adopted cross-
entropy loss as our classification loss. The classification loss is defined as Equation (9):

lcls =
K

∑
k=1
−yi,k log

(
Dcls

(
IHR
i

))
− yi,k log

(
Dcls

(
Gω

(
ILR
i

)))
(9)

in which

yi,k =

{
1 if target i belongs to class k
0 otherwise

(10)

where Dcls
(

I∗i
)

denotes the probability of the i-th input belonging to the k-th category.
Our classification loss also plays two roles in the discriminator and the generator,

respectively. First, it encourages the discriminator to predict accurate object categories.
Second, it drives the generator to produce images that are easier to classify.

Regression Loss: We also introduced regression loss into the objective function to
complete the two-stage object detection and promote the generated images that make it
easier to localize small objects.
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lloc = ∑
j∈(x,y,w,h)

SL1

(
ti,j − vi,j

)
(11)

where v =
(
vx, vy, vw, vh

)
denotes a tuple of the true bounding box regression target, and

t =
(
tx, ty, tw, th

)
denotes the tuple of the predicted bounding box, as shown in Figure 3b.

Similar to the ROI loss, our regression loss also has two purposes. First, it guides the
discriminator to fine-tune the bounding box in the ROI proposed in the first stage. Second,
it encourages the generator to produce sharper images with more high-frequency content.

3.2.4. Objective Function

Based on the previous analysis, we propose the objective function of CMTGAN.
CMTGAN can be trained by optimizing the objective function. We adopted two objective
functions for the generator and the discriminator, respectively. The loss functions LG of the
generator and LD of the discriminator are shown in Equations (12) and (13).

LG =
1
N

N

∑
i=1

λpixlpixel−wise +
1
N

N

∑
i=1

λperclperception +
1
N

N

∑
i=1

λtexltex+

1
N

N

∑
i=1

λadvladv+

1
N

N

∑
i=1

λdet(lROI + lcls + lloc)

(12)

LD =
1
N

N

∑
i=1

τROI lROI +
1
N

N

∑
i=1

τclslcls +
1
N

N

∑
i=1

τloclloc+

1
N

N

∑
i=1

τadvladv

(13)

where λpix, λperc, λtex, λadv and λdet denote the trade-off weights during training generator
G. τROI , τcls, τloc, and τadv denote the trade-off weights during training discriminator D.
lpixel−wise, lperception, ltex, ladv, lROI , lcls and lloc denote the pixel-wise loss in Equation (2),
the perception loss in Equation (3), the artificial texture loss in Equation (4), the adversarial
loss in Equation (6), the ROI loss in Equation (7), the classification loss in Equation (9) and
the regression loss in Equation (11).

The loss function of generator G consists of centered content loss, adversarial loss,
and detection loss. Different to the previous GAN methods, we introduced the centered
mask and artificial texture loss into the centered content loss. The centered mask promotes
the generator focus on improving details of the central part, which satisfies the needs of
small object detection. Artificial texture loss helps the generator reach a balance between
keeping original features and generating super-resolution textures. The loss function
of discriminator D includes adversarial loss and detection loss. Different from [10], we
introduced ROI loss into our detection loss, which helps the discriminator perform the
first stage of small object detection: propose ROIs. We also adopt classification loss and
regression loss for the second stage: predict object categories and regress bounding boxes.

While training the generator, we froze the discriminator, calculated the loss of the
generator with LG, and updated the generator by backpropagation. Similar to the generator,
we also optimized the discriminator while keeping the generator frozen.

4. Experiments
4.1. Datasets and Evaluation Metrics

We implemented our model with PyTorch and all the following experiments were
performed on a single NVIDIA GeForece RTX 3090 GPU. Table 3 shows our system require-
ments. Considering the GPU’s performance, we experimentally validated our proposed
method on the VOC dataset.
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The VOC dataset contains 20 object categories including vehicles, households, animals,
and others. This dataset has been widely used as a benchmark for object detection tasks [29].

Due to the resolution of the dataset, we exploited original images for the pre-training
of the generator. After that, we created selected regions from original images for the
pre-training of the discriminator and the training of CMTGAN, respectively.

Table 3. System requirements.

CPU Intel 10700K
GPU NVIDIA RTX3090
OS Ubuntu20.04

Language Python3.8 with PyTorch1.8.1(LTS)

Due to the errors in the baseline selector, the point of interest cannot properly coin-
cide with the center of the target. As shown in Figure 5, we also added a random offset(

xo f f set, yo f f set

)
from the center of the target while creating selected regions.

