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Abstract: Fatigue failure is a significant problem in the structural safety of engineering structures.
Human inspection is the most widely used approach for fatigue failure detection, which is time
consuming and subjective. Traditional vision-based methods are insufficient in distinguishing cracks
from noises and detecting crack tips. In this paper, a new framework based on convolutional neural
networks (CNN) and digital image processing is proposed to monitor crack propagation length.
Convolutional neural networks were first applied to robustly detect the location of cracks with the
interference of scratch and edges. Then, a crack tip-detection algorithm was established to accurately
locate the crack tip and was used to calculate the length of the crack. The effectiveness and precision
of the proposed approach were validated through conducting fatigue experiments. The results
demonstrated that the proposed approach could robustly identify a fatigue crack surrounded by
crack-like noises and locate the crack tip accurately. Furthermore, crack length could be measured
with submillimeter accuracy.

Keywords: crack length; image processing; convolutional neural network; fatigue crack detection

1. Introduction

Fatigue cracks caused by repetitive loads, which are of great concern for structural
safety, always exist in old structures including airplane and highway bridges [1]. Fatigue
crack propagation testing is an essential method of studying metallic or structural fatigue
life prediction in fracture mechanics. Crack length is one of the most relevant parameters
that needs to be recorded during laboratorial tests.

In recent decades, extensive research on monitoring crack length propagation has been
carried out. Existing approaches including the human inspection method, the electrical
method [2], the compliance method [3], and acoustic emission technology [4] all have limi-
tations for application during a fatigue test. The human inspection method requires large
testing times since it needs to interrupt the fatigue test to manually measure crack lengths.
The accuracy of the electrical method is easily affected by the experiment conditions and
environment. Complicated calibration is needed when applying the compliance method.
Acoustic emission technology is a new nondestructive testing method. It records and ana-
lyzes the signals released by materials or structures when deformation or damage occurs
to detect the damage location and predict the time to failure. However, this technology
relies on a good correlation between acoustic emission data and the damage mechanism,
while the experimental results will be affected by environmental noise [5]. Therefore, the
application of acoustic emission technology for monitoring the length of cracks is limited.

Vision-based crack detection methods have been widely studied over recent decades
for their advantages of non-contact, high precision, and good real-time performance [6].
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Many methods have been established based on image processing techniques including
edge detection [7], Hough transform [8], image segmentation [9], identification and de-
tection of feature points [10,11], the digital image correlation (DIC) method [12,13], and
photogrammetry [14]. A general limitation of these approaches, however, is that most of
these vision-based methods detect cracks by searching over the entire area of an image. As
a result, there are difficulties in distinguishing true cracks from crack-like noises such as
scratches and structure boundaries [15]. At the same time, accurate detection of crack tips,
which is key for crack length measurement, remains challenging [10].

In recent years, machine learning and convolutional neural networks have shown a
strong capability for feature extraction and target detection, and they have been used in
structural health monitoring (SHM). For example, Dong [16] established a CNN model
to identify microseismic events and blasts accurately. Yu [17] put forward a DCNN-
based method to localize damages to smart building structures with high accuracy on
raw noisy signals. Many researchers have carried out studies for crack detection based
on CNN. Cha [18] used trained CNN and sliding window techniques to detect cracks
from images. Other researchers [19,20] used trained CNN to divide every crack pixel
from the background in the image. Although these approaches can detect the cracks with
high reliability even surrounded by crack-like noises, it would be difficult to accomplish
quantitative detection of crack length.

Previously, the authors investigated a crack propagation detection method [21] using
classification-based CNN and an improved canny edge-detection algorithm, and verified
the accuracy and efficiency of the method via central hole specimens. However, the
classification-based CNN and the edge-detection algorithm only used part of the crack
structure information, which reduced the reliability of the method.

In this study, we proposed an improved crack length measurement framework based
on detection-based CNN and digital image processing. This framework combined the
excellent feature extraction capabilities of detection-based CNN with the quantitative
detection capabilities of traditional vision-based methods. This CNN-based model was
established to robustly detect whole true cracks surrounded by crack-like noises. A new
image-processing algorithm was proposed to accurately locate the crack tip, which could
be used to calculate the length of the crack.

The manuscript is organized as follows. Section 2 presents the synopsis of the pro-
posed algorithm first, then the architecture of CNN used in this paper and the methodology
of crack tip detection are introduced and thoroughly detailed. Section 3 illustrates the
experimental process and results including training dataset preparation, CNN training re-
sults, crack area location results, crack tip detection results, and crack length measurement
results. Section 4 concludes the paper.

