
sensors

Article

Gap Reconstruction in Optical Motion Capture Sequences
Using Neural Networks

Przemysław Skurowski 1,* and Magdalena Pawlyta 1,2

����������
�������

Citation: Skurowski, P.; Pawlyta, M.

Gap Reconstruction in Optical Motion

Capture Sequences Using Neural

Networks. Sensors 2021, 21, 6115.

https://doi.org/10.3390/s21186115

Academic Editors: Tomasz

Krzeszowski, Adam Świtoński,

Michal Kepski and Carlos Tavares

Calafate

Received: 30 July 2021

Accepted: 8 September 2021

Published: 12 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Graphics, Computer Vision and Digital Systems, Faculty of Automatic Control,
Electronics and Computer Science, Silesian University of Technology, Akademicka 16,
44-100 Gliwice, Poland; Magdalena.Pawlyta@polsl.pl

2 Polish-Japanese Academy of Information Technology, Koszykowa 86, 02-008 Warsaw, Poland
* Correspondence: przemyslaw.skurowski@polsl.pl; Tel.: +48-32-237-2151

Abstract: Optical motion capture is a mature contemporary technique for the acquisition of motion
data; alas, it is non-error-free. Due to technical limitations and occlusions of markers, gaps might
occur in such recordings. The article reviews various neural network architectures applied to the gap-
filling problem in motion capture sequences within the FBM framework providing a representation
of body kinematic structure. The results are compared with interpolation and matrix completion
methods. We found out that, for longer sequences, simple linear feedforward neural networks
can outperform the other, sophisticated architectures, but these outcomes might be affected by the
small amount of data availabe for training. We were also able to identify that the acceleration and
monotonicity of input sequence are the parameters that have a notable impact on the obtained results.

Keywords: motion capture; neural networks; reconstruction; gap filling; FFNN; LSTM; BILSTM; GRU

1. Introduction

Motion capture (mocap) [1,2], in recent years, has become a mature technology that
has an important role in many application areas. Its main application is in computer
graphics, where it is applied in gaming and movie FX for the generation of realistic-looking
character animation. Other prominent applications areas are biomechanics [3], sports [4],
medical sciences (involving biomechanical [5] and the other branches, i.e., neurology [6]),
and rehabilitation [7].

Optical motion capture (OMC) relies on the visual tracking and triangulation of active
or retro-reflective passive markers. Assuming a rigid body model, successive positions of
markers (trajectories) are used in further stages of processing to drive an associated skeleton,
which is used as a key model for the animation of human-like or animal characters.

OMC is commonly considered the most reliable mocap technology; it is sometimes
called the ‘gold standard’, as it outperforms the other mocap technologies. However, the
process of acquiring marker locations is not error-free. Noise, which is immanent in any
measurement system, has been studied in numerous works [8,9], which suggests it is not
just simple additive Gaussian process. The noise types present in OMC systems were
identified in [10]; these are red, pink, white, blue-violet, and Markov–Gaussian-correlated
noises; however, they are not a big issue for the mocap operators since they have rather low
amplitudes and can be quite efficiently filtered out. The most annoying errors come from
marker observation issues. They occur due to marker occlusion and the marker leaving the
scene, and result in a lack of the recorded data-gaps that are typically represented as not a
number (NaN) values.

The presence of gaps is common and results in everyday praxis, which requires
painstaking visual trajectory examination and manual trajectory editing by operators. This
can be assisted by software support for trajectory reconstruction.

Sensors 2021, 21, 6115. https://doi.org/10.3390/s21186115 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5306-9528
https://orcid.org/0000-0002-4708-4956
https://doi.org/10.3390/s21186115
https://doi.org/10.3390/s21186115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186115
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186115?type=check_update&version=2

Sensors 2021, 21, 6115 2 of 26

In this work, we propose a marker-wise approach that addresses the trajectory re-
construction problem. We analyze the usability of various neural network architectures
applied to regressive tasks. The regression/prediction exploits inter-marker correlations
between markers placed on the same body parts. Therefore, we employed a functional
body mesh structure (FBM) [11] as a framework to model the kinematic structure of the
subject. I Thisan be calculated ad-hoc for any articulated subject or rigid objects, so we do
not need a skeleton model.

