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Abstract: This work investigates elimination methods for cardiogenic artifacts in respiratory surface
electromyographic (sEMG) signals and compares their performance with respect to subsequent
fatigue detection with different fatigue algorithms. The analysis is based on artificially constructed
test signals featuring a clearly defined expected fatigue level. Test signals are additively constructed
with different proportions from sEMG and electrocardiographic (ECG) signals. Cardiogenic artifacts
are eliminated by high-pass filtering (HP), template subtraction (TS), a newly introduced two-step
approach (TSWD) consisting of template subtraction and a wavelet-based damping step and a pure
wavelet-based damping (DSO). Each method is additionally combined with the exclusion of QRS
segments (gating). Fatigue is subsequently quantified with mean frequency (MNF), spectral moments
ratio of order five (SMR5) and fuzzy approximate entropy (fApEn). Different combinations of artifact
elimination methods and fatigue detection algorithms are tested with respect to their ability to deliver
invariant results despite increasing ECG contamination. Both DSO and TSWD artifact elimination
methods displayed promising results regarding the intermediate, “cleaned” EMG signal. However,
only the TSWD method enabled superior results in the subsequent fatigue detection across different
levels of artifact contamination and evaluation criteria. SMR5 could be determined as the best fatigue
detection algorithm. This study proposes a signal processing chain to determine neuromuscular
fatigue despite the presence of cardiogenic artifacts. The results furthermore underline the importance
of selecting a combination of algorithms that play well together to remove cardiogenic artifacts and
to detect fatigue. This investigation provides guidance for clinical studies to select optimal signal
processing to detect fatigue from respiratory sEMG signals.

Keywords: biomedical signal processing; ECG; sEMG; EMG; neuromuscular fatigue; muscle fatigue;
MNF; fApEn; SMR; fatigue detection; respiratory EMG; respiration; cardiogenic artifacts

1. Introduction

The over-exaggerated use of skeletal muscles leads to fatigue recognizable in the
corresponding surface electromyographic (sEMG) signals [1–3]. Respiratory muscles are
no exceptions from fatiguing [4–6], except it is rarely seen in everyday life.

Unfortunately, in the case of mechanical ventilation of the critically ill patient, fatigued
respiratory muscles are related to a pathway leading to respiratory failure [7]. Respiratory
failure is a clinically relevant issue in connection with weaning a patient from mechanical
ventilation, especially if this process fails. Weaning failure is associated with an imbalance
of neuromuscular capacity and ventilatory needs [8]. Although this failure is in many
cases of a multi-factorial nature [8], it is often accompanied with respiratory muscle fatigue.
Brochard et al. [9] demonstrated that unsuccessful weaning trials in patients meeting the
usual weaning criteria were associated with diaphragmatic fatigue. It is thus desirable to
monitor and predict respiratory muscle fatigue based on sEMG, especially when weaning
is the next therapeutic step.
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Until now, automated analysis of respiratory sEMG from the diaphragm and inter-
costal muscles has been hampered by strong contamination with cardiogenic artifacts. In
the context of this study, cardiogenic artifacts refer to disturbances in the respiratory sEMG
signal originating from the electrical activity of the heart. Prior to any further evaluation,
these artifacts have to be compensated for, while fatigue-related features in the sEMG have
to be conserved.

An early approach to determine muscular fatigue based on respiratory EMG by
Sieck et al. [5] included the detection of QRS segments with a Schmitt trigger and their
omission from the corresponding EMG segments. QRS segments were also excluded by
Brochard et al. [9]. To this end, Sinderby et al. [10] proposed analyzing only selected signal
segments between two subsequent R peaks. They suggested utilizing only signal segments
from between 50% and 75% of the RR interval for fatigue analysis and detrended selected
segments. Ortega et al. [11] proposed utilizing a fifth order recursive least squares (RLS)
filter to produce an artificial electrocardiographic (ECG) signal. This artificial signal claims
to cancel cardiogenic interferences by subtraction. Template subtraction [12] is a common
approach to eliminate cardiogenic artifacts for general respiratory sEMG processing. It
utilizes the repetitive characteristics of cardiogenic artifacts for their removal and is also
known as event-synchronous cancellation [13,14]. A template is gained by averaging the
contaminated signal in segments corresponding to each heartbeat aligned at QRS times.
This template is used in an adaptive noise cancellation scheme by subtracting it from the
contaminated signal repetitively aligned with heartbeats. A study comparing different
elimination methods for cardiogenic artifacts in respiratory sEMG was recently published
by Petersen et al. [15].

The study at hand compares different methods to eliminate cardiogenic artifacts from
sEMG signals and evaluates the impact of residual cardiogenic artifacts on a subsequently
performed fatigue detection. We introduce a novel two-step approach consisting of addi-
tive template subtraction and a subsequent wavelet-based, multiplicative damping step.
To scrutinize our methods, signals with specific properties regarding strength and charac-
teristics of cardiogenic artifacts are synthesized. The synthetic test signals are not intended
to be a completely realistic model for respiratory sEMG. Instead, they were chosen to
include two specific characteristics: (1) cardiogenic components with changing shapes and
(2) fatigue-related features corresponding to a known fatigue state. They are utilized to
evaluate a set of fatigue detection algorithms for their resistance against residues from car-
diogenic artifact removal. We specifically seek to optimize algorithms in order to minimize
the impact of cardiogenic artifacts on the fatigue analysis.

2. Methods

The following section describes the synthesis of artificial sEMG signals containing
cardiogenic artifacts. Afterwards, we describe methods to eliminate these artifacts and
algorithms to determine muscular fatigue. Finally, we introduce criteria to evaluate the
fatigue detection performance.

2.1. Construction of Artificial Signals

Surface electromyographic signals (sEMG) were recorded in two previous studies [16,17]
during contractions of the upper arm with different load levels. Load levels are stated as
fractions of an initially performed maximum voluntary contraction (MVC). Subjects were
instructed to perform contractions with 20%, 40% and 60% of their individual MVC for
3 min. They were allowed to cancel earlier if feeling fatigued. In between tasks, there was
a resting period of at least 30 min. For this investigation, nine subjects displaying a clear
difference in fatigue indexes at 20% and 60% MVC level provided sEMG recordings. For this
study, only the first minute of sEMG signals was used. Raw sEMG signals were high-pass
filtered with a third order Butterworth filter with 1 Hz corner frequency to remove baseline
offsets. The resulting signals with zero mean are denoted as EMG20(t) and EMG60(t). An
exemplary signal segment of EMG60(t) is displayed in Figure 1 (subpanel A).
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To mimic respiration-like activity, sEMG signals were modulated by a respiration
pattern consisting of 1 s inspiration with full muscular activity followed by 3 s of expiration
with 30% muscular activity. This corresponds to a respiratory rate of 15 breaths per
minute that can be considered as typical for an adult at rest [18]. Furthermore, both
inspiration and expiration duration are within the normal range for a resting subject [19].
The residual activity of 30% in expirations was chosen to ensure that the fatigue algorithms
are continuously supplied with sEMG data featuring realistic fatigue related properties. The
activity changes smoothly between transitions. See Figure 1 (subpanel B) for a visualization
of the activity pattern MSM(t). The modulated sEMG signal is obtained by:

EMGM
Λ (t) = MSM(t) · EMGΛ(t) (1)

where Λ denotes the MVC load level. An example is shown in Figure 1 (subpanel C).
ECG signals were sourced from the CARDIODAT dataset [20] (accessed via Physionet [21]).

Channels I and II were slightly upsampled from 1 kHz to 1024 Hz, matching the sample
rate of the sEMG signals. Linear interpolation was utilized for the upsampling. They are
denoted as ECGI(t) and ECGII(t). A baseline filtering removes the arbitrary offset from
the ECG signals and yields ECGBLF

I (t) and ECGBLF
II (t).

Often, ECG signals already include electromyographic components from respiratory
muscles [22]. We found that this is also true in our case. However, these components do
not feature the intended fatigue condition and would impair the subsequent evaluation.
Among others, a Savitzky–Golay filter was suggested for denoising ECG signals [22,23].
Thus, a Savitzky–Golay filter [24] was applied to ECGBLF

I (t) and ECGBLF
II (t) to attenuate

these EMG-like signal components. To account for high frequencies within the QRS
complex, different parameters of the filter were utilized. For signal parts within or close
to the QRS segment (from 0.05 s prior to the time of QRS detection until 0.1 s after), the
order was 5 and the length was 15 bins. Otherwise, a Savitzky–Golay filter of order 3
and length 25 was applied. The Savitzky–Golay filtered signals are denoted as ECGSG

I (t)
and ECGSG

II (t), which are exemplified in Figure 1D,E. The Savitzky–Golay filter’s effect is
visualized in the Appendix A Figure A1.

Heartbeat artifacts contaminating respiratory sEMG usually show a much larger
irregularity compared to the ECG features from channel I and II. This effect is caused by
variations in electrode positions. The position of channels I and II are much less prone to
changes in geometry between the heart and electrode due to breathing activities. Electrode
positions close to the diaphragm on the costal margin are much more influenced by varying
separations between the heart and electrodes. The same effect can also be observed in
respiratory EMG recordings with esophageal electrodes [10]. In order to mimic a similar
effect in our synthetic signals, we decided to mix ECG channels I and II with varying
weights resembling the breathing phase. These peripheral leads seemed advantageous
to us because they are bipolar leads and are not susceptible to intrinsically include much
respiratory EMG and/or ECG irregularity caused by these varying separations between
heart and electrodes. For respiratory sEMG, it is common practice to use a bipolar recording
with electrodes bilaterally distributed on the rib cage [25]. Although precordial ECG leads
such as V4 also feature a location that is prone to similar effects, we have refrained from
using it. The main reason is that V4 is an unipolar lead [26]. Additionally, the artificially
mixed channel from lead I and II enabled us to control the timing to be consistent with
the breathing phase pattern. Intrinsically included electromyographic components and/or
ECG irregularity from the ECG signal would not match the temporal pattern of our
artificial breathing phase pattern. The weighting signal WSC(t) was constructed to reflect
the changing lung volume. It features a steep ascent at the beginning of the inspiration and
a slower decay-like descent in the expiration. The artificially mixed ECG channel (denoted
channel A) was calculated as:

ECGA(t) = (1−WSC(t)) · ECGSG
I (t) + WSC(t) · ECGSG

II (t) (2)