2. Methodology
2.1. Overview of the Proposed Method

The crack length measurement method proposed in this paper is shown in Figure 1,
with more technical details described in the rest of this section. To begin, a fixed camera was
applied to acquire images while a specimen was subject to a fatigue crack under a fatigue
load F, as Figure 1a shows. These crack images contained not only crack information but
also crack-like noises. At the same time, the experimental information such as fatigue
cycles could be recorded. Then, to achieve robust crack detection, a convolutional neural
network trained by labeled crack images was used to detect the region of the crack with
the interference of a non-crack edge, as shown in Figure 1b. The architecture of the applied
CNN is introduced in Section 2.2, and the process of training dataset preparation and
the crack area detection results are detailed in Sections 3.1 and 3.2. Next, a crack tip
location method based on digital image processing was used to detect the crack tip from
the extracted crack area, as shown in Figure 1c. The principle of the proposed method is
illustrated in Section 2.3, and the experimental results are presented in Section 3.3. In the
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end, the crack length was calculated with the calibration result, as shown in Figure 1d. The
introduction of a validation experiment and the results analysis are described in Section 3.4.

Figure 1. The scheme of the crack length measurement method: (a) image acquisitions; (b) crack area detection; (c) crack tip
location; (d) crack length calculation.

2.2. Crack Area Location Method

This section explains the overall architecture of CNN used in this study for crack
detection. CNN is a robust method for detecting different objects and has been widely
used in automatic drive and intelligent housing systems. CNN extracted the features
of objects by convolution layers which could be recognized as the filters. Then, feature
maps that indicated the locations and strength of the input object were calculated. In
the end, the networks learned the best parameters by adjusting themselves to reduce
the error on the dataset. Thus, CNN could be used to distinguish cracks from non-crack
noises. Figure 2 shows the details of the CNN architecture. The input crack image was first
resized into 300 × 300 × 3, where each dimension indicated height, width, and channel,
respectively. Then, the crack image passed through the architecture with 6 feature maps
extracted, including conv11, conv13_2, conv14_2, conv15_2, conv16_2, and conv17_2. The
term “conv” refers to the convolution layer. These feature maps were used to train and
detect the location of cracks. The meta-architecture of the CNN was a Single Shot Detector
(SSD) [22], and the feature extractor was MobileNets [23].

A convolutional layer is one of the most important parts in CNN. As shown in Figure 3,
the size of the input data was 5 × 5, the size of the convolutional kernel was 3 × 3, and
the size of the output was 3 × 3. The convolutional layer performed element-by-element
multiplications. The multiplied values were summed and, adding bias, we derived the
output value. The stride was a hyperparameter, describing how many of the kernel’s
columns and rows slid at a time across the input data’s width and height. One of the
advantages of convolution was that it could reduce input data size, and as a result the
computational cost was reduced. The feature maps mentioned above are the results of data
input after the convolution operation. However, the operation of convolution was time
consuming, so we replaced it with a more efficient network.

MobileNets can effectively reduce the number of parameters in CNN architecture.
The principle of MobileNets is shown in Figure 4. The standard convolutional layer was
replaced by depthwise separable convolution, which factorized the standard convolution
into two parts, a depthwise convolution and a 1 × 1 convolution (also called a pointwise
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convolution). If an N × N × P feature map was taken as the input by a standard convolu-
tion, and a D × D × Q feature map was produced, then the computational cost was N ×
N × P × D × D × Q for each layer. When depthwise separable convolution was applied,
the computational cost of a depthwise convolution was P × N × N × D × D, and the
computational cost of a pointwise convolution was P × Q × N × N × 1 × 1. The number
of parameters reduced from P × Q × N × N × D × D to P × N × N × D × D+ P × Q ×
N × N × 1 × 1. As a result, the time cost for detecting cracks would be lower.

Figure 2. The architecture of the CNN for crack area location.

Figure 3. The principle of convolutional layers.