The article is organized as follows: in Section 2, we disclose the background for the
article—mocap pipeline with sources of distortion and former works on the distortions in
optical mocap systems; Section 3 describes the proposed method, with its rationales and
design considerations, and experiment plan. In the Section 4 we provide results, and a
discussion and interpretation of results. Section 5 summarizes the article.

2. Background
2.1. Optical Motion Capture Pipeline

Optical motion capture systems track the markers—usually passive retro-reflective
spheres in near-infrared images (NIR) images. The basic pipeline is shown in Figure 1.
The markers are observed by several geometrically calibrated NIR cameras. The visual
wavelengths cut-off, and, hence, the images, contain just white dots, which are matched
between the views and triangulated, so the outcome of the early stage of mocap is a time
series containing Cartesian coordinates of all markers. An actor and/or object wears a
sufficient number of markers to represent body segments—marker layout usually follows
a predefined layout standard. The body segments are represented by a predefined mesh,
which identifies the body segments and is a marker-wise representation of body structure.
Finally, mocap recording takes the form of a skeleton angle time series, which represents
the mocap sequence as orientations (angles) in joints and a single Cartesian coordinate for
body root (pelvis usually).

(a) (b) (c) (d)

Figure 1. Stages of the motion capture pipeline: actor (a); registered markers (b); body mesh (c); mesh matched skeleton (d).

2.2. Functional Body Mesh

Functional body mesh (FBM) is a authors’ original contribution, that forms a frame-
work for marker-wise mocap data processing, which incorporates also the kinematic
structure of a represented object. The FBM structure is not given in advance, but it can be
inferred based on the articulated object representative motions [11]. For human actors it
resembles standard meshes, but it can be applied for virtually any vertebrates. It assumes
the body is divided into rigid segments (submeshes), which are organized into a tree
structure. The model represents the hierarchy of subjects’ kinematic structure, reflecting

Sensors 2021, 21, 6115 3 of 26

bonds between body segments, where every segment is a local rigid body model—usually
based on an underlying bone.

The rigid segments maintain the distance between the markers and, additionally, for
each child segment, one representative marker is assumed within the parent one, which is
also assumed to maintain a constant distance from the child markers. The typical FBM for
the human actor is shown in Figure 2b as a tree. The segments and constituent markers are
located in nodes, whereas the parent marker is denoted on the parent–child edge.

Figure 2. Outline of the body model (a), and corresponding parts hierarchy annotated with parents
and siblings (b).

2.3. Previous Works

Gap filling is a classical problem frequently addressed in research on mocap tech-
nologies. It was in numerous works, which proposed various approaches. The ex-
isting methods can be divided into three main groups—skeleton-based, marker-wise,
and coordinate-based.

A classical skeleton-based method was proposed by Herda et al. [12], they estimate
skeleton motion and regenerate markers on the body envelope. Aristidou and Lanesby [13]
proposed the other method based on a similar concept, where the skeleton is a source for
constraints in inverse kinematics estimation of marker location. Also, Perepichka et al. [14]
combined IK of skeleton model with deep NN to detect erroneously located markers and
to place them on a probable trajectory. All aforementioned approaches require either to
have a predefined skeleton or to infer the skeleton as the entry step of an algorithm.

The skeleton-free methods consider information from markers only, usually acknowl-
edging the whole sequence as a single multivariable (matrix), thus losing the kinematic
structure of the represented actor. They rely on various concepts, starting from the simple
interpolating methods [15–17]. The proposal by Liu and McMillan [18] employed ‘local’
(neighboring markers) low-dimensional least squares models combined with PCA for
missing marker reconstruction. A significant group of gap reconstruction proposals is
based on the low-rank matrix completion methods. They employ various mathematical
tools (e.g., matrix factorization with SVD) for the missing data completion, relying on
inter marker correlations. Among the others, these methods are described in the following
works [19,20]. Another approach is somewhat related: it is a fusion of several regressions
and interpolation methods, which was proposed in [21].

Predicting markers (or joint) position is another concept that is the basis of gap-filling
techniques. One such concept is a predictive model by Piazza et al. [22], which decomposes
the motion into linear and circular and finds momentary predictors by curve fitting. More
sophisticated dynamical models based on the Kalman filter (KF) are commonly applied.
Wy and Boulanger [23] proposed a KF with velocity constraints; however, this achieved

Sensors 2021, 21, 6115 4 of 26

moderate success due to drift. A KF with an expectation-maximization algorithm was also
used in two related approaches by Li et al.—DynaMMo [24], and BoLeRO [25] (the latter
is actually Dynammo with bone length constraints). Another approach was proposed by
Burke and Lanesby [26], who applied dimensionality reduction by PCA and then Kalman
smoothing for the reconstruction of missing markers.