Sensors 2021, 21, 5663 4 of 36

An example of this mixing is shown in Figure 1 (subpanel G). An evaluation of the increased
heartbeat irregularity is appended in the Appendix A Figure A2.
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Figure 1. Artificial signal construction based on electrocardiographic (ECG) and surface electromyo-
graphic (sEMG) signals. (A) shows an sEMG signal from a 60% MVC load case (EMG60(t)) taken
from [16]. Modulation with the weighting signal MSM(t) (displayed in (B)) to mimic a breathing-like
activity pattern yields EMGM

60(t) displayed in (C). (D,E) display ECG signals ECGSG
I (t) and ECGSG

II (t)
from channel I and II, respectively. (F) shows the weighting signal WSC(t) roughly corresponding
to the lung volume utilized to mix both ECG channels. Its application yields ECGA(t) with an
increased irregularity displayed in (G). The artificial test signal ATS60,0.05,A(t) based on ECGA(t)
and EMGM

60(t) is drawn in (H). Note the small amplitude of sEMG components. (I) shows a “cleaned”
signal ATSTSW15

60,0.05,A(t) with cardiogenic artifacts removed by template subtraction. Note the change
in scale as compared to (H). Some cardiogenic artifacts are still clearly visible in the signal due to
the intended ECG irregularity of the artificial signal. (J) shows a signal ATSTSWD15

60,0.05,A(t) with further
reduced residual cardiogenic artifacts. All physiological signals are displayed in µV.
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Artificial signals were finally constructed by additively combining preprocessed
ECGA(t) with modulated EMGM

20(t) and EMGM
60(t) signals. The combination was per-

formed with different artifact magnitude values in relation to the sEMG power. To quantify
this relation, we used the EMG level η known from [27]. It reflects the ratio of RMS
sEMG power (of the unmodulated sEMG signal) and peak-to-peak QRS amplitude. The
peak-to-peak QRS amplitude was always calculated purely based on ECG channel I even if
an ECG from a mixture of channels is used. This assured a constant absolute sEMG power
across different ECG channels.

All this yields to the following equation for the synthesis of artificial test signals based
on the MVC load level Λ:

ATSΛ,η,A(t) = ECGA(t) + η ·
QRSminmax

(
ECGSG

I (t)
)

RMS(EMGΛ(t))
· EMGM

Λ (t) (3)

Artificial test signals were generated with η = 0.01, 0.02, 0.05, 0.1 and 0.2 and MVC
load levels Λ of 20% and 60%. An example of ATS60,0.05,A(t) can be found in Figure 1
(subpanel H).

Simplified test signals ATSΛ,η,I(t) that are purely based on the ECG channel I were
constructed for comparison purposes.

ATSΛ,η,I(t) = ECGSG
I (t) + η ·

QRSminmax

(
ECGSG

I (t)
)

RMS(EMGΛ(t))
· EMGM

Λ (t) (4)

Pure sEMG signals RSMΛ(t) and RSΛ(t) were also constructed for comparison pur-
poses. They featured the same sEMG power as for η = 0.2 but included no ECG contami-
nation. Because all utilized fatigue detection algorithms are invariant to sEMG scaling, it
was sufficient to construct only comparison signals with a single sEMG power.

The first signal RSMΛ(t) corresponds to the reference case and also incorporates the
sEMG modulation.

RSMΛ(t) = 0.2 ·
QRSminmax

(
ECGSG

I (t)
)

RMS(EMGΛ(t))
· EMGM

Λ (t) (5)

As no ECG contamination is included, the reference case also skips any cardiogenic
artifact removal. However, it contains the same sEMG components. The reference case is
used for the normalization of fatigue detection results and at the subsequent evaluation
step. It is used to determine how much the fatigue detection results are impaired by ECG
contamination and elimination methods of these cardiogenic artifacts. RSMΛ(t) is used to
calculate the reference fatigue indexes ΞΛ(t) (see below).

The second signal for comparison purposes is RSΛ(t). It is a scaled version of the
pure static sEMG without modulation and is used to calculate the fatigue indexes ΨΛ(t)
(see below).

RSΛ(t) = 0.2 ·
QRSminmax

(
ECGSG

I (t)
)

RMS(EMGΛ(t))
· EMGΛ(t) (6)

See Figure 2 column I for a visualization of the reference signal RSMΛ(t) and ar-
tificial test signals ATSΛ,η,A(t). A block diagram visualizing the test signal generation
and a table stating which sEMG and ECG records being combined can be found in the
Appendix A Figures A3 and A4. A data file with a corresponding R-script can be found in
the Supplemental Material to obtain various signals ATSΛ,η,ch(t), RSMΛ(t) and RSΛ(t).
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Figure 2. Different EMG levels mixed with ECG. The first main row (A) depicts the reference case, including the sEMG
modulation but no ECG contamination. The following main rows (B–D) depict the cases with η = 0.01, 0.02 and 0.05,
respectively. For each situation, the 20% and 60% maximum voluntary contraction (MVC) load cases are shown in the
first and second sub row. Column (I) shows the reference signal RSMΛ(t) in the case of row (A) and artificial test signals
ATSΛ,η,A(t) otherwise. The signals with cardiogenic artifacts removed by template subtraction ATSTSW15

Λ,η,A (t) are shown in
the column (II). Corresponding fatigue index signals and their evaluation is visualized in Figure 3.

2.2. Removal of Cardiogenic Artifacts

Template subtraction [28,29] was used to reduce cardiogenic artifacts. This method
utilizes the repetitive nature of ECG and is also known as an event synchronous noise
canceller [14]. Past signal segments covering one heartbeat are aligned along the QRS
complex. The time alignment of QRS complexes is based on the QRS detector and time
refinement described in the following two paragraphs. A template heart segment was
constructed from the average of superimposed segments. The procedure was performed
with signals upsampled to 2048 Hz. This allowed a more precise time location of the
template, as the template is placed relative to sample time points and cannot be placed in
between. The resulting signals were downsampled back to 1024 Hz.
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Figure 3. Exemplary fatigue index signals and their evaluation corresponding to exemplary test signals depicted in Figure 2.
The first row represents the reference case, while the following rows visualize cases with η = 0.01, 0.02 and 0.05, respectively.
Column (III) shows the resulting filtered fatigue index signals for the 20% and 60% MVC load cases in green and red,
respectively. Note that each filtered fatigue index data point incorporates sEMG from a 1s long window. The mean frequency
(MNF) is used as fatigue algorithm with an epoch size of Ne = 256, power spectral density (PSD) estimation with the
Welch method (kw = 15) and a lower bound bl = 35 Hz. Column (IV) shows the distribution of values Φ̄ arising from the
last 15 s of both load cases. The difference to one of the overlapping area of both distributions (light blue) corresponds to
the Kolmugorov–Smirnov distance used to quantify the separability of fatiguing and non-fatigued situations by γB. The
resulting performance evaluation values γA, γB and γC for deviation to the reference fatigue index (�), separability of load
cases ( ) and disturbances measured by R2 (N), respectively, are shown in column (V). Values arising from the reference
case are drawn in light gray for all other EMG levels.

Structural intensity (SI), as proposed in [30], was used to detect QRS events from the
artificial signals. The algorithm is based on the second derivative of the signal. Extrema
are localized in low pass filtered versions corresponding to different scales. Corresponding
extrema over different scales are connected by extrema lines. A function G∗∗∗m (t) evaluates
these extrema lines and yields a scalar signal over time. Peaks of G∗∗∗m (t) above a threshold
are considered to correspond to a QRS complex. The threshold is chosen at half of the
maximal value of G∗∗∗m (t). Instead of an SI scheme with 14,000 scales (as suggested by [30]),
we used an adopted scheme with a reduced set of 28 scales, as already reported in a
previous publication [27]. Furthermore, we also made use of the time alignment fine tuning
from [27]. This intermediate exact time alignment step refines the time location of the
structural intensity-based QRS detector. A better time alignment enables the construction
of a more precise template. The template can thus be subtracted more precisely, reducing
the residual cardiogenic artifact.
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A raw template is constructed from the superimposed heart cycle segments by cal-
culating the mean. The raw template is filtered with a Savitzky–Golay filter of order 6
and length 25. Optionally, the template is treated with an additional denoising step. The
template is wavelet transformed by a stationary wavelet transform (SWT) with 6 scales
and the Daubechies wavelet with 5 vanishing moments [31] as the mother wavelet. The
first three levels that hold the highest frequency components are set to zero. Levels four to
six are set to zero in ranges that feature an RMS power below the median RMS power of
that scale. Ranges in levels are reduced if the RMS power is in between the median RMS
and twice the median RMS to assure smooth transitions. In this way, it is assured that
higher frequencies are kept within the QRS segment but voided otherwise. If a range is
set to zero, it is furthermore assured that the same range is also set to zero in all earlier
levels. The denoised template is gained by the inverse SWT of the modified levels. The
final template is trimmed to start 0.3 s prior to the time of QRS detection. It has the length
of the average heart cycle. The segment is tapered by multiplication with a trapezoid
window. The rising flank has a length of 0.1 s, while the declining flank is 0.2 s long. The
template is subtracted iteratively, starting at the beginning of the signal. The signal yielded
from the subtraction is post-processed with a third order Butterworth high-pass filter with
corner frequency of 15 Hz or alternatively 35 Hz. Signals with reduced cardiac artifacts are
denoted ATScr

Λ,η,ch(t); “cr” identifies the utilized artifact removal method. TS15 and TS35
denote the ordinary template subtraction with an additional high-pass filter with 15 Hz
and 35 Hz corner frequency, respectively. TSW15 and TSW35 identify the application of
the wavelet denoised template. See Figure 2 column II for exemplary signals. The sole
application of the additional high-pass filter to suppress cardiogenic artifacts is listed as
HP15 and HP35, respectively, for comparison purposes.