In this study, we used the Rectified Linear Unit (ReLU) [24] as the activation function
for all layers. Briefly, the ReLU had no bounded outputs for its positive input values and
the gradients are either zeros or ones. This enabled ReLU to compute faster and could
achieve better accuracies. The function of ReLU is shown as:

y =

{
x i f : x > 0
0 i f : x < 0

(1)

The meta-architecture used in this study was SSD. This architecture could detect
objects faster without losing accuracy [25], and provided the possibility to detect cracks in
real time. It used different resolutions of feature maps to predict different length cracks. As
shown in Figure 5, multi-scale feature maps were extracted using a set of convolutional
layers. These maps decreased in size and made predictions of cracks at multiple scales.
Large-scale feature maps could be used to predict small cracks and small-scale feature
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maps could be used to predict large cracks. Another method it used to detect different
scale cracks was setting different aspect ratios for default bounding boxes. As shown in
Figure 6, the crack was distributed in a linear fashion and a square area was not suitable for
the prediction of cracks. Therefore, we set five different values including 1, 2, 3, 1/2, and
1/3 as aspect ratios for default boxes. Each feature map cell predicted the offsets relative to
these default bounding boxes.

Figure 4. The principle of MobileNets.

Figure 5. Multi-scale crack feature maps for detection.

Figure 6. Different aspect ratios for crack detection.
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The overall loss function was a weighted sum of the localization loss and the confi-
dence loss:

L(x, c, l, g) =
1
N
(Lcon f (x, c) + Lloc(x, l, g)) (2)

where N is the number of matched default boxes; Lcon f is the confidence loss; Lloc is the
localization loss; x = {1, 0} is an indicator for matching the i-th default box (l) to the j-th
ground-truth box (g) parameters of the crack; c means the values of confidence.

The localization loss is a Smooth L1 loss [26,27]:

Lloc(x, l, g) =
N
∑

i∈Pos
∑

m∈{cx,cy,w,h}
xij·smoothL1(li −

∧
gm

j )

∧
gcx

j = (gcx
j − dcx

i )/dw;
∧

gcy
j = (gcy

j − dcy
i )/dh
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gw

j = log
(

gw
j

dw
i

)
;
∧
gh = log

(
gh

j

dh
i

) (3)

where (cx, cy) means the center of the default bounding box (d), and w and h are the width
and height of the default bounding box.

The confidence loss refers to the reliability of predictions that the box contains a crack:

Lcon f (x, c) = −
N

∑
i∈Pos

xij· log(
∧
c

1

i )− ∑
i∈Neg

log(
∧
c

0

i ) (4)

2.3. Crack Tip Detection Method

Once the crack area was detected using CNN, the next step was to robustly locate the
crack tip. As shown in Figure 7, the algorithm proposed to locate the crack tip could be
divided into four steps. First, an image threshold segmentation method was applied to
divide the crack and the background. Then, we used an image morphological operation
method to connect the broken crack. Next, a noise-free crack image was obtained after
removing small-area noises. In the end, the crack tip could be located by searching
the image.

Figure 7. The method proposed to detect crack tips.

In this study, we used a global threshold segmentation method to divide the crack
and background to keep the information about the crack tip. During the process of crack
propagation, the brightness in the location of the crack was darker than the background.
Therefore, we set a grayscale value T to separate the crack and the background. Every
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crack image pixel was divided into two groups after threshold segmentation. The function
of threshold segmentation used in the study was:

g(x, y) =
{

0 f (x, y) > T
255 f (x, y) ≤ T

(5)

As the crack tip was small and would be easily disturbed by noises, the area of cracks,
especially the crack tip, was disconnected after the operation of threshold segmentation.
We needed to enhance the area of the crack before removing noises.

Morphological operators [28] included dilation and erosion. The principle of dilation
is shown in Figure 8. The dilation of region A by a structuring element B produced a new
region, adding a layer of pixels to the boundary of regions. Dilation could fill in the holes
and gaps between different regions. The principle of erosion is shown in Figure 9. The
erosion of area A by a structuring element B produced a new region, which was smaller
than A. Erosion could remove small-scale details, which meant it could be used to remove
noises. The closing operation dilated an image and then eroded the dilated image. This was
useful for filling small holes and gaps while preserving the shape and size of the objects.
Thus, we could use the closing operation to connect the crack and keep the shape of the
crack. According to the shape of crack, we could use a rectangular structuring element to
close the crack image.

Figure 8. The principle of dilation.

Figure 9. The principle of erosion.

After the crack connection, we could label the regions by searching the binary image
and recording the number of pixels. We found that the noises had a small area. Therefore,
we could remove the noises by removing small-area objects. As a result, a clear crack binary
image was obtained. In the end, we could search the pixel location of 255 and define the
rightmost pixel as the crack tip.