Another group of methods is dictionary-based. These algorithms recover the tra-
jectories using a dictionary created from previously recorded sequences. They result in
satisfactory outcomes as long the specific motion is in the database. They are represented
by the works of Wang et al. [27], Aristidou et al. [28], and Zhang and van de Panne [29].

Finally, neural networks are another group of methods used in marker trajectory
reconstruction. The task can be described as a sequence-to-sequence regression problem,
whereas NN applied for regression has been recognized since the early 1990s in the work
of Hornik [30]; hence, NN seems to be a natural choice for the task. Surprisingly, however,
they become popular quite late. In the work of Fragkiadaki et al. [31], an encoder–recurrent-
decoder (ERD) was proposed, employing long-short term memory (LSTM) as a recurrent
layer. A similar approach (ERD) was proposed by Harvey et al. [32] for in-between motion
generation on the basis of asmall amount of keyframes. Mall et al. [33] modified the ERD
and proposed an encoder–bidirectional-filter (EBF) based on the bidirectional LSTM (BIL-
STM). In the work of Kucharenko et al. [34], a classical two-layer LSTM and window-based
feed-forward NN (FFNN) were employed. A variant of ResNet is applied by Holden [35]
to reconstruct marker positions from noisy data as a ttrajectory reconstruction task. A set
of extensions to the plain LSTM were proposed by Ji et al. [36]; they introduced attention (a
weighting mechanism) and LS-derived spatial constraints, which result in an improvement
in performance. Convolution auto-encoders was proposed by Kaufmann et al. [37].

3. Materials and Methods
3.1. Proposed Regression Approach

The proposed approach involves employing various neural networks architectures for
the regression task. These are FFNN and three variants of contemporary recursive neural
networks—gated recurrent unit (GRU), long-short-term memory (LSTM), and bidirectional
LSTM (BILSTM). In our proposal, these methods predict trajectories of lost markers on the
basis of a local dataset—the trajectories of neighboring markers.

The proposed utilization procedure of NN differs from the scenario that is typically
employed in machine learning. We do not feed the NNs with a massive amount of training
sequences in advance to form a predictive model. Instead, we consider each sequence
separately and try to reconstruct the gaps in individual motion trajectory on the basis of
its own data only. This makes sense as long as the marker motion is correlated and most
of the sequence is correct and representative enough. This is the same as for the other
common regression methods, starting with the least squares. Therefore, the testing data are
the whole ‘lost’ segment (gap), whereas the training is the remaining part of the trajectory.
Depending on the gap sizes, and sequence length used in the experiment, the testing can
be between 0.6% (for short gaps and long sequences) and up to 57.1% (for long gaps in
short sequences).

The selection of such a non-typical approach requires a justification. It is likely that
training the NN models for prediction of marker position in a conventional way, using
a massive dataset of mocap sequences, would be able to generalize enough to adjust to
different body sizes and motions. However, it will be tightly coupled with the marker
configuration, not to mention the other actors, such as animals. The other issue is obtaining
such a large amount of data. Despite our direct access to the lab resources, this is still quite
a cumbersome task, since we believe these might be not enough, especially as the resources
available online from various other labs are hardly usable, since they employ different
marker setups.

The forecasting of timeseries is a typical problem addressed by RNNs [38]. Usually,
numerous training and testing sequences allow for a prediction of the future states of the

Sensors 2021, 21, 6115 5 of 26

modelled system (e.g., power consumption or remaining useful life of devices). A more
similar situation, where RNNs are also applied, is forecasting the time series for problems
lacking massive training data (e.g., COVID-19 [39]). An analysis of LSTM architectures for
similar cases is presented in [40]. However, in these works, the forecast of future values is
based on the past values. What makes our case a bit different is the fact that we usually
have to predict the value in-the-middle, so the past and future values are available.