Due to irregularities in the QRS complex, the ordinary template subtraction variants
are not able to completely eliminate the cardiogenic artifacts. Exemplary residual artifacts
are shown in Figure 1 subpanel I). In our test signals, this effect is provoked by the increased
heartbeat irregularity in the artificially mixed ECG channel. To reduce the remaining cardio-
genic artifact, we introduced a wavelet-based damping step to be carried out subsequently
to the template subtraction. In this second step, the signal ATSTSW15

Λ,η,ch (t) resulting from the
ordinary template subtraction is wavelet transformed by a stationary wavelet transform
(SWT). We used 8 scales and the Daubechies wavelet again with 5 vanishing moments [31]
as the mother wavelet. For each SWT level, i a signal ATSTSW15_SWT,i

Λ,η,ch (t) is obtained. An

average remaining cardiogenic artifact signal wARCATSW15_SWT,i
Λ,η,ch (τc) is constructed by

averaging all rectified heart cycle segments of ATSTSW15_SWT,i
Λ,η,ch (t) at the same relative heart

cycle time τc. A damping template dTemp(τc, i) = mτ

wARCATSW15_SWT,i
Λ,η,ch (τc)

is subsequently

constructed with a median value mτ = median
τc

(
wARCATSW15_SWT,i

Λ,η,ch (τc)
)

. The damping

template value dTemp(τc, i) is set to one if wARCATSW15_SWT,i
Λ,η,ch (τc) < θi, with the threshold

θi =
(

1 + 8−i
16

)
·mτ . In the low wavelet levels (holding the relevant frequency ranges for

the subsequent fatigue detection), the threshold θi is well above the values of the wavelet
level outside of remaining cardiogenic artifacts (concentrated around mτ). The selection of
the median instead of a mean value assures that mτ will be quite invariant of the magni-
tude of the remaining cardiogenic artifact. This holds as long as the time duration of the
remaining artifact is short compared to the total length of the cardiac cycle. Luckily, this
is usually the case because the remaining cardiogenic artifacts are usually concentrated
within the QRS range. In the unlikely case that there are no remaining cardiogenic arti-
facts, this independence of θi from the artifact magnitude assures that there is hardly any
manipulation within the relevant levels.

The damping template dTemp(τc, i) is multiplied synchronously to the QRS time with
ATSTSW15_SWT,i

Λ,η,ch (t) to obtain the modified wavelet level ATSTSW15_SWTmod,i
Λ,η,ch (t). This is in

contrast to the regular template subtraction, where the template is QRS synchronously
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subtracted. The final cardiogenic artifact eliminated signal ATSTSWD15
Λ,η,ch (t) is obtained by

the application of the inverse SWT of the modified levels ATSTSW15_SWTmod,i
Λ,η,ch (t). TSWD15

and TSWD35 denote this adopted template subtraction with an additional damping step.
In contrast to the description of TSWD15 above, TSWD35 utilizes an 35 Hz high-pass filter.
A block diagram visualizing the removal of cardiogenic artifacts can also be found in the
Appendix A Figure A5.

A two-step approach to further reduce cardiogenic artifacts that could not be elimi-
nated by one method is also known from Abbaspour and Fallah [32]. Our approach differs
in two key aspects besides the fact that they used an artificial neural network (ANN) to
obtain an estimation of ECG for subtraction in the first step instead of ordinary template
subtraction. The first aspect concerns the elimination of artifacts. Abbaspour and Fal-
lah [32] set the wavelet coefficient to zero, if it exceeds a threshold. This corresponds to
wavelet denoising with hard thresholding. In contrast, we chose a damping approach
that also allowed for a wavelet coefficient to be reduced by a fraction. Thus, frequency
components can be decreased by adjustable degrees instead of a binary decision to keep or
disregard them. The second aspect concerns the consideration of the phase of the cardiac
cycle. Instead of a fixed regime, we adopt our reduction scheme depending on the heart
cycle time τc. This is to make the algorithm remove artifacts more easily if they are very
likely (e.g., within the QRS segment). On the other hand, the hurdles for the removal of an
artifact are higher if it is located in segments where cardiogenic artifacts are very unlikely.
In contrast, Abbaspour and Fallah [32] do not adopt the threshold depending on the heart
phase.

For comparison purposes, a variant that only consists of the damping step is displayed
as well. In this variant, the stationary wavelet transform is performed directly on the
input signal ATSΛ,η,ch(t) without any manipulations. The template subtraction utilized
in TSWD15 and TSWD35 is skipped. This cardiogenic artifact elimination method is
denoted as DSO (damping step only). A visualization of an exemplary average remaining
cardiogenic artifact signal wARCATSW15_SWT,i

Λ,η,ch (τc), a damping template dTemp(τc, i) and
exemplary results for DSO, TSW and TSWD can be found in the Appendix A Figure A6.

Ordinary template subtraction cannot completely erase cardiogenic artifacts [33].
Deng et al. [33] state that theoretically required assumptions for template subtraction are
not completely met in practical applications. It can be assumed that these issues—although
to a lesser extent—also occur with other methods. The remaining artifacts, however, are
mainly concentrated in the vicinity of former QRS complexes. One possible strategy to cope
with those remaining artifacts is gating. Gating ensures that signal segments around the
QRS are excluded from further evaluation. For each of the methods to remove cardiogenic
artifacts (as described above), we added variants combining them with gating. We applied
a fixed length gating starting 0.05 s before the detected QRS and extending 0.1 s beyond.

2.3. Fatigue Detection

Muscle fatigue detection was performed epoch-wise. Epoch lengths Le of 0.125,
0.25, 0.5 and 1 s corresponding to epoch sizes Ne of 128, 256, 512 and 1024 bins were
used. Regardless of the employed epoch size, a fatigue value was calculated every 0.125 s
establishing fatigue index signals Φ(t) with 8 Hz. Epochs were overlapping in the case
of Le ≥ 0.25 s. In the case no QRS gating is applied (gating strategy GN), the epoch is
constructed regardless of possible gating. A gating signal is completely disobeyed. All
possible remaining QRS artifacts are included in the following fatigue detection. If gating
is in place (gating strategy GO), the gated segments are omitted in the epoch. Even in
this case, a fatigue index value is calculated every 0.125 s corresponding to 8 Hz. Next
to the well-known mean frequency (MNF) [34], we decided to use a spectral moments
ratio of order five (SMR5) [35] and fuzzy approximate entropy (fApEn) [36] as fatigue
detection algorithms. Both latter algorithms scored very good in a general comparison
of sEMG-based fatigue detection algorithms [17]. The estimation of the power spectral
density (PSD) for both MNF and SMR5 was performed by nonparametric (Welch with
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different numbers of subsegments kw) as well as parametric methods (Burg) [37]. To
account for the remaining low-frequency cardiogenic artifacts, we tried different PSD
lower bound bl to exclude low-frequency bins. The Appendix A contains further details
about the utilized fatigue detection. A block diagram for the fatigue detection is depicted
in Figure A7. Figure A8 includes algorithmic details of the fatigue detection algorithms
and power spectral density estimation methods. An exemplary visualization of epoch
construction and gating is shown in Figure A1.

Various fatigue index signals Φcr,gs,Ne ,fd
Λ,η,ch (t) were calculated for each artifact reduction

method. Based on artifact reduced signals ATScr
Λ,η,ch(t), different combinations of gating

strategies gs, epoch size Ne and fatigue detection methods fd were generated. In addition,
the reference fatigue index signals Ξgs,Ne ,fd

Λ (t) are obtained from the signals RSMΛ(t).

Fatigue index signals Ψgs,Ne ,fd
Λ (t) result from the unmodulated and uncontaminated pure

sEMG signals RSΛ(t). Both the reference fatigue signal Ξgs,Ne ,fd
Λ (t) and the signal Ψgs,Ne ,fd

Λ (t)
were not based on signals treated by any cardiogenic artifact removal method. As no QRS
is present, gating is not necessary and was generally not applied to the reference signals
(this corresponds to gating strategy GN). If gating is applied for comparison analysis, the
gating time information is taken from the pure ECG signal.

Fatigue index signals calculated with smaller epoch sizes have a generally higher dis-
turbance (for definition see Section 2.4). A longer epoch size leads to smaller disturbances
due to a higher averaging effect. To enable an unbiased comparison, all epoch sizes are
combined by a moving average to a smoothed signal. The length of the moving average
filter is chosen in a way that each fatigue sample will incorporate information from a 1 s
segment of the sEMG signal. These filtered fatigue index signals Φcr,gs,Ne ,fd,MAfilt

Λ,η,ch (t) were
used in the following evaluation only when comparing different epoch sizes.

Fatigue indexes based on different fatigue algorithms come in different ranges. In
order to compare the actual performance, the fatigue index signals Φ(t) are normalized,
as described in [17]. Normalization is based on a linear regression line Ggs,Ne ,fd

60 (t) that is
obtained from the segment 0 s < t < 60 s of the reference fatigue index signal ΞGN,Ne ,fd

60 (t)
originating from the 60% MVC load case. No gating (strategy GN) was utilized for the ref-
erence signals regardless of the gating strategy for the fatigue index signal Φ(t) undergoing
normalization. All other relevant parameters, such as epoch size Ne and applied fatigue
index fd, are chosen to match. The offset at t = 0 s and the change in the first minute of
the linear regression line Ggs,Ne ,fd

60 (t) were used to obtain normalized fatigue index signals
Φ̂(t), as given by Equation (7).

Φ̂cr,gs,Ne ,fd
Λ,η,ch (t) =

Φcr,gs,Ne ,fd
Λ,η,ch (t)− Ggs,Ne ,fd

60 (0 s)

Ggs,Ne ,fd
60 (60 s)− Ggs,Ne ,fd

60 (0 s)
(7)

The normalized fatigue index signals Ξ̂(t) and Ψ̂(t) are obtained in an analogous
manner. Accordingly, normalization should arrange for the normalized fatigue index of
the 60% MVC load case evolving from 0 to 1 within the considered minute regardless of
their primary value range. As fatigue index signals from 20% MVC load case do not show
fatigue, their normalized values are rather constant around 0. Exemplary fatigue index
signals are shown in Figure 3 column III.

2.4. Evaluation of Quality

In a first intermediate step, different measures were calculated to evaluate the devia-
tion of the ECG “cleaned” signals compared to the pure scaled EMG components in the
time and frequency domain. These measures include error values based on the electromyo-
graphic signals themselves, their envelope signals and the corresponding power spectral
densities. Since these measures represent only a secondary result, their description and the
corresponding detailed results are outsourced to Figure A9 in the Appendix A.
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The overall aim is to find a signal processing chain suitable for fatigue detection in
sEMG signals contaminated with cardiogenic artifacts. The signal processing chain consists
of the removal of cardiogenic artifacts and subsequent fatigue detection. For the evaluation
of different signal processing chain variants, the main criterion is the invariance of the
fatigue results at different strengths of ECG contamination compared to the fatigue results
of the reference case without cardiogenic artifacts. The fatigue results should change as
little as possible despite the presence of cardiogenic artifacts. Different strengths of ECG
contamination are represented by signals with different EMG levels η. This invariance
is the basis for the assessment of the quality of the cardiogenic artifact removal and the
consecutive fatigue detection according to the three criteria presented below.