3. Experimental Results and Analysis
3.1. Training Data Preparation and Parameter Initialization

CNN is a data-driven approach. Before training the CNN model, the authors carried
out fatigue experiments to collect crack images. As shown in Figure 10, a measuring
magnifier was used to capture the crack images. The total number of raw images was 4928
(all images with 640 × 480 pixel resolutions). Some examples of crack images used for
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training CNN are shown in Figure 11. There were three kinds of crack images including
images with large cracks, images with small cracks, and crack images in larger resolution.

Figure 10. Experiments for collecting crack data: the left image shows the measuring magnifier used
in the experiments, and the right image shows the experimental environment.

Figure 11. Examples of images used for training CNN.

These crack images were divided into two groups according to a fivefold cross-
validation principle of 80% for training and 20% for validation. All the crack images
were divided into two parts including 3928 images as training datasets and 1000 images as
validation sets.

These crack images were manually labeled with LabelImg [29]. The information of
the crack including the location and category in each image was recorded. In this study,
the CNN model was built in the framework of TensorFlow. Before training the model, the
dataset was converted into TFRecords Format, which is suitable for TensorFlow framework.
At that point, we established a crack dataset.

A crack was a new category for us to train and detect. The transfer learning method
was not suitable for our CNN model, since research demonstrated that the performance
relies on the similarity of two tasks [30,31]. We initialized the model parameters with a
normal distribution with mean of 0 and standard deviation of 0.03, and the biases were
initialized with a constant zero vector. According to Huang [25], the initial learning rate
was set as 0.004. The batch size was set as 1 due to the limitation of our computer.
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3.2. CNN Training Results

The training process was carried out on a workstation with a GPU (GeForce GTX
1080Ti). The code was programmed by Python 3.6, and the environment was established
by TenorFlow1.12. The training process was performed in Windows systems.

The learning rate was manually adjusted over the training iterations, so that the
parameters could converge to the global optimum. In general, larger learning rates were
preferred in the beginning and smaller learning rates were used for fine-tuning. The total
loss with the training process over steps is shown in Figure 12. In the first iteration, we set
the learning rate equal to 0.004, and trained 55.6K steps. The value of total loss decreased
quickly at the beginning and slowly stabilized at about 6.5 in the end. Then, we set the
learning rate equal to 0.0004 to train 95K steps. The value of total loss stabilized at about
6.13 in the end. Finally, we used the learning rate of 0.00004 to train 60K steps. The value
of total loss stabilized at about 6.1 in the end.

Figure 13 shows the results over the training process. The Intersection of Union (IOU)
is defined as the area of intersection divided by the area of union between the predicted
bounding box and the ground-truth bounding box. It has been widely used to measure the
accuracy of object detection tasks. A value of 0.5 or 0.75 was the threshold we used to judge
whether the location of the predicted crack was correct or not. From the results, we could
see that the value of mean average precision (mAP) increased quickly at the beginning and
slowly stabilized in the end.

Table 1 summarizes the final results. In the training process, the mAP increased from
0.71 to 0.86 at 0.5IOU and increased from 0.29 to 0.35 at 0.75IOU. It could also validate that
the parameters converged to the global optimum by changing the learning rate.

Table 1. Crack detection precision.

Result First Step Second Step Third Step

mAP (0.5IOU) 0.71 0.84 0.86
mAP (0.75IOU) 0.29 0.34 0.35

After the training, the trained CNN model was applied to other crack images for
further validation. As shown in Figure 14, the trained CNN model could detect cracks with
high precision not only for large cracks but also for small cracks. It could also detect cracks
in different resolution images. At the same time, the method could divide the crack from
crack-like noises effectively.

3.3. Crack Tip Location Results

This section describes the results of the crack tip detection method. Figure 15a shows
the results after locating the area of cracks using the trained CNN model. The region of the
crack was extracted as a new image, which is shown in Figure 15b. Figure 15c shows the
result of a binary image after image segmentation. In this study, the grayscale value T was
83. If the pixel gray value was higher than 83, it would be redefined as 0. Otherwise, if the
pixel gray value was lower than 83, the number would be redefined as 255.

As we can see in Figure 16b, the crack tip was disturbed after global segmentation.
The crack tip information would be easily missed in the next operation. Before removing
the noises in the picture, we connected the crack tip first. Figure 16c shows the results of
the crack region after morphological operation. We designed a rectangular structuring
element with length of 15 and width of 3, using the element with the closing operation
to connect the crack. The crack tip image before connection and after connection can be
seen in Figure 16b,d. The different regions of the crack were perfectly connected after the
closing operation.