(
xo f f set, yo f f set

)
is shown in Equation (14).

xo f f set = random
(

10,
√

wobject · hobject

)
yo f f set = random

(
10,
√

wobject · hobject

) (14)

where wobject and hobject denote the size of the detection target. The function random(x1, x2)
returns a random integer from x1 to x2. After that, we took the point of interest as the
center and crop the selected region with a fixed size sizeselected.

We exploited average gradient (AG), standard deviation (STD), and mutual informa-
tion (MI) to validate the performance of our generator, in which AG shows the definition
of images, STD shows the quantity of information, and MI denotes the similarity between
HR/SR images. Furthermore, we performed small object detection with CMTGAN and
some mainstream methods with one-stage frameworks or two-stage frameworks. We
divided the objects into small (area < 962), medium (962 > area > 322), and large objects
(area > 962). We focused on the detection of small/medium objects and report the final
detection performance with AP.

objectw

objecth

offsetx
offsety

selectedsize

selectedsize

Figure 5. Selected region. The blue point denotes the center of the target, and the blue box indicates
the ground-truth bounding box. The red point denotes the point of interest proposed by the baseline
selector, and the red box indicates the selected region.

4.2. Implementation Details

In the generator, we set the trade-off weights λpix = 1, λperc = 0.006, λtex = 2× 10−8,
λadv = λdet = 0.001. In the discriminator, we set the trade-off weights τadv = τROI =
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τcls = τloc = 1. First, we performed the pre-training of the generator and the discriminator.
Second, we trained the CMTGAN for image super-resolution and small object detection.

Pre-training of the generator and the FCadv branch of the discriminator. We created
HR images in the size of 4002 from the VOC dataset and exploited down-sampling to
produce LR images at the size of 1002. Then, we performed the pre-training on HR and
SR images. The generator produces SR images at the size of 4002 from LR images, and the
FCadv branch outputs the probability of the input being a real HR image. Our generator
was trained from scratch. The weights in each layer were initialized with a zero-mean
Gaussian distribution with standard deviation 0.02, while the biases were initialized with
0. The backbone network of discriminator loaded the pre-trained weights of ResNet-50.
The weights in the fully connected layer of FCadv branch were initialized with a zero-mean
Gaussian distribution with a standard deviation of 0.1, while the biases were initialized
with 0. During the pre-training, the weights and biases in the backbone network of the
discriminator were fixed, which makes the discriminator more stable. We adopted the
Adam optimizers for the generator and the discriminator, respectively. The learning rates
for the optimizers were initially set to 0.0001 and were then reduced to 95% after every
epoch. We alternately updated the generator and the discriminator networks: we updated
the generator every five iterations and updated the discriminator every iteration except on
the generator’s turn. The pre-training was terminated after 50 epochs, and the states of the
network were recorded.

Pre-training of the discriminator: We pre-trained the FCcls branch and FCloc branch
of the discriminator on the selected regions with sizeselected = 150. Similar to the former
pre-training, we also fixed the backbone network of the discriminator. The backbone
network of discriminator loads the pre-trained weights of ResNet-50. The weights in
RPN layers, fully connected layers of FCcls branch and FCloc branch are initialized with
a zero-mean Gaussian distribution with a standard deviation of 0.1, while the biases are
initialized with 0. We adopted the Adam optimizer for the discriminator. The learning rate
for the optimizer was initially set to 0.0001 and then reduced to 95% after every epoch. The
pre-training was terminated after 50 epochs, and the states of the network were recorded.

Training for CMTGAN: Finally, we trained CMTGAN on the selected regions. The
generator performed super-resolution on the selected regions in the size of 1502. The
discriminator performed object detection on the SR images in the size of 6002, predicting
object categories and regressing bounding boxes. The generator and discriminator load
weights from the pre-trained weights. We adopted the Adam optimizers for the generator
and the discriminator, respectively. The learning rates for the optimizers were initially
set to 1× 10−5 and then reduced to 95% after every epoch. We alternately updated the
generator and the discriminator networks: we updated the generator every five iterations
and updated the discriminator every iteration except on the generator’s turn. The train-
ing contains 100 epochs. In the first 50 epochs, layers in the backbone network of the
discriminator were fixed. In the following 50 epochs, no layer was fixed.