The first criterion (A) targets the desired invariance of the fatigue algorithm’s result
despite the presence of cardiogenic artifacts. The impact of cardiogenic artifacts on the
fatigue index Φ̂cr,gs,Ne ,fd

60,η,ch is quantified by the RMS power of the difference to the reference

fatigue index Ξ̂GN,Ne ,fd
60 . Only the fatigue index signals from the 60% MVC load cases are

considered. Criterion A is defined as:

γA(η, ch, cr, gs, Ne, fd) =

√
1

60

∫ 60

0

(
Φ̂cr,gs,Ne ,fd

60,η,ch (t)− Ξ̂GN,Ne ,fd
60 (t)

)2
dt (8)

Another desirable characteristic of fatigue signal processing is the separability of
fatiguing and non-fatigued situations. This separability should also be achieved in the
presence of cardiogenic artifacts. The separability (denoted criterion B) is evaluated based
on the last 15 s of the 20% and 60% MVC load cases. Vectors containing the fatigue index

values of these last 15 s are defined as Φ̄(Λ, η, ch, cr, gs, Ne, fd) = Φ̂cr,gs,Ne ,fd
Λ,η,ch (t)

∣∣∣∣
45 s<t<60 s

.

The values from Φ̄ based on the 60% MVC load case should clearly indicate fatigue with
normalized values close to one. In contrast, no fatigue is expected at the 20% MVC load
case, leading to normalized fatigue values around zero. The separability is based on the
overlap between distributions of fatigue values from both load cases. See Figure 3 for
an example. To avoid an estimation of the probability density functions (PDF) of Φ̄, the
maximum distance of their cumulative density function (CDF) is calculated. This maximum
distance is equal to the difference of one to the overlapping area of PDFs and also known
as the test statistic from the Kolmugorov–Smirnov test [38]. The separability is defined as:

γB(η, ch, cr, gs, Ne, fd) = max
φ

∣∣∣FΦ̄(20,η,ch,cr,gs,Ne ,fd)(φ)− FΦ̄(60,η,ch,cr,gs,Ne ,fd)(φ)
∣∣∣ (9)

FΦ̄(Λ,η,ch,cr,gs,Ne ,fd)(φ) denotes the cumulative density function (CDF) of the fatigue
index values from the vector Φ̄(Λ, η, ch, cr, gs, Ne, fd).

A third evaluation criterion (denoted C) aims at the disturbances of fatigue indexes.
For all combinations of fatigue algorithms and EMG levels, a linear regression is performed
for the fatigue index signal of the 60% MVC load case. The coefficient of determination R2

is used to quantify how well the fatigue index signal resembles a linear slope. Deviations
from the linear slope found in the 60% MVC load case are counted towards disturbances
of the fatigue index. Thus, a smaller R2 corresponds to a higher level of disturbances.
Remaining cardiogenic artifacts must not result in a more rugged fatigue index. Therefore,
it is desired that R2 remains as close as possible to the reference case. Disturbances are
quantified by:

γC(η, ch, cr, gs, Ne, fd) = R2
(

Φ̂cr,gs,Ne ,fd
Λ,η,ch (t)

∣∣∣∣
0 s<t<60 s

)
(10)

2.5. Statistical Analysis

In the following results section, different aspects are presented, such as the effects
of the artificial ECG channel, a comparison of ECG artifact removal methods and fatigue
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methods. In some cases, two similar variants are shown (MNF and SMR5 fatigue detection
algorithm or TSW and TSWD cardiogenic artifact removal) in columns next to each other.
Each column consists of three diagrams reflecting the three evaluation criteria γA, γB and
γC. Within each graph, the comparison is grouped by EMG level η, as shown on the
horizontal axis. In some cases, the pure sEMG case without any cardiogenic artifacts is
shown in addition on the right (in lighter/special color). Each combination of ECG removal
or fatigue detection algorithm variant, evaluation criteria, EMG level and comparison
object (color coded items juxtaposed next to each other in the subsequent plots) is based on
nine results from the nine subjects under consideration. The results are shown either as the
arithmetic mean value over the nine subjects or as a violin plot reflecting the distribution
across the nine subjects.

In some cases, the significance is provided as p-values. The p-values are calculated
independently for each combination of variant, evaluation criteria and EMG level. This
leads to group-wise comparisons of three or four groups with 9 values in each group (one
for each subject). A Friedman test [39] was utilized to check whether there is at least one
group significantly different from another. Based on the sum of ranks, the best performing
group was selected. Regarding γA, smaller values are considered to be better, while for
γB and γC, larger values are used. A significance level of 0.05 and the Holm adjustment
method according to [40] were applied to compare the best performing group to all other
groups (1 to N comparison). If significance is found, it is noted in the figure.

3. Results

The following section starts with the presentation of results regarding the quality of
the artificial test signals as well as the influence of EMG level and ECG channel. This is
followed by results comparing the different EGC removal methods. After that, results
concerning the fatigue detection algorithms are presented. This part is subdivided into a
presentation of detailed parameters for each of the algorithms followed by a comparison of
fatigue detection algorithms.

3.1. Quality of Artificial Signals

Characteristic properties of the test signals were evaluated in a first step to analyze
the heartbeat irregularity. The minimum value during QRS, the QRS magnitude (peak-
to-peak) and the maximum during the T wave were gauged for each heart cycle. As
this evaluation aimed at the ECG component only, it was performed based on ECGI(t)
and ECGA(t) instead of the artificial test signals ATSΛ,η,ch(t), additionally including EMG
with different magnitudes. The variance was slightly elevated for some subjects and
characteristic properties. However, no distinctive difference could be found comparing the
ECG channel I with the artificially mixed ECG channel. A visualization of the characteristic
properties can be found in the Appendix A Figure A2.

An alternative method to quantify the heartbeat irregularity is based on the fraction
of ECG artifacts that could not be eliminated by template subtraction from the signals
ATS60,η,ch(t) with EMG levels η = 0.01, 0.02, 0.05 and 0.1. Regarding the fraction of residual
QRS artifacts that could not be eliminated by template subtraction we found a distinctive
difference. While the fraction of QRS artifacts that could not be eliminated by template sub-
traction is on average at 3.25% in the case of ECG channel I, it is elevated at 7.29% for the ar-
tificially mixed ECG channel A with increased heartbeat irregularity. Further details about
the quantification of heartbeat irregularity can be found in the Appendix A Figure A2.

3.2. EMG Level η and Artificially Mixed ECG Channel

Regarding the different EMG levels, the fatigue detection unsurprisingly performs
the worst at low EMG levels η featuring high ECG contamination and only a small share
of desired sEMG. At higher EMG levels η, the fatigue detection results become more and
more equivalent to the uncontaminated cases. The fatigue detection based on ECGI shows
better results compared to those from the artificially mixed ECGA. This effect is again most
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distinctive at low EMG levels η. A graphical representation of the results from different
ECG channels at various EMG levels can be found in Figure 4.
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Figure 4. Fatigue detection results depend on the magnitude and characteristics of the cardiogenic artifacts. This figure
juxtaposes the results originating from ECG channel I (ΦTSW15,GN,256,fd

Λ,η,I (t)) and the artificially mixed ECG channel A

(ΦTSW15,GN,256,fd
Λ,η,A (t)). Each subfigure includes different EMG levels η plotted on the horizontal axis. Additionally, two cases

without ECG contamination are included for reference. The first uncontaminated case contains breathing phase modulation
ΞGN,256,fd

Λ (t) (based on RSMΛ(t)), while the later ΨGN,256,fd
Λ (t) (based on RSΛ(t)) does not. Each row resembles one of the

applied evaluation criteria. The discrepancy of fatigue indexes originating from the contaminated signals in relation to
the reference fatigue index with modulated EMG only (quantified by γA) is shown in the first row (A,D). The smaller the
deviation, the better the fatigue algorithm’s performance. The second row (B,E) visualizes the separability of the 20% and
60% MVC load cases (quantified by γB, the higher the better). The level of disturbances measured by the coefficient of
determination R2 (quantified by γC) is depicted in the last row (C,F). The higher R2, the better the fatigue detection method.
The template subtraction method TSW15 was applied to compensate cardiogenic artifacts. The subfigures on the left are
based on MNF with Welch PSD estimation (kw = 15). The subfigures to the right are based on spectral moments ratio of
order five (SMR5) with Burg PSD estimation. Both fatigue detection methods are based on an epoch size Ne = 256 and
utilized a PSD lower bound bl = 15 Hz. The black dots indicate the mean value, while the white/orange dots symbolize
the median.

The evaluation of the uncontaminated cases allows for an estimation of the impact of
the breathing phase modulation. While both uncontaminated cases omit artificially added
cardiogenic artifacts, the first (ΞGN,256,fd

Λ (t)) features a breathing phase modulation, while
the later (ΨGN,256,fd

Λ (t)) does not and is based on the pure and unmodified sEMG signal.
Comparing both uncontaminated cases against each other, hardly any difference could be
observed. The results are also visualized in Figure 4.

3.3. Performance of ECG Removal Algorithms

Different approaches to deal with the cardiogenic artifacts were compared, including
the sole high-pass filter (HP15), template subtraction with and without wavelet denoised
template (TS15 and TSW15), template subtraction with wavelet denoised template and
subsequent damping step (TSWD15) and the application of the damping step without
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template subtraction (DSO). No treatment of the cardiogenic artifacts is included for
reference. Measures quantifying the deviation of the artifact-reduced signals compared to
the pure EMG component in the time and frequency domain were investigated in a first
intermediate step. Regarding the ECG “cleaned” electromyographic signals in the time
and frequency domain, the best results were obtained with the TSDW15 and DSO methods.
In the case of envelope calculation based on the ECG signal, TSWD15 yielded best results.
More detailed results can be found in Figure A9 in the Appendix A.