3.1.1. Feed Forward Neural Network

FFNN is the simplest neural network architecture. In this architecture, the information
flows in one direction, as its structure forms an acyclic directed graph. The neurons are
modeled in the nodes with activation functions (usually sigmoid) using the weighted
sum of inputs. These networks are typically organized into layers, where the output from
the previous layer becomes an input to a successive one. This architecture of networks
is employed for regression and classification tasks, either alone or as final stages in a
larger structures (such as modern deep NN). The architecture of the NN that we employed
is shown in Figure 3. The basic equation (output) of a single—k-th artificial neuron is
given as:

yk(x) = f

(
∑

j
wjkxj + b

)
, (1)

where xj is j-th input, wkj is j-th input weight, b—a bias value, f —is transfer (activation)
function. Transfer function depends on the layer purpose; these are typically a sigmoid for
hidden layers, threshold, linear, or softmax for final layers (for regression and classification
problems, respectively), or others.

Input Layer Hidden Layer Hidden Layers Hidden Layer Output Layer

f ()

f ()

f ()

f ()

f ()

x1

xM

 o1

 oL

w11

w21

wMN

...

..
.

..
.

f ()

f ()

f ()

f ()

..
....

Figure 3. Schematic of FFNN.

3.1.2. Recurrent Neural Networks

Recurrent neural networks (RNN) are the types of architecture that employ cycles in
NN structure; this allows for the consideration of current input value as well as preserving
the previous inputs and internal states of NN in memory (and future ones for bidirectional
architecture). Such an approach allows for NN to deal with timed processes and to
recognize process dynamics, not just static values—it applies to such tasks as a signal
prediction or recognition of sequences. Regarding the applicability, aside from classic
problem dichotomy (classification and regression), RNN results might need another task
differentiation. One must decide whether the task is a sequence-to-one or sequence-
to-sequence problem, so the network has to return either a single result for the whole
sequence or a single result for each data tuple in sequence. The prediction/regression task
is a sequence-to-sequence problem, as demonstrated with RNNs in Figure 4 in different
variants—both folded and unfolded, uni- and bi-directional.

Sensors 2021, 21, 6115 6 of 26

Hidden layer Output layerInput Layer Hidden layer Output layerInput Layer

Figure 4. Usage of recurrent NNs in sequence to sequence task: (a) folded, (b) unfolded unidirectional variant, (c) unfolded
bidirectional variant.

At present two types of neuron are predominantly applied in RNN–long short term
memory (LSTM) and gated recurrent unit (GRU), of which the former is also applied
in bidirectional variant (BILSTM). They evolved from a plain RNN called ‘vanilla’, and
they prevent vanishing gradient problems when back-propagating errors in the learning
process. Their detailed designs are unfolded in Figure 5. These cell types rely on the
input information and information from previous time steps, and those previous states are
represented in various ways. GRU passes an output (hidden signal h) between the steps,
whereas LSTM also passes a h and internal cell state C. These values are interpreted as
memory—h as short term, and C as long term. Their activation function is typical sigmoid,
which is modeled with a hyperbolic tangent (tanh), but there are additional elements
present in the cell. The contributing components, such as input or previous values, are
subject to ‘gating’—their share is controlled by Hadamard product (element-wise product
denoted as � or ⊗ in diagram) with 0–1 sigmoid function σ(x) = 1

1+e−x . The individual σ
values are obtained by weighted input and state values.

Figure 5. LSTM (left) and GRU (right) neurons in detail.

In more detail, in LSTM, we pass two variables h, C and have three gates—forget,
input and output. They govern how much of the respective contribution passes to further
processing. The forget gate (ft) decides how much of the past cell internal state (Ct−1) is to
be kept; the input gate (it) controls how much new contribution C̃t caused by input (xt)
annd taken into the current cell state (Ct). Finally, the output gate (ot) controls what part of

Sensors 2021, 21, 6115 7 of 26

activation is based on the cell internal state; (Ct) is taken as cell output (ht). The equations
are as follows:

ft = σ(W f · [xt, ht−1] + b f), (2)

it = σ(Wi · [xt, ht−1] + b f), (3)

C̃t = tanh(Wc · [xt, ht−1] + bc), (4)

Ct = ft � Ct−1 + it � C̃t, (5)

ot = σ(Wo · [xt, ht−1] + b f), (6)

ht = ot � tanh(Ct). (7)

The detailed schematic of GRU is a bit simpler. Only one signal, hidden (layer output)
value (h for hi), is passed between steps. There are two gates present—the reset gate (rt),
which controls how much past output (ht−1) contributes to the overall cell activation, and
the update gate (ut), which controls how much current activation (h̃t) contributes to the
final cell output.The above are described by the following equations:

ut = σ(Wu · [xt, ht−1] + bu), (8)

rt = σ(Wu · [xt, ht−1] + bu), (9)

h̃t = tanh (Wh · [xt, rt � ht−1] + bh), (10)

ht = (1− ut)� ht−1 + ut � h̃t. (11)