4.3. Experimental Results
4.3.1. Performance of Super-Resolution

The generator performed super-resolution on LR images, and the performance is
shown in Figure 6. We performed up-sampling with bicubic interpolation on LR images in
the size of 1002 (Figure 6 row A) and restore images in 4002 (Figure 6, row B).

We super-resolved LR images with SPSR [30] and ESRGAN (Figure 6, row C and
row D).

At the same time, we exploit CMTGAN without artificial texture loss to generate
SR images with a factor of 4 (Figure 6, row E). Furthermore, we exploit CMTGAN with
artificial texture loss to generate SR images with a factor of 4 (Figure 6, row F).
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Figure 6. Performance of traditional interpolation methods and CNN-based methods.
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It is evident that SR images in row E are significantly sharper than restored images in
row B. However, SR images in row E contain some abnormal textures, which may cover
the original texture information of small objects. Especially in the first image of row E, we
can see that the wings are abnormally distorted by artificial textures. SR images in row F
contain significantly fewer artificial textures than SR images in row E. The wings in the
first image of row F are more realistic than row E.

Although SPSR exhibited an impressive performance on images of buildings, images
generated by SPSR in row C contain too many artificial textures for small object detection
compared to images generated by our method in row E. ESRGAN generated more realistic-
looking images in row D compared to SPSR. Images generated by ESRGAN in row D look
sharper than images in row E, which shows extremely clear boundaries. However, due
to the optical factors, real HR images captured by cameras do not contain such extremely
clear boundaries, which means interference in object detection methods. More details are
shown in the following experiments.

In summary, the generator of CMTGAN can generate sharper SR images than tra-
ditional interpolation methods. There is no significant gap between the generator of
CMTGAN- and CNN-based methods (e.g., ESRGAN, etc.) in single image super-resolution.
Artificial texture loss shows significant suppression of artifacts, which helps the generator
keep a balance between original features and super-resolution textures.

Furthermore, we quantitatively analyzed the super-resolution performance of CMT-
GAN with AG, STD, MI, and inference time. A higher AG means sharper images, and a
higher STD means more information in images. MI shows a similarity between HR images
and SR/RE images. We collected 54 HR images from the VOC dataset randomly and
down-sampled them to the size of 1502, as shown in Figure 7. We up-sampled LR images
with bilinear interpolation and bicubic interpolation to restore images in the size of 6002.
The generator of CMTGAN produces SR images with a factor of 4. As shown in Table 4, we
calculated AG, STD, and MI of SR/RE images to validate the performance of CMTGAN.
Taking into consideration the needs of object detection on inference time, we also recorded
the inference time in Table 5.

According to Table 4, it is clear that SR images generated by CNN-based methods
have higher AG and STD than RE images generated by traditional interpolation methods,
and images generated by ESRGAN have the best AG and STD. However, a higher AG and
STD do not mean absolutely better images. The images generated by SPSR have a better
AG and STD than CMTGAN, while they contain too many artificial textures, as shown in
Figure 6. These artificial textures increase AG and STD, but also make small objects hard to
detected. Therefore, we exploited MI to measure the similarity between HR images and
SR/RE images. As shown in Table 4, SR images generated by CMTGAN have the best MI,
which means that SR images generated by CMTGAN are the most similar to the original
HR images.

According to Table 5, CMTGAN has the shortest inference time among CNN-based
super-resolution methods. The generator of CMTGAN takes an average of 10.1 ms to
perform super-resolution, which satisfies the needs of object detection. Although it takes
more time than traditional interpolation methods, the inference time of CMTGAN is
significantly shorter than SPSR and ESRGAN.

In summary, SR images generated by CMTGAN are sharper than images produced
by traditional interpolation methods and contain more information. The generator of
CMTGAN exhibits a similar super-resolution performance to some state-of-the-art CNN-
based methods. SR images generated by CMTGAN are the most similar to the original
HR images as compared to images generated by traditional interpolation methods and
CNN-based methods. The generator of CMTGAN can perform real-time super-resolution
on a single NVIDIA RTX3090, which satisfies the needs of small object detection.
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Figure 7. LR images from VOC.
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Table 4. Metrics of super-resolution.