However, the main focus of this study is on the influence of ECG removal on the
subsequent fatigue detection. Figure 5 shows the influence on MNF and SMR5 fatigue
detection caused by different approaches dealing with the cardiogenic artifacts. The
exclusion of QRS segments (gating) is checked for each method additionally. For better
clarity, only the average across all subjects is considered for each ECG removal method.
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Figure 5. The effect of cardiogenic artifact removal on the subsequent fatigue detection. Different methods to reduce the
cardiogenic artifacts are compared next to omitting any artifact treatment (gray). Included is the sole application of a
high-pass filter (HP15 with fc = 15 Hz) and two different variants of template subtraction (TS15 and TSW15). The latter
template subtraction utilizes the additional wavelet denoising of the template. Additionally shown is heartbeat synchronous
damping in different wavelet scales applied solely (DSO) and subsequent to template subtraction (TSWD15). The results
considering gating are shown for each method separately (dashed line-gating strategy GO). In addition to the different
EMG levels η, each figure also includes two cases without any ECG contamination. The first case (gray filled) evaluates
ΞGN,256,fd

Λ (t), while the second one evaluates ΞGO,256,fd
Λ (t). The second case (gray shaded) introduces a gating based on

time information taken over from pure ECG signal. It shows the impact of causeless gating (despite cardiogenic artifacts
lacking). This allows an assessment of how much the fatigue detection quality drops by the sole interruptions due to gating.
The three applied evaluation criteria are again covered by the rows of subfigures ((A,D), (B,E) and (C,F), respectively),
while MNF and SMR5 represent the columns. The Welch method (kw = 15) is utilized for MNF, while SMR5 relies on the
Burg method. Ne = 256 and bl = 35 Hz are applied for both methods. Each data point is obtained by averaging over all
subjects. A more detailed comparison for a selection of ECG removal algorithms in combination with SMR5 and no gating
(corresponding to the solid lines of the right column) can be found in Figure 6. Further comparisons for the algorithms
TSW15 and TSWD15 can be found in the Appendix A Figures A10 and A11).
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Figure 6. A detailed comparison of selected cardiogenic artifact removal methods regarding their impact on the subsequent
fatigue detection by SMR5 method and no gating. The shown violin plots correspond to solid lines in the same color from
the right column of Figure 5. The best performing ECG removal method was determined for each group of four violin plots
sharing the same EMG level and evaluation category. The existence of significant differences to the other three algorithms
were evaluated for each group. If significant differences exist, the corresponding p-values are stated. SMR5 is calculated
with Ne = 256 and bl = 35 Hz and utilized the Burg method for spectral estimation.

Comparing the high-pass filter (HP15) to the non-compensation case, if any, only slight
improvements could be observed across both MNF and SMR5 fatigue detection methods
and the three evaluation criteria. Both template subtraction methods (TS15 and TSW15)
considerably improved the fatigue detection. The utilization of the wavelet denoising
step during the template construction (TSW15) caused only tiny improvements for both
MNF and SMR5. However, even regarding template subtraction TSW15, gating is still
delivering better results except at very high EMG levels η. The introduction of the wavelet-
based damping step downstream to the template subtraction (TSWD15) leads to a further
considerable improvement, especially in the case of low and medium EMG levels η. In
contrast to the other applied methods, TSWD15 reduced the cardiogenic artifacts so well



Sensors 2021, 21, 5663 16 of 36

that it is reasonable not to apply gating and instead include the QRS segments also in
fatigue detection. Outcomes of the sole damping step (DSO) are behind those of TSWD15.

Figure 5 also visualizes how the reference fatigue index signal ΞGN,256,fd
Λ (t) is impaired

if gating is applied (ΞGO,256,fd
Λ (t)). Note that only the position of the gating is taken from a

contaminated signal. Both signals contain no cardiogenic artifacts. The sole interruptions
due to gating already impose a noticeable drop in fatigue detection quality.

Figure 6 visualizes a more detailed comparison of a selection of ECG removal algo-
rithms in combination with SMR5 fatigue detection. This figure not only displays the
average values but visualizes the underlying distribution across subjects as a violin plot.
Furthermore, it states p-values if significant differences were found. In this detailed com-
parison, TSWD15 scored best in all cases. It always scored significantly better than HP15.
In the case of small EMG levels η, it performed significantly better than TSW15, and in
the case of larger EMG levels, there was a significant improvement compared to DSO.
Further, a detailed visualization for the best performing methods can be found in the
Appendix A Figures A10 and A11).

3.4. Detail Parameters for PSD-Based Fatigue Algorithms

For both MNF and SMR5, no evidence could be obtained that larger epoch sizes (e.g.,
Ne = 512 and 1024) lead to better results. Fatigue signals based on a moving average filter
combining fatigue values from smaller segments within a 1 s window showed similar or
better results. In the case of the mean fatigue detection (MNF), larger epoch sizes even
tend to worsen results. A visualization of results based on different epoch sizes Ne moving
average filtered to fatigue index values incorporating 1 s of EMG can be found in the
Appendix A Figure A12.

Regarding MNF fatigue detection, the non-parametric Welch PSD estimation yielded
superior results compared to PSD estimation with the Burg method. However, the optimal
choice of the number of subsegments depends on the EMG level. At lower EMG levels η,
the utilization of kw = 15 tends to yield good results, while at higher EMG levels, kw = 31
were found to be better. The SMR5 fatigue detection algorithm quite constantly displayed
good to very good results in connection with the parametric Burg PSD estimation. A
visualization can be found in the Appendix A Figure A12).

An evaluation of the influence of the PSD lower bound bl can also be found in the
Appendix A Figure A13. While the optimal bl is in the range of 35 to 40 Hz for low EMG
levels η, it is lower (towards 20 Hz) for higher EMG levels.

3.5. Detail Parameters for fApEn

In the case of fApEn, the exclusion of lower frequency components is realized by a
high-pass filter. The ECG “cleaned” signals are alternatively filtered with 35 Hz corner
frequency. Especially at low EMG levels, a high-pass filter with 35 Hz corner frequency
showed better results. Akin to the PSD-based fatigue detection method, it positively effects
separability (γB) and disturbances (γC) at smaller EMG levels η. However, comparing
both corner frequencies, we observed an increased discrepancy to the reference fatigue
index Φ(t) reflected by γA. This shift does not matter in practice as the evaluation criteria,
separability (B) and disturbances (C), are hardly impaired. In the case of higher EMG levels,
both the 15 Hz and the 35 Hz variants supply similar results. Larger epoch sizes yielded
slightly poorer results regarding fatigue detection by fApEn. This applies to epoch sizes
Ne = 512 and 1024 compared to those with 256 samples. The raw detection results were
filtered with a moving average filter incorporating 1 s of sEMG data regardless of epoch
size to assure comparable settings. In contrast to the PSD-based fatigue detection methods,
QRS gating had no positive effect for TSWD even at very low EMG levels. However, in
the case of gating, the epoch size of 128 samples yielded worse results. A visualization of
results based on different epoch sizes Ne (moving-average-filtered to assure that fatigue
index values incorporate 1 s of sEMG) can be found in the Appendix A Figure A11a.
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3.6. Fatigue Algorithms

A final comparison, including the most promising variants of MNF, SMR5 and fApEn,
is shown in Figures 7 and 8. The deviation to the noncontaminated case measured by γA is
comparable for both MNF and SMR5 algorithms if TSWD is used to eliminate cardiogenic
artifacts. However, if TSW is used in combination with gating (GO), SMR5 performed
better than MNF regarding criterion A. γA is considerably increased for fApEn. Regarding
the separation of 20% and 60% MVC load cases (criterion B), the SMR5 algorithm yielded
the best results. In most cases, SMR5 is significantly better than MNF and fApEn for γB.
Corresponding p-values are stated in Figure 8. The disturbances (criterion C) were also the
lowest for SMR5 in many cases. In the case of high EMG levels, fApEn showed slightly
higher γC values in the case of TSW and gating. However, fApEn shows the disadvantage
of inter-subject variability (Note the size of the violins in Figure 8). MNF results are inferior
to those of SMR5 with respect to γC (criterion C).
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Figure 7. A comparison of fatigue detection algorithms. The results of MNF, SMR5 and fuzzy approximate entropy (fApEn)
methods are shown in combination with ECG removal by TSWD and no gating (solid lines) as well as TSW and gating
(dashed dotted lines). MNF is utilized with Welch (kw = 15) and SMR5 with Burg PSD. Both PSD-based algorithms include
a PSD lower bound bl of 35 Hz, while fApEn includes a 35 Hz high-pass filter within the ECG removal step. All fatigue
detection methods are based on epoch size Ne = 256. The results are shown as the mean value obtained by averaging over
all subjects. Note that the distributions underlying the shown mean values are visualized in Figure 8.
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Figure 8. A detailed comparison of fatigue detection algorithms. The left column displays the results based on TSWD
artifact removal method (including the wavelet-based damping step) without QRS gating (corresponding to solid lines in
Figure 7). The right visualizes the results based on template subtraction TSW15 with QRS gating (GO), corresponding to
dashed dotted lines in Figure 7. Fatigue algorithms include MNF, SMR5 and fApEn with the same parameters as in Figure 7.
The best-performing fatigue detection method was determined for each group of three violin plots sharing the same EMG
level and evaluation category. The existence of significant differences to the other two methods were evaluated for each
group. If significant differences were found, the corresponding p-values are stated. The white dots symbolize the median
value. The horizontal axis denotes EMG levels η. The three applied evaluation criteria (A, B, C) are covered by the rows.

4. Discussion

The goal of this study is to identify the most reasonable signal processing workflow to
monitor muscle fatigue even in sEMG signals heavily influenced by cardiogenic artifacts.
The main focus of this work was on two key components of the signal processing and their
combination: (1) elimination of cardiogenic artifacts and (2) fatigue detection algorithms
playing well together with the elimination methods.

The results underline the importance of eliminating cardiogenic artifacts from respi-
ratory sEMG signals prior to fatigue detection. The application of template subtraction
(TS) considerably improved the fatigue detection results compared to the sole application
of a high-pass (HP15) or no treatment at all. Both sub-variants with and without wavelet
denoising of the template (TSW and TS, respectively) fall very close to each other. It was
demonstrated that, even in the case of template subtraction (TS and TSW), excluding QRS
segments by gating causes considerable improvement. This effect is especially present at
small or medium EMG levels η. It leads to the conclusion that neither HP15, TS nor TSW
alone are able to eliminate QRS artifacts sufficiently enough to abandon gating. In practice,
this implies that the cardiogenic artifacts are still so pronounced in the QRS segments that it
is better to disregard them. We indeed demonstrated by the help of the uncontaminated ref-
erence signals Ξ(t) that gating itself changes the overall fatigue results only to some degree.
Nevertheless, the necessity of gating highlights that there is still room for improvement.