3.1.3. Employed Reconstruction Methods

We compared the performance of five architectures of NN—two variants of FFNN
and three RNN-FCs based on GRU, LSTM, and BILSTM; the outline of the latter is de-
picted in Figure 6. The detailed structures and hyperparameters of NNs were established
empirically, since there are no strict rules or guidelines. Usually, this requires simulating,
with parameters sweeping the domain of feasible numbers of layers and neurons [41]. We
shared this approach and reviewed the performance of NN using the test data.

• FFNNlin, with 1 hidden fully connected (FC) layer—containing 8 linear neurons;
• FFNNtanh, with 1 hidden FC layer—containing 8 sigmoidal neurons;
• LSTM followed by 1 FC layer containing 8 sigmoidal neurons;
• GRU followed by 1 FC layer containing 8 sigmoidal neurons;
• BILSTM followed by 1 FC layer containing 8 sigmoidal neurons.

The output is three valued x, y, z vectors, containing reconstructed marker coordinates.

xn

xn−1

xn+1

xn−2

hn

Recurrent Layer
(LSTM/GRU/BILSTM)

Output layerFully Connected Layer
(linear)

Input Layer
(multivariable seqence)

ox oy oz
on

Figure 6. Proposed RNN-FC architecture for the regression task.

Sensors 2021, 21, 6115 8 of 26

3.1.4. Implementation Details

The training process was performed using 600 epochs, with the SGDM solver running
on the GPU. It involved the whole input sequence with gaps excluded. There was a single
instance of sequence in the batch. The sequence parts containing gaps were used as the test
data; the remainder was used for training—therefore, the relative size of test part varies
between 0.6% and 57.1%. The other parameters are:

• Initial Learn Rate: 0.01;
• Learn Rate Drop Factor: 0.9;
• Learn Rate Drop Period: 10;
• Gradient Threshold 0.7;
• Momentum: 0.8.

We also applied z-score normalization for the input and target data.
Additionally, for comparison, we used a pool of other methods, which should provide

nice results for short-term gaps. These are interpolations: linear, spline, modified Akima
(makima), piecewise cubic hermite interpolating polynomial (pchip), and the low-rank
matrix completion method (mSVD0). All but linear interpolation methods are actually
variants of piecewise Hermite cubic polynomial interpolations, which differ in the details
of how they compute interpolant slopes. Spline is a generic method, whereas pchip tries
to preserve shape, and makima avoids overshooting. However, mSVD [42] is an iterative
method decomposing motion capture data with SVD and neglecting the least significant
part of the basis transformed signal, reconstructing the original data with replacing missing
values using reconstructed ones. The procedure finishes when convergence is reached. We
implemented the algorithm, as outlined in [24].

The implementation of methods and experiments was carried out in Matlab 2021a
using its implementations of numerical methods and deep learning toolbox.

3.2. Input Data Preparation

Constructing the predictor for certain markers, we obtained the locations from all the
sibling markers and a single parent one, as they are organized within an FBM structure. For
j-th marker (Xj = [xj, yj, zj]), we consider parent (Xp) and sibling markers (Xs1, . . . , XsL).
To form an input vector, we take two of their values—one for the current moment and
with one sample lag. The other variants with more lags or values raised to the higher
powers were considered, but after preliminary tests, we neglected them since they did not
improve performance.

Each input vector T, for the moment n, is quite long and is assembled of certain parts,
as given below:

T(n, ∗) =

current and former values of parent marker (p)︷ ︸︸ ︷
xp(n), yp(n), zp(n), xp(n− 1), yp(n− 1), zp(n− 1) ,

current and former value of first sibling s1︷ ︸︸ ︷
xs1(n), ys1(n), zs1(n), xs1(n− 1), ys1(n− 1), zs1(n− 1),

...
xsL(n), ysL(n), zsL(n), xsL(n− 1), ysL(n− 1), zsL(n− 1)︸ ︷︷ ︸

current and former value of last sibling sL

. (12)

Finally, the input and output data are z-score standardized—zero centered and stan-
dard deviation scaled to 1, since such a step notably improves the final results.