AG STD MI
Bilinear Bicubic SPSR ESRGAN CMTGAN Bilinear Bicubic SPSR ESRGAN CMTGAN Bilinear Bicubic SPSR ESRGAN CMTGAN

1 6.696 4.113 10.284 14.265 6.965 49.768 48.022 52.319 53.778 50.661 0.982 0.988 0.883 0.948 1.124
2 4.201 2.773 5.787 6.778 4.102 56.516 55.607 57.123 57.276 56.865 1.647 1.669 1.499 1.747 1.849
3 3.380 2.189 5.416 10.784 4.282 41.626 40.873 42.956 43.643 42.310 1.159 1.158 1.037 1.058 1.258
4 4.584 3.236 9.746 9.708 5.455 63.957 62.528 66.067 66.632 65.631 1.639 1.614 1.314 1.648 1.708
5 2.241 1.401 2.860 5.665 2.978 14.823 14.193 15.104 16.174 15.297 0.702 0.698 0.556 0.611 0.759
6 5.872 4.100 8.804 8.299 6.382 74.184 72.582 76.185 76.263 75.401 1.303 1.291 1.166 1.414 1.401
7 5.976 4.093 9.215 7.331 6.068 70.641 69.057 72.028 72.315 71.848 1.616 1.604 1.412 1.878 1.792
8 3.292 2.124 5.069 8.269 4.114 61.261 60.671 61.797 62.268 61.930 1.274 1.262 1.148 1.232 1.359
9 6.471 4.267 10.566 9.203 6.735 72.393 70.745 74.777 74.401 73.880 1.373 1.367 1.172 1.496 1.529
10 4.496 2.858 7.246 6.138 4.557 53.730 52.782 54.923 54.516 54.242 1.534 1.548 1.320 1.714 1.736
11 4.240 2.718 6.478 5.515 4.515 41.485 40.480 42.597 42.405 41.555 1.315 1.320 1.146 1.467 1.468
12 4.137 2.760 6.202 5.633 4.548 51.775 50.633 53.059 53.031 52.056 1.552 1.528 1.294 1.695 1.599
13 3.396 2.262 5.517 4.503 3.707 53.519 52.704 54.448 54.380 54.089 1.873 1.865 1.649 2.034 2.021
14 4.594 2.797 6.060 10.217 5.133 46.618 45.647 47.448 48.525 47.432 1.246 1.241 1.112 1.204 1.381
15 4.966 3.303 9.192 9.914 5.387 69.867 68.715 71.478 71.716 70.771 1.551 1.572 1.380 1.600 1.707
16 2.140 1.455 4.849 4.131 2.785 40.713 40.169 41.627 41.319 41.505 1.641 1.640 1.429 1.637 1.645
17 3.854 2.354 4.864 12.449 4.305 28.532 27.527 29.299 31.445 29.446 0.908 0.916 0.790 0.748 1.036
18 4.790 2.972 6.984 10.846 5.242 42.267 41.035 43.844 45.142 43.197 1.069 1.063 0.934 1.071 1.196
19 4.470 2.773 5.917 9.165 4.645 58.916 58.032 59.796 60.313 59.259 1.615 1.634 1.443 1.600 1.673
20 4.609 2.991 7.067 8.157 5.028 61.378 60.246 62.825 63.154 62.045 1.750 1.758 1.487 1.773 1.784
21 4.139 2.595 6.493 6.961 4.267 48.795 47.758 49.966 50.349 49.925 1.688 1.713 1.459 1.873 1.857
22 5.248 3.427 8.306 8.366 5.781 52.863 51.164 55.052 55.017 53.862 1.319 1.312 1.159 1.432 1.483
23 5.359 3.692 8.543 7.555 5.832 58.952 57.475 60.863 60.871 60.000 1.464 1.455 1.288 1.698 1.657
24 4.099 2.687 6.552 7.056 4.599 85.025 84.121 85.593 86.896 85.293 1.912 1.881 1.638 1.972 1.882
25 5.972 3.717 8.957 16.066 6.387 52.312 50.775 54.267 56.039 53.228 1.126 1.126 1.012 1.032 1.305
26 1.821 1.270 3.040 1.894 2.240 51.963 51.588 52.661 52.138 51.719 2.464 2.510 2.060 2.684 2.363