One of such improvements is introduced by the additional wavelet damping step
downstream to the template subtraction (TSWD). The remaining cardiogenic artifacts
during the QRS segment are, in most cases, reduced thus far as to make sense to also
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include these segments into fatigue detection algorithms. The method successfully con-
siders the variations of the shape of the cardiogenic artifact. An alternative approach by
Deng et al. [33] introduced an adaptive gain to scale the template and find a best fit by
minimizing the squared error. However, it is questionable whether the shape change of
the cardiogenic artifact consists of a pure scaling only. Instead of this, it can be assumed
that the shape changes in a more complicated way. Our TSWD method is able to cope with
these more complex shape changes. The exclusive application of a wavelet damping with-
out template subtraction (DSO) produced comparable error measures in the intermediate
analysis of the electromyographic signals. However, the fatigue detection results based
on DSO were poor especially at higher EMG levels. Only the combination of the additive
template subtraction and a downstream wavelet-based multiplicative damping step in
the method TSWD arranged for a reasonable elimination of cardiogenic artifacts under
increased heartbeat irregularity in view of a subsequent fatigue detection. This observation
indicates that the damping step can only play out its strength when applied subsequently
to ordinary template subtraction. Apparently, TSWD combines the advantage of sufficient
template subtraction reducing cardiogenic artifacts at high EMG levels, and those of the
damping step being better suitable at smaller EMG levels. The fact that the intermediate
results of DSO looked promising in contrast to the fatigue detection results underlines the
importance of this evaluation. When it comes to sEMG-based fatigue detection, it is not
sufficient to select an ECG removal algorithm based on error measures from the resulting
electromyographic signal. The fatigue detection seems to rely on features in the signal that
are not adequately covered by these error measures.

The best fatigue detection results were found with epoch sizes of 128 and 256 samples.
However, the results based on epoch size Ne = 128 partially displayed a tendency to
fluctuate results, especially in connection with fApEn and gating. This effect is probably
related to the length of the epoch (0.125 s) being too similar to the length of gating (0.15 s).
This favors the formation of small fragments, which might mislead fatigue detection. Thus,
it seemed most appropriate to use an epoch size Ne = 256 for the basic comparison. It was
shown that larger epoch sizes demonstrate no advantage beyond an averaging effect. If the
results of smaller epoch sizes were filtered with a moving average filter to achieve a similar
averaging effect, the results were similar or even better. A possible explanation for the
advantage of smaller epoch is that residual cardiogenic artifacts are usually concentrated
at certain heartbeat phases. With small epoch sizes, they can only distract one of many
small epochs in a signal segment. This single impaired epoch has only a limited influence
if many epochs are averaged. Furthermore, the computational complexity is often lower in
the case of shorter epoch sizes.

The cardiogenic artifacts tend to have lower frequency components than sEMG signals.
However, the frequency ranges are strongly overlapping [32]. Nevertheless, it is useful
to exclude lower frequencies from the fatigue detection. This is reflected by the lower
bound bl for PSD-based algorithms MNF and SMR5 and the choice of the high-pass filter
corner frequency in the case of fApEn. The choice of bl is a trade-off between cutting of
the necessary lower bands with intense residual artifacts while keeping the relevant EMG
components at higher frequencies. There is no single choice of bl that is optimal in all
situations and across different performance evaluations. Reflecting the idea that detection
is most crucial at lower EMG levels η, we conclude that, in general, bl = 35 Hz is favorable.

Among the analyzed fatigue detection methods, SMR5 showed best results. This
algorithm was the best to cope with cardiogenic artifacts. Regarding the separation of
different fatigue levels (γB), it scored significantly better than mean frequency (MNF) and
fuzzy approximate entropy (fApEn) in all but the lowest EMG level. The idea behind
SMR5 to consider high frequencies fits together very well with the fact that cardiogenic
interferences are mainly present in lower frequencies. Outside the QRS, cardiogenic
artifacts are concentrated in lower frequencies. As a result, SMR5 delivers good results
even with suboptimal ECG removal if gating is applied. This can be seen from the fact that,
in Figure 5, the dotted lines are close together for SMR5 (right column) in contrast to MNF
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(left column). Even if the treatment of artifacts consists of gating only, the SMR5 algorithm
can already detect fatigue quite well, compared to other fatigue algorithms.

The intra-heartbeat fatigue detection scheme proposed by Sinderby et al. [10] cannot be
directly compared due to different epoch sizes. It was suggested to select the epoch based on
the heart cycle, leading to epoch sizes of a quarter of the heart cycle length. A comparison
based on signals to include 1 s long epochs can be found in the Appendix A Figure A14. In
most combinations of EMG levels and evaluation criteria, our artifact removal TSW15 with
gating strategy GO and TSWD15 with no gating scored better than this approach. In many
cases, and especially regarding separability γC and low EMG levels η, the intra-heartbeat
approach was significantly worse. Unfortunately, it was not possible for us to include the
RLS approach suggested by Ortega et al. [11] into the comparison.

The analysis is based on artificially constructed sEMG signals. These signals were
not intended to be a realistic copy of real-life signals. Instead, their purpose was limited
to cover particular effects such as increased heartbeat irregularity and a clearly known
expected fatigue level. The signals were designed with a focus on the repetitive cardiogenic
artifacts. Other effects such as non-repetitive high-frequency components of the ECG were
not included. Neither was the focus put on the specifics of sEMG from cyclic contractions.
Comparing both uncontaminated cases (ΞGN,256,fd

Λ (t) and ΨGN,256,fd
Λ (t) in Figure 4) against

each other leads to the conclusion that the sEMG modulation by simulated breathing on its
own causes hardly any effect.

The performance of template subtraction highly depends on whether basic theoretical
assumptions are met [33]. Deng et al. [33] mentions this issue as an explanation of why
results based on simulated data sometimes look very promising, while trials with real-life
data display poorer results. Among other things, the basic assumptions of the template
subtraction include the regularity of the repetitive ECG artifact. With the introduction of
an artificially mixed ECG channel, we tried to increase the heartbeat irregularity so that our
signals are more realistic in this respect. By comparing the artificial ECG signal with ECG
channel I, it could be shown that this goal was achieved. While characteristic measures,
such as minimum value during QRS, QRS magnitude and T-wave maximum, changed only
slightly, the fraction of residual QRS artifacts irremovable by template subtraction more
than doubled. Furthermore, the fatigue detection results based on ECG channel I yield
better results compared to those based on the artificially mixed ECG channel. This reflects
the desired property of the artificially mixed ECG channel to feature a higher heartbeat
irregularity. The increased heartbeat irregularity leads to a less effective artifact removal by
template subtraction and thus to worse fatigue detection results.

Artificially constructed test signals were also used for the evaluation of algorithms
eliminating cardiogenic artifacts from sEMG signals by Deng et al. [33] and Petersen et al. [15].
Our approach differs in two key aspects. First, we constructed the artificially mixed ECG
channel to increase the heartbeat irregularity within each test signal. We did not emphasize
a completely realistic breathing phase modulation of ECG. Important for our analysis was
the heartbeat irregularity and the burden on a subsequent template subtraction. We wanted
to assure that the effect of the QRS shape changing correlated with the filling level of lungs
is included. In contrast to the procedure used by Deng et al. [33], our approach assures
a shape variation beyond a pure scaling of the heart segments by a random gain factor.
Secondly, we used an artificially modulated sEMG signal from a static contraction to mimic
the cyclic breathing activity. This way, we could assure a clearly defined expected result, as
the underlying pure sEMG signal from static contractions offered a linear onset in fatigue
measures. Our approach to modulate an sEMG signal from a static contraction can be
seen as a compromise between approaches used by Deng et al. [33] and Petersen et al. [15].
The first group of authors used differently filtered versions of white Gaussian noise for
inspiratory and expiratory segments. The second group used periodic and irregular sEMG
recordings from musculus gastrocnemius. For our purpose, it was important to have
this clearly defined expected fatigue result as we wanted to evaluate the resulting fatigue
detection signal and not the “cleaned” sEMG like both studies mentioned above.
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As already mentioned, the artificial test signals are based on assumptions regarding
heartbeat irregularity. These assumptions almost certainly have an influence on how
large the non-removable residual artifacts are and thus how severely the fatigue index is
disturbed. To reflect this issue, we discussed most aspects for two different settings. The
first setting is based on the TSW removal algorithm with the gating strategy GO, and the
second setting is based on TSWD with no gating. The results for the first setting would
also be valid to a large degree if the assumptions are not met because the residual artifacts
are for the most part within the QRS segment that is eliminated by gating anyway. The
second setting covers the best opportunity if the assumptions are met. It is also relevant in
cases where the heartbeat irregularity is less pronounced in real life signals than in our test
signals. It can be concluded that the design of test signals is a trade-off between how close
the test signals are to real respiratory EMG signals and how easy they can be evaluated.
Overall, we are convinced that the utilized signals are a reasonable choice.

Our analysis focused on the ability of fatigue algorithms to cope with residual cardio-
genic artifacts arising from regular heart activity. In our analysis, these residual artifacts
are leftovers from improper attenuation of deterministic ECG components. Further studies
might investigate the influence of other effects present in respiratory sEMG recordings.
Among them are, for example, EMG interferences from other muscles, movement artifacts
or other disturbances. It also requires the study of non-ordinary cardiac activity on the
performance of artifact suppression and fatigue detection. This includes, e.g., deviations
from normal sinus rhythm such as arrhythmic or premature heartbeats.

5. Conclusions

The results illustrate that the selection of both the cardiogenic artifact suppression
algorithm as well as the actual fatigue detection algorithm play a crucial role when it comes
to detecting fatigue from sEMG signals with cardiogenic artifacts. The newly introduced
two-step variant of template subtraction (TSWD) scored best at suppressing cardiogenic
artifacts. In many situations, TSWD is the only method where it seems reasonable to
eliminate gating. Regarding the fatigue detection algorithms, the spectral moments ratio
(SMR5) turned out to be most suitable for signals with previously removed cardiogenic
artifacts. The focus of SMR5 on high frequencies, which are hardly affected by cardiogenic
artifacts, is particularly useful here. Consequently, the combination of TSWD and SMR5
can be recommended for fatigue detection from respiratory sEMG. This work provides
guidance for clinical studies to select optimal signal processing to detect fatigue from
respiratory sEMG signals. This seems especially important since the algorithms from
existing clinical trials are considerably underperforming [10] or not sufficiently described
to be reproduced [11] in our test scenarios. When the determination of fatigue from
respiratory sEMG signals becomes robust and reliable, it will become an interesting tool in
clinical decisions.
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Figure A1. ECG preprocessing and epoch construction. (A) displays a single QRS complex of baseline-filtered ECGBLF
I (t)

and ECGSG
I (t) pre-processed by the application of a Savitzky–Golay filter. (B) shows the 60% MVC sEMG signal taken

from a previous study [16]. (C) shows the artificial test signal ATS60,0.05,A(t). The detected and time-refined position of the
QRS is indicated by the orange diamond. Ranges of the signal close to the QRS complex designated to be excluded from
the following fatigue analysis are drawn in purple. (D,E) display the epoch construction based on ATSTSW15