3.3. Test Dataset

For testing purposes, we used a dataset (Table 1) acquired for professional purposes
in the motion-capture laboratory. The ground truth sequences were obtained at the PJAIT
human motion laboratory using the industrial-grade Vicon MX system. The system capture
volume was 9 m × 5 m × 3 m. To minimize the impact of external interference such as

Sensors 2021, 21, 6115 9 of 26

infrared interference from sunlight or vibrations, all windows were permanently dark-
ened and cameras were mounted on scaffolding instead of tripods. The system was
equipped with 30 NIR cameras manufactured by Vicon: MX-T40, Bonita10, Vantage V5—
wth 10 pieces of each kind.

During the recording, we employed a standard animation pipeline, where data were
obtained with Vicon Blade software using a 53-marker setup. The trajectories were ac-
quired at 100 Hz and, by default, they were processed in a standard, industrial-quality
way, which includes manual data reviewing, cleaning and denoising, so they can be
considered distortion-free.

Several parameters for the test sequences are also presented in Table 2. We selected
these parameters as one could consider them to potentially describe prediction difficulty.
They are various, and based on different concepts such as information theory, statistics,
kinematics, and dynamics, but all characterize the variability in the Mocap signal. They
are usually the average value per marker, except for standard deviation (std dev), which
reports value per coordinate.

Table 1. List of mocap sequence scenarios used for the testing.

No. Name Scenario Duration Difficulty

1 Static Actor stands in the middle of scene, looking around and
shifting from one foot to another, freely swinging arms 32 s varied motions

2 Walking Actor stands still at the edge of the scene, then walks straight
for 6 m, then stands still 7 s low dynamics, easy

3 Running
Actor stands in the middle of scene, then goes backwards to
the edge of the scene and runs for 6 m, then goes backwards to
the middle of the scene

16 s moderate dynamics

4 Sitting Actor stands in the middle of scene, then sits on a stool, and,
after a few seconds, stands again 15 s occlusions

5 Boxing Actor stands in the middle of scene, and performs some fast
boxing punches 14 s high dynamics

6 Falling
Actor stands on 0.5 m elevation in the middle of scene, the
walks to edge of platform, then falls on the mattress, lies for 2 s
and stands

16 s high dynamics,
occlusions

Two non-obvious measures are enumerated: monotonicity and complexity. The
monotonicity indicates, on average, the extent to which the coordinate is monotonic. For
this purpose, we employed an average Spearman rank correlation, which can be described
as follows:

monotonicity =
1
M

M

∑
m=1

corr(rank(Xi), 1 . . . N), (13)

where Xm is mth coordinate, M is number of coordinates, N is sequence length.
Complexity, on the other hand, is how we estimate the variability of poses in the

sequence. For that purpose, we employed PCA, which identifies eigenposes as a new basis
for the sequence. The corresponding eigenvalues describe how much of the overall variance
is described by each of the eigenposes. Therefore, we decided to take the remainder of
the fraction of variance described by the sum of the five largest eigenvalues (λi) as a term
describing how complex (or rather simple) the sequence is—the simpler the sequence, the
more variance is described, with a few eigenposes. Therefore, our complexity measure is
simply given as:

complexity = 1−
5

∑
i=1

λi/
M

∑
i=1

λi, (14)

where M is a number of coordinates.

Sensors 2021, 21, 6115 10 of 26

Table 2. Input sequence characteristics.

No
Entropy
(H(X)) Stddev (σX) Velocity (∂X

∂t) Acc. (∂2X
∂t2) Jerk (∂3X

∂t3) Monotonicity Complexity

[Bits/Mark.] [mm/Coordinate] [m/s/Mark.] [m/s2/Mark.] [m/s3/Mark.] [-] [-]

1 12.697 129.705 0.208 1.561 64.817 0.352 0.027
2 13.943 941.123 0.773 6.476 829.271 0.582 0.000
3 15.710 982.342 0.895 6.176 643.337 0.379 0.001
4 10.231 135.356 0.190 2.863 452.142 0.347 0.016
5 11.356 121.094 0.259 3.557 507.975 0.323 0.023
6 14.152 601.140 0.589 6.703 799.039 0.745 0.007

3.4. Quality Evaluation

The natural criterion for the reconstruction task is root mean square error (RMSE),
which, in our case, is calculated only for the time and marker, where the gaps occur:

RMSE =

√
1
|W| ∑

i∈W
(X̂i − Xi)2, (15)

where W is a gap map, logically indexing locations of gaps, X̂ is a reconstructed coordinate,
X is the original coordinate.