27 3.457 2.282 5.615 8.670 3.901 33.958 32.910 35.449 36.090 34.378 1.304 1.331 1.147 1.222 1.423
28 4.726 2.938 6.800 8.703 5.226 44.176 43.029 45.624 45.997 44.996 1.128 1.129 1.034 1.232 1.286
29 4.127 2.679 6.602 5.835 4.351 53.838 52.807 55.218 55.231 54.504 1.671 1.658 1.423 1.867 1.821
30 5.229 3.583 9.719 8.414 6.049 60.858 59.539 63.098 63.069 62.090 1.384 1.385 1.257 1.582 1.585
31 2.909 1.911 3.636 4.588 2.751 71.213 70.810 71.348 71.579 72.170 2.107 2.138 1.954 2.159 2.221
32 4.204 2.850 6.254 5.740 4.616 72.150 71.122 73.294 72.845 72.954 1.690 1.665 1.485 1.806 1.803
33 4.570 3.142 8.576 9.801 5.265 60.982 59.737 63.412 63.102 61.863 1.415 1.410 1.218 1.423 1.510
34 4.086 2.539 5.961 10.784 4.695 40.812 39.807 41.836 43.031 41.475 1.090 1.093 0.979 0.998 1.162
35 3.884 2.515 6.005 5.781 4.393 37.029 35.687 38.856 38.483 37.723 1.321 1.314 1.137 1.399 1.472
36 5.920 4.105 9.760 7.342 6.170 62.528 60.724 64.934 64.394 63.470 1.372 1.374 1.192 1.618 1.584
37 5.315 3.668 10.310 10.576 5.986 69.416 68.063 71.542 71.778 70.556 1.505 1.502 1.325 1.586 1.691
38 3.507 2.153 4.295 4.532 3.963 39.684 39.027 40.410 40.009 39.769 1.470 1.475 1.295 1.645 1.667
39 6.105 4.066 10.277 9.581 6.462 71.704 70.143 73.620 74.197 73.075 1.498 1.502 1.347 1.675 1.689
40 4.922 3.235 8.136 8.628 5.312 69.053 68.017 70.443 70.690 69.939 1.626 1.629 1.422 1.702 1.729
41 4.504 2.741 5.877 7.137 4.894 40.144 38.972 41.447 41.803 40.756 1.167 1.178 1.023 1.274 1.362
42 2.455 1.685 4.341 4.294 2.814 46.511 45.960 47.201 46.959 46.771 1.818 1.814 1.548 1.859 1.900
43 5.888 4.024 10.207 13.441 6.479 57.403 55.648 60.020 60.746 58.590 1.346 1.359 1.170 1.361 1.541
44 7.117 4.549 11.958 13.347 7.295 68.859 67.121 71.403 71.491 70.155 1.210 1.217 1.085 1.267 1.375
45 5.799 3.798 8.163 6.613 5.528 61.637 60.158 62.743 62.588 62.438 1.397 1.419 1.237 1.607 1.610
46 6.743 4.456 9.708 7.015 6.439 62.944 61.046 64.226 64.678 63.716 1.469 1.491 1.301 1.833 1.778
47 3.093 1.968 4.022 3.840 3.314 46.635 46.151 47.020 47.040 47.051 1.795 1.831 1.625 1.933 1.972
48 3.827 2.442 5.417 9.030 4.429 52.819 52.083 53.747 53.999 53.055 1.358 1.349 1.220 1.325 1.485
49 5.648 3.692 11.680 18.414 6.711 58.624 56.957 61.948 64.662 60.159 1.234 1.220 1.083 1.176 1.335
50 5.906 3.845 8.503 9.928 6.107 65.096 63.548 66.613 66.973 66.147 1.416 1.410 1.253 1.504 1.581
51 6.454 4.227 11.331 14.627 7.173 59.019 57.101 61.990 63.246 60.322 1.040 1.036 0.910 1.011 1.184
52 5.613 3.671 9.798 6.785 5.648 62.006 60.582 64.070 63.021 63.163 1.521 1.527 1.311 1.777 1.784
53 4.422 2.867 6.502 6.423 4.930 38.005 36.352 40.019 39.999 39.053 1.179 1.166 1.019 1.337 1.348
54 4.984 3.171 7.207 10.234 5.561 75.578 74.697 76.843 77.739 76.383 1.459 1.453 1.336 1.498 1.594