60,0.05,A(t) obtained
by template subtraction. A fatigue value is calculated every 125 ms (symbolized by dots), yielding a fatigue signal with
8 Hz sample rate. The epoch that forms the basis of each fatigue value is indicated by the timeline to the left of the dot
at the same height. As an example, the fatigue value assigned to time t = 35.2 s (as indicated by the red dot) is based on
the epoch drawn in blue. This example uses an epoch size of a 0.25 s (256 samples). Subsegments as used in the Welch
PSD estimation, with kw = 7 subsegments shown in green for the exemplary epoch (shown in blue). (D) visualizes the
gating strategy GN, which does not exclude former QRS segments. The fatigue evaluated segment is composed of the last
256 samples regardless of remnants of a QRS complex. The gating strategy GO displayed in (E) skips the QRS remnants.
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Figure A2. An evaluation of heartbeat irregularity. (A) visualizes three characteristic properties evaluated for each heart
cycle. The evaluation is performed for both ECGI(t) and ECGA(t). The resulting distributions of these characteristic
properties for both ECG channels I and A are shown in (B) for each subject. ECG channel A is artificially mixed and
features increased heartbeat irregularity. The violin plot visualizes the variation of the characteristic property within the
same channel of one subject. The subject number is stated on the horizontal axis. An alternative way to evaluate the
heartbeat irregularity is based on the amount of cardiogenic artifacts that could not be eliminated by the artifact removal
step and is still present in ATScr

Λ,η,ch(t). The analysis is preferably used in combination with template subtraction TSW15 as
the artifact removal method. A rectified segment of ATScr

Λ,η,ch(t) is extracted for each heart cycle, as shown in (C). These
segments are superimposed by the same QRS times used for template subtraction. A raw version of an average remaining
cardiogenic artifact signal rARCAcr

Λ,η,ch(τc) is constructed by averaging all segments at the same relative heart cycle time
τc. The average remaining cardiogenic artifact signal ARCAcr

Λ,η,ch(τc) is yielded by the application of a 25 tap Blackman
smoothing filter to the raw version rARCAcr

Λ,η,ch(τc). Subfigures (D,E) visualize the average remaining cardiogenic artifact
signals ARCAcr

60,0.02,ch(τc) for different artifact removal methods and ECG channels. The subfigures differ only in the range
of the vertical axis. The peak value for each ARCAcr

Λ,η,ch(τc) is denoted as pARCAcr
Λ,η,ch. The ratio of the peak average

of remaining cardiogenic artifacts to the peak average of cardiogenic artifacts (based on signal ATSΛ,η,ch(t)) is used to

quantify the heartbeat irregularity. The pARCA ratio is calculated as
pARCAcr

Λ,η,ch

pARCANR
Λ,η,ch

. The artifact removal method NR denotes

no treatment of cardiogenic artifacts. pARCA ratios for both ECG channels I and A are shown in (F) for each subject. These
ratios are based on template subtraction TSW15 as the artifact removal method and MVC load level Λ = 60. Each violin
plot contains pARCA ratios from EMG levels η = 0.01, 0.02, 0.05 and 0.1. For all but one subject, the pARCA ratio indicates
a distinctively elevated heartbeat irregularity for EMG channel A.
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Figure A3. A block diagram visualizing the test signal generation. See Section 2.1 for the corresponding description.

EMG subject ECG record # HB Λ η = 0.01 η = 0.02 η = 0.05 η = 0.1 η = 0.2
FP FN FP FN FP FN FP FN FP FN

002 104_s0306lre 61 20 0 0 0 0 0 1 0 0 0 2
60 0 0 0 1 0 2 0 2 0 21

003 105_s0303lre 76 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

007 121_s0311lre 86 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 1

008 122_s0312lre 66 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

009 131_s0273lre 102 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

010 150_s0287lre 68 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

012 155_s0301lre 78 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

013 165_s0323lre 58 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

015 173_s0305lre 67 20 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

Figure A4. Table stating the utilized combinations of EMG recordings (differential signals originating from electrodes 1 and
3—subject numbers from [16]) and ECG recordings (identifiers from [20]). Further indicated is the number of heartbeats
(# HB) within the analyzed segment of pure ECG. False positive (FP) and false negative (FN) detected QRS complexes from
signals ATSΛ,η,A(t) are stated for different EMG levels η and MVC loads Λ.
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Figure A5. Block diagram displaying different methods to reduce cardiogenic artifacts. See Section 2.2 for a detailed
description. For clarity reasons, the TSWD algorithm is only depicted for a single wavelet scale and suggested for two other
instead of the utilized 8 scales. Not depicted are the methods TSWD35 and DSO. Both are variants to TSWD15 and differ
in the signal that is fed into the stationary wavelet transform (SWT). TSWD35 uses the signal ATSTSW35

Λ,η,ch as input. In the
case of DSO, the unpreprocessed signal ATSΛ,η,ch is used as input. The ECG removal methods featuring a high pass with
fc = 35 Hz are only relevant for fApEn fatigue detection. PSD-based fatigue detection relies solely on the 15 Hz version as
the PSD lower bound bl is applied.
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Figure A6. (A) displays the template that is subtracted QRS synchronously in the first step. To limit its influence on the current cardiac
cycle, values outside the average cardiac cycle length are set to zero, being the additive identity. (B) visualizes the average remaining
cardiogenic artifact signal wARCATSW15_SWT,i

Λ,η,ch (τc) for different, color-coded wavelet levels i. It is constructed by averaging all rectified

heart cycle segments of the signal ATSTSW15_SWT,i
Λ,η,ch (t) at the same relative heart cycle time τc. The signal ATSTSW15_SWT,i

Λ,η,ch (t) is obtained
by the application of the stationary wavelet transform with eight different levels to the result of the template subtraction from the first
step. Dash-dotted lines indicate the threshold θi. Damping is carried out only at heart cycle times τc where the average remaining
cardiogenic artifact signal wARCATSW15_SWT,i

Λ,η,ch (τc) is above the threshold θi. (C) shows the resulting damping templates dTemp(τc, i)
for different, color-coded wavelet levels i. Again, values outside the average cardiac cycle length are set to identity, in this case, 1 due
to the multiplication. The remaining subpanels compare the results of different template subtraction methods. (D) displays a segment
of ATS60,0.05,A. (E–G) display the corresponding ECG-reduced segments obtained with artifact removal methods DSO, TSW15 and
TSWD15, respectively. (H) displays the pure EMG component RSMΛ used in the construction of the artificial test signal ATS60,0.05,A.
This signal can be considered as a target value for artifact removal. The example signals illustrate that TSWD can best remove the
artifacts. While the pure application of the damping step (DSO) removes too much of the EMG signal in the QRS range, the ordinary
template subtraction (TSW) is not able to remove the ECG component completely, and artifacts remain in the QRS range.
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Figure A7. Block diagram of applied fatigue detection methods. See Section 2.3 for a detailed description. Fatigue detection
is performed based on signals ATScr

Λ,η,ch. These signals feature reduced cardiogenic artifacts produced with the cardiogenic

artifact elimination method cr. The resulting fatigue index signals are denoted Φcr,gs,Ne ,fd
Λ,η,ch , where gs denotes the gating

strategy, Ne the epoch size and fd the fatigue detection method. The prefix se_ in front of MNF and SMR5 fatigue detection
methods denotes the applied spectral estimation method (Welch or Burg method).
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Figure A8. Detailed description of fatigue detection algorithms and exemplary fatigue detection signals. The mean frequency and
spectral moments ratio depend on an estimation of the power spectral density (PSD) of the underlying epoch. The PSD was calculated
in a nonparametric way by the Welch method [37]. Epochs are subdivided into subsegments with a quarter, an eighth or a sixteenth
of the epoch size. Subsegments had a 50% overlap and were tapered by a Hamming window function. This led to kw = 7, 15 or 31
subsegments for each epoch. In the case of the gating strategy GO, all subsegments affected by gating are excluded from the averaging
in the Welch method. Alternatively, a parametric estimate was calculated by the Burg algorithm [37]. The Burg algorithm is performed
individually for all fragments separated by gating in the case of the gating strategy GO. A final PSD estimation is obtained as the
weighted average of PSDs from all fragments. The weight is chosen according to the length of the fragment in relation to the total
length of all fragments. Fragments shorter than a quarter of the intended epoch size are excluded. In practice, the presented cardiogenic
artifact removal will only suppress a part of the cardiogenic artifacts. Furthermore, the ECG power spectrum tends to have a larger
share in the low-frequency range than the EMG power spectrum. To reflect these two issues, we introduced a PSD lower bound bl .
Both PSD-based fatigue detection algorithms only considered PSD bins in between the lower bound bl and upper bound bu. Fatigue
detection was performed with the lower bound bl at 15, 20, 25, 30, 35, 40, 45 and 50 Hz. In contrast, bu was fixed at 500 Hz close to the
Nyquist frequency. To facilitate the introduction of bl , all PSD-based fatigue calculations rely on 15 Hz high-pass filtered signals. The
mean frequency (MNF) fatigue identifier [34] is calculated as: MNF =

∫ bu
bl

f · PSD( f )d f/
∫ bu

bl
PSD( f )d f . The spectral moments ratio (SMR)

suggested by Dimitrov et al. [35] tries to better incorporate fatigue-related PSD changes at higher frequencies. This is accomplished by
multiplying the PSD with a weighting function that amplifies higher PSD bins. The spectral moment M of order p also follows the
PSD bounds bl and bu and is calculated as Mp =

∫ bu
bl

f p · PSD( f )d f . The spectral moments ratio fatigue index of order p is defined

as SMRp = ln M−1
Mp

. We used an order of p = 5 and therefore choose the abbreviation SMR5 in this study. The natural logarithm
is utilized to prevent a range over several orders of magnitude and ensures comparable values for the following assessment [17].
Fuzzy approximate entropy (fApEn) was introduced by Xie et al. [36]. As an entropy method, it compares one short sequence from
the epoch to all other short sequences from the same epoch. The entropy is based on the number of similar sequences of length m
compared to the amount of similar sequences with length m + 1. In contrast to other entropy methods, fApEn altered the decision of
whether two sequences are considered similar. The former binary decision was exchanged for a fuzzy similarity u(d, r) = exp(−d2

r ).
d denotes the maximum metric of the difference of both sequences. The method also considers two sequences to be similar if they
have an arbitrary constant offset. We used a threshold of r = 0.6 and a vector length m = 2. All fragments separated by gating were
concatenated in the case of the gating strategy GO for fApEn. In this case, the fApEn method is slightly adapted to take into account
the concatenation of fragments. This concerns, on the one hand, the zero-mean: The mean is calculated and compensated separately
within each fragment. Furthermore, those short sequences excluded from calculation that are extending over more than one fragment.
These short sequences contain the fracture at the concatenation and might disturb the entropy calculation. Subfigure (A) visualizes the
signal ATSTSWD15