Figure 16e,f show the results of the crack image after moving the noises area. As we
can see, the noises could be moved clearly while the number of area thresholds was set



Sensors 2021, 21, 5894 10 of 16

as 200. At this point, we could recognize the crack tip as the rightmost point where the
greyscale value was 255.

Figure 12. The total loss during the training process: (a) the total loss over the first training process;
(b) the total loss over the second training process; (c) the total loss over the third training process.
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Figure 13. The results of mAP over the training process: (a,b) the results over the first training
step; (a) the increase in mAP@0.5IOU over steps; (b) the increase in mAP@0.75IOU over steps;
(c,d) the results over the second training step; (c) the increase in mAP@0.5IOU over steps; (d) the
increase in mAP@0.75IOU over steps; (e,f) the results over the third training step; (e) the increase in
mAP@0.5IOU over steps; (f) the increase in mAP@0.75IOU over steps.

3.4. Accuracy Evaluation Results

This section shows the results of evaluation for the proposed method in fatigue experi-
ments. The fatigue experimental environment and compact tensile (CT) specimen are shown
in Figure 17. A camera was used to take pictures of cracks under different fatigue load cycles.
The resolution of the images was 3840 × 2748. The specimen was made of aluminum alloy.

During a fatigue experiment, the crack length will increase. The crack length reference
point detection method was the same as for the detection of the crack tip. The crack length
could be calculated as the difference in horizontal value between the crack tip and the
reference point. Then, the distance was converted into physical distance from pixel distance.
The scale ruler was pasted on the surface of the specimen as shown in Figure 18. Each
division on the scale was 1 mm. After calibration, we obtained the result that 1 mm was
equal to 219.5 pixels, which meant 1 pixel was equal 4.56 × 10−3 mm.
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Figure 14. Crack detection results.

Figure 15. Results after CNN detection and threshold segmentation: (a) crack detection results;
(b) extracted crack region; (c) crack region after threshold segmentation.

Figure 19 illustrates the crack length results of the proposed method and the results of
human inspection. We used a measuring magnifier to check the crack length and compare
the results with the proposed method. The crack length increased with the fatigue cycles.
Figure 20 illustrates the absolute error and relative error at different stages. Comparing
crack length results measured by the proposed method with the human inspection method,
the maximum absolute error was less than 0.15 mm, and the maximum relative error was
less than 2%. Figure 21 explains why the errors existed. The morphology operation not
only connected the different crack areas, but also the noises and the crack. As a result, the
error of crack length calculated was larger. According to the comparison results, the crack
length could be measured effectively and accurately by the proposed method in this paper.
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Figure 16. Results after morphological operation and small area removal: (a) crack region after threshold segmentation;
(b) crack tip after threshold segmentation; (c) crack region after morphological operation; (d) crack tip after morphological
operation; (e) crack region after small area removal; (f) crack tip after small area removal.

Figure 17. Experimental environment and the CT specimen.
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Figure 18. Crack image calibration method.

Figure 19. Crack length measurement results over fatigue experiments.

Figure 20. The absolute error and relative error of crack length.
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Figure 21. Image details of the reason for errors.

4. Conclusions

In this paper, a non-contact framework for the fatigue crack length measurement is
presented through the study of a robust crack area location method and crack tip detection
method. A crack image dataset was established for the training of CNN. The trained CNN
could locate the crack accurately with the inference of crack-like edges, which enhanced
the robustness of the proposed method. Then, a new algorithm for crack tip location was
presented. First, the extracted crack image was converted into a binary image. Next, the
morphological operation was used to connect the disturbed crack. The noises in the images
were removed by setting an area threshold. Finally, the crack tip could be easily detected.
The performance of the proposed method was experimentally validated through a CT
specimen fatigue test. The results demonstrated that the proposed method could be used to
measure crack length effectively and accurately. The method proposed in this paper could
be used to identify the location of cracks from images and monitor crack length during
fatigue experiments. Its application will improve the study of fracture mechanics. This
work established a new framework for measuring crack length by locating the crack tip.
A limitation of this study was that the image segmentation threshold was manually selected
to keep the information about the crack tip. An automatic image segmentation method
needs to be developed in the future. Another further study will focus on implementing this
method on mobile platforms for automated crack inspection. Furthermore, crack width
is an essential parameter for the serviceability of reinforced concrete construction. The
proposed method will need to be modified to meet crack width measurement requirements.
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