Avg 4.638 3.032 7.346 8.425 5.046 55.307 54.128 56.787 57.138 56.114 1.439 1.441 1.262 1.517 1.575

Table 5. Inference time of super-resolution.

Methods Bilinear Bicubic SPSR ESRGAN SR in CMTGAN

Inference time 1.8 ms 2.6 ms 147.1 ms 58.5 ms 10.1 ms

4.3.2. Performance of Small Object Detection

We exploited CMTGAN to detect small objects, as shown in Figure 8. The generator
performed super-resolution on the input, which made the images easier for detection. The
discriminator proposed ROIs in the first stage, predicted object categories and regressed
bounding boxes in the second stage.
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Figure 8. Two-stage object detection of CMTGAN.

We performed small/medium object detection on selected regions with CMTGAN,
YOLOv4, and Faster RCNN combined with different up-sampling methods. We up-
sampled the selected regions from 1502 to 6082 with bilinear interpolation and bicubic
interpolation, from 1502 to 6002 with SPSR and ESRGAN for YOLOv4, which is similar
to the super-resolution performed by the generator in CMTGAN. We up-sampled the
selected regions from 1502 to 6002 with bilinear interpolation, bicubic interpolation, SPSR,
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and ESRGAN for Faster RCNN, similar to the super-resolution in CMTGAN. Then, we
exploited these methods for object detection.

As shown in Table 6, CMTGAN has a better performance on small/medium object
detection than YOLOv4 (i.e., 20.52% in AP) and Faster RCNN (i.e., 5.27% in AP).

Table 6. Performance of object detection.

Methods AP APs APm

Bilinear + YOLOv4 33.39 20.64 35.68
Bicubic + YOLOv4 32.20 22.14 34.30
SPSR + YOLOv4 19.75 13.75 20.84

ESRGAN + YOLOv4 34.70 20.42 36.33
Bilinear + FasterRCNN 49.95 25.20 56.49
Bicubic + FasterRCNN 48.81 24.00 54.86
SPSR + FasterRCNN 26.99 15.91 28.70

ESRGAN + FasterRCNN 46.59 33.58 48.89
CMTGAN 55.22 36.99 69.72

Although YOLOv4 combined with ESRGAN achieved a higher AP, its inference time
also increased as shown in Table 7.

Table 7. Inference time of object detection.

Methods Resize/SR Detection Total

Bilinear + YOLOv4 1.8 ms 29.4 ms 31.2 ms
Bicubic + YOLOv4 2.6 ms 29.4 ms 32.0 ms
SPSR + YOLOv4 147.1 ms 29.4 ms 176.5 ms

ESRGAN + YOLOv4 58.5 ms 29.4 ms 87.9 ms
Bilinear + FasterRCNN 1.8 ms 42.1 ms 43.9 ms
Bicubic + FasterRCNN 2.6 ms 42.1 ms 44.7 ms
SPSR + FasterRCNN 147.1 ms 42.1 ms 189.2 ms

ESRGAN + FasterRCNN 58.5 ms 42.1 ms 100.6 ms
CMTGAN 10.1 ms 35.8 ms 45.9 ms

According to Table 7, YOLOv4 combined with bilinear interpolation has the shortest
inference time. The inference time of CMTGAN is longer than YOLOv4 combined with
bilinear interpolation but significantly shorter than YOLOv4 and Faster RCNN combined
with CNN-based super-resolution methods. CNN-based super-resolution methods (e.g.,
ESRGAN, SPSR, etc.) may benefit small object detection, but they also take a long time to
super-resolve LR images, which makes the detection is not in real timeCMTGAN exhib-
ited a better object detection performance than Faster RCNN combined with traditional
interpolation with a similar inference time.

5. Conclusions

In this paper, we proposed CMTGAN, a new small object detection method based on
generative adversarial networks. We introduced artificial texture loss and a centered mask
into the generator, with which the generator could create super-resolution images easier
for small object detection. The artificial texture loss helped the generator to balance the
original features and super-resolution textures. The discriminator of our method performed
complete two-stage object detection and distinguished real images from fake images, which
can be adapted to other GANs for detection tasks. The experimental results showed that,
compared with the existing methods, the generator of CMTGAN could generate sharper
super-resolution images with more information. CMTGAN had an obvious advantage in
small/medium object detection.

In future work, we will focus on eliminating the baseline selector. Although CMT-
GAN has a similar inference time than Faster RCNN, there is still a significant difference
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between YOLOv4 and CMTGAN in inference time. We will investigate how to optimize
the architecture of CMTGAN to perform more efficient object detection. Furthermore, we
will further investigate the generation of artifacts to achieve a better performance.
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