60,0.05,A(t). Derived are the fatigue index signals with MNF, SMR5 and fApEn fatigue detection methods shown in (B–D),
respectively. All fatigue index signals are based on epoch size Ne = 256. The PSD for MNF was estimated with the Welch method
with kw = 15, while the Burg method was used for SMR5. SMR5 and fApEn utilized gating and no gating was applied for MNF.
All three variants used a PSD lower bound bl = 35Hz (in the case of fApEn, a corresponding high-pass is applied). (E) displays the
corresponding normalized fatigue signals Φ̂TSWD,gs,256,fd

60,0.05,A (t) that are converted to a zero to one range. (F) shows the corresponding
fatigue signals that are normalized and filtered to incorporate information from a 1 s segment of the EMG signal at each fatigue index
value. They are denoted Φ̂TSWD,gs,256,fd,MAfilt

60,0.05,A (t).
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Figure A9. Temporal and spectral evaluation of ECG “cleaned” signals. The evaluation is based on the different error
variants quantifying the deviation of the ECG “cleaned” signal ATSΛ,η,ch(t) compared to the scaled EMG component
SMCΛ,η(t). The properly scaled, pure ECG component is defined as SMCΛ,η(t) = ATSΛ,η,ch(t) − ECGch(t) =

η
0.2 ·

RSMΛ(t). The squared error of the ECG attenuated signal with removal method “cr” is defined as: esq(η, ch, cr) =

‖SMC60,η(t)−ATScr
60,η,ch(t)‖2

‖SMC60,η(t)‖2

∣∣∣∣
0 s<t<60 s

. This corresponds to the definition of the error for synthetic signals by Petersen et al. [15].

Subpanels (A,B) show the pure EMG component SMC60,0.05(t) and the ECG “cleaned” signal ATSTSWD
60,0.05,A(t), respectively.

The mean removal esq(η, A, cr) error across all nine subjects is displayed in (C) for different ECG removal logarithms
and EMG levels η. The influence of ECG removal variants on a subsequently calculated envelope signal is quantified
by an error eenv, as known from Petersen et al. [15]. The mean average value MAV with a centralized sliding window
(size 128) is calculated for both the pure EMG component and the cleaned signal. Exemplary envelope signals are

shown in (D). The envelope error is defined as: eenv(η, ch, cr) =
‖MAV(SMC60,η(t))−β∗1MAV(ATScr

60,η,ch(t))−β∗0‖2

‖MAV(SMC60,η(t))‖2

∣∣∣∣
0 s<t<60 s

. With

β∗1 and β∗0, a linear factor and an offset are applied to scale and shift the envelope of the cleaned signal to minimize the

error. Both values are obtained by a linear regression: β∗1β∗0 = argminβ0,β1
‖MAV

(
SMC60,η(t)

)
− β1MAV

(
ATScr

60,η,ch(t)
)
−

β0‖2

∣∣∣∣
0 s<t<60 s

The resulting mean error eenv(η, A, cr) across all nine subjects is displayed in (E). Spectral properties of

the ECG “cleaned” signal are evaluated based on the power spectral density (PSD) (F). The PSD was calculated by the
Burg method with a 60 s long segment. Again, a quadratic error was calculated to quantify the deviation of the spectrum:

espec(η, ch, cr) =
‖PSD(SMC60,η(t), f )−PSD(ATScr

60,η,ch(t), f )‖2

‖PSD(SMC60,η(t), f )‖2

∣∣∣∣
0 s<t<60 s,35 Hz< f<512 Hz

. To exclude effects of the high-pass filter,

only frequencies above 35 Hz are considered. To account for fatigue algorithms that mainly look for spectral changes
instead of absolute values of the PSD, an alternative error eSpecShape is calculated, which allows for a vertical shift and
scaling of the PSD of the ECG “cleaned” signal in a similar manner as with eenv. It is defined as: eSpecShape(η, ch, cr) =

‖PSD(SMC60,η(t), f )−β∗3PSD(ATScr
60,η,ch(t), f )−β∗2‖2

‖PSD(SMC60,η(t), f )‖2

∣∣∣∣
0 s<t<60 s,35 Hz< f<512 Hz

. Both values are again obtained by a linear regression:

β∗3β∗2 = argminβ2,β3
‖PSD

(
SMC60,η(t), f

)
− β3PSD

(
ATScr

60,η,ch(t), f
)
− β2‖2

∣∣∣∣
0 s<t<60 s,35 Hz< f<512 Hz

. The resulting errors

espec(η, A, cr) and eSpecShape(η, A, cr) are shown in (G,H), respectively. espec(η, A, cr) for HP15 and no ECG removal at all
are so large, that they are not displayed in (H).
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Figure A10. A comparison of the best-working ECG removal methods for PSD-based fatigue detection algorithms. Depicted
are template subtraction without (TSW15) and with (TSWD15) subsequent wavelet-based damping step. Both methods are
shown as variants without (GN) and with gating (GO). The utilized fatigue detection algorithms include MNF with Welch
PSD estimation (kw = 15) on the left side and SMR5 in combination with Burg spectral estimation on the right side. Both
fatigue detection methods are based on an epoch size of Ne = 256 and incorporate a PSD lower bound bl of 35 Hz. The
white dots indicate the median value.
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Figure A11. The left side displays the influence of the epoch size and gating strategy in case of entropy-based fatigue
detection with fApEn. The main blocks on the horizontal axis denote different EMG levels η again. For each of these main
blocks, different epoch sizes are shown on the horizontal axis. To assure a balanced comparison of epoch sizes, results from
smaller epochs are filtered the same way as described in Figure A12. The applied gating strategy is denoted by the marker
and line style. The three applied evaluation criteria (A, B, C) are again covered by the rows of subfigures. Each data point is
obtained by averaging over all subjects. The right side compares the best working ECG removal methods for fApEn fatigue
detection. Depicted are template subtraction without (TSW35) and with (TSWD35) subsequent wavelet-based damping step.
Both methods are shown as variants without (GN) and with gating (GO). The results are based on an epoch size of Ne = 256.
In contrast to the left side, no filtering of the fatigue index to incorporate one second of EMG was utilized. Because there
was no filter, each fatigue index value incorporates only a quarter second of EMG, and the results are therefore not directly
comparable to the left side. The white dots indicate the median value.
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(b) SMR5

Figure A12. The influence of epoch size Ne in the case of PSD-based fatigue detection for different combinations of ECG
removal method, gating strategy and PSD estimation method. The main blocks on the horizontal axis denote different EMG
levels η. Connected data points denote the same EMG level. For each of these main blocks, different epoch sizes are shown
on the horizontal axis. To assure a balanced comparison of epoch sizes, the results from smaller epochs underlying fatigue
detection signals Φ(t) are filtered. The length of the moving average filter is chosen in a way that each filtered fatigue index
data point incorporates EMG from a 1s long window. The results displayed are based on TSWD15 in combination without
gating (GN) as well as TSW15 in combination with the gating strategy GO. In the case of pure EMG, a sole high-pass filter
(HP15) is applied instead of template subtraction. The applied PSD estimation is color-coded. The Burg method is drawn
in red, while Welch methods with kw = 7, 15 and 31 subsegments are shown in green, blue and purple, respectively. The
number of values in each Welch subsegment depends on the epoch size. The three applied evaluation criteria (A, B, C)
are again covered by the rows of subfigure, while MNF and SMR5 represent the columns. Each data point is obtained by
averaging over all subjects.
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Figure A13. The influence of PSD lower bound bl . The applied PSD lower bound bl is plotted on the horizontal axis. Only
PSD bins corresponding to frequencies above bl are considered in the subsequent calculations. Different EMG levels η

are color-coded. The results obtained with QRS segments excluded (gating strategy GO) are shown by dashed lines. The
three applied evaluation criteria (A, B, C) are again covered by the rows of subfigure, while MNF and SMR5 represent
the columns. The PSD for MNF is again estimated by the Welch method with 15 subsegments, while SMR5 relies on the
Burg method. The epoch size is 256 values. Each data point is obtained by averaging over all subjects. Due to the limited
frequency resolution of the Welch method with 15 subsegments, only two different results are obtained for each EMG level.
At higher EMG levels η, a higher PSD lower bound bl has a negative effect in terms of the introduced disturbances measured
by R2 (criterion C). However, it has hardly any effect in respect to the deviation from the reference fatigue index signal
(criterion A) and the separability of load cases (criterion B). Regarding lower EMG levels η, the deviation to the reference
fatigue index signal and the separability intensely improved towards higher bl . In the case of disturbances (criterion C), the
results displayed an optimal choice at values around 30 Hz.
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Figure A14. A comparison with intra-heartbeat fatigue detection, as suggested by Sinderby et al. [10]. In the case of the
intra-heartbeat approach, only a segment extending between 50% and 75% of the RR interval is utilized. Instead of fixed
length epochs, this results in a variable epoch size dependent on the heart rate. Prior to fatigue detection, the resulting
segment is furthermore detrended. To ensure a fair comparison, the different epoch sizes must be considered. Suitable to
the applied epoch size of Ne = 256, a moving average of the last 7 fatigue index values was applied. This assures that EMG
segments of one second are incorporated. This corresponds to the procedure that was used when comparing the length of
epochs (Figure A12). The intra-heartbeat approach generates one fatigue value per heart cycle. This value is assigned to
the end time of the intra-heartbeat EMG segment. With the help of linear interpolation, these values are mapped to the
fixed 8 Hz fatigue sampling times. Again, the preceding 7 values are moving average filtered to obtain a filtered fatigue
index signal for comparison. Due to the interpolation preceding the filtered intra-heartbeat fatigue signal, sometimes it
includes EMG from beyond a strict one second interval. Despite the fact that the filtered intra-heartbeat fatigue signal
sometimes include EMG from beyond a strict one second interval, its results (purple colored) are generally not better. In
most combinations of EMG levels and evaluation criteria, the intra-heartbeat results scored worse compared to our TSW15
with the gating strategy GO and TSWD15 without gating approaches. This applied for both MNF (left column) as well as
SMR5 (right column) fatigue detection algorithms. The black dots indicate the mean value, while the white dots symbolize
the median.
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