Additionally, we calculated RMSEs for individual gaps. Local RMSE is a variant of
the above formula, and simply given as:

RMSEk =

√
1
|wk| ∑

i∈wk

(X̂i − Xi)2, (16)

where wk ⊂ W is a single gap map logically indexing the location of k-th gap, X̂ is
reconstructed coordinate, X is original coordinate. RMSEk is intended to reveal variability
in reconstruction capabilities; hence, we used it to obtain statistical descriptors—mean,
median, mode, and quartiles and interquartile range.

A more complex evaluation of regression models can be based on infromation criteria.
These quality measures incorporate squared error and a number of tunable parameters, as
they were designed by searching for a tradeoff between the number of tunable parameters
and the obtained error. The two most popular ones are Bayesian Information Criterion
(BIC) and Akaike Information Criterion (AIC). BIC is calculated as:

BIC = n log(MSE) + p log(n), (17)

whereas AIC formula is as follows:

AIC = n log(MSE) + 2p, (18)

where: mean squared error MSE = RMSE2, n is a number of testing data, p is a number of
tunable parameters.

3.5. Experimental Protocol

During the experiments, we simulated gap occurrence in perfectly reconstructed
source sequences. We simulated gaps of different average lengths—10, 20, 50, 100 and
200 samples (0.1, 0.2, 0.5, 1, and 2 s, respectively). The assumed gap sizes were chosen
to represent situations of various levels of difficulty, from short-and-simple to difficult
ones, when gaps are long. For every gap length, we performed 100 simulation iterations,
where the training and testing data do not intermix between simulation runs. The steps
performed in every iteration are as follows:

Sensors 2021, 21, 6115 11 of 26

1. We introduce two gaps of assumed length (on average) to the random markers at
random moments; actual values are stored as testing data;

2. The model is trained using the remaining part of the sequence (all but gaps);
3. We reconstruct (predict) the gaps using the pool of methods;
4. The resulting values are stored for evaluation.

We report the results as RMSE and descriptive statistical descriptors for RMSEk
for every considered reconstruction technique. Additionally, we verified the correlation
between RMSE and the variability descriptors for sequences. It is intended to reveal what
are the sources of difficulties in predicting the marker trajectories.

Gap Generation Procedure

The procedure of gap contamination, which was employed, introduces distortions
into the sequences in a controlled way. The parameter characterizing the experiment is
an average-length number of occurrences of gaps. the sequence of operations distorting
the signal is as follows: at first, we draw moments to contaminate, then select a random
marker. The duration of distortions and intervals is a Poisson process, an average length of
distortion set-up according to the considered gap length in the experiment, whereas the
interval length results from the sequence length and number of intervals, which, for two
gaps per sequence, are three—ahead of the first gap, in-between, and after the second gap.

4. Results and Discussion

The section comprises two parts. First, we present RMSE results; they illustrate the
performance of each of the considered gap reconstruction methods. The second part is the
interpretation of results, searching for the aspects of Mocap sequence that might affect the
resulting performance.

4.1. Gap Reconstruction Efficiency

The detailed numerical values are presented in Table 3 for the first sequence as an
example. In the table, we also emphasize the best result for each measurement of gap size.
Forclarity, the numerical outcomes of the experiment are only presented in this chapter
with representative examples. To see the complete set of results in the tabular form, please
refer to Appendix A. The complete results for the gap reconstruction are also demonstrated
in a visual form in Figure 7. Additionally, the zoomed variant of the fragments of the plot
(dash square annotated) for gaps 10–50 are presented in Figure 8.

The first observation, regarding the performance measures, is the fact that the results
are very coherent, regardless of which measure was used. This is shown in Figure 7, where
all the symbols coherently denote statistical descriptors scale. It is also clearly visible in the
values emphasized in Table 3, where all measures but one (mode) indicate the same best
(smallest) results. Hence, we can use a single quality measure; in our case, we assumed
RMSE for further analysis.

Analyzing the results for several sequences, various observations regarding the per-
formance of the considered methods can be noted. These are listed below:

• It can be seen that, for the short gaps, interpolation methods outperform any of the
NN-based methods.

• For gaps that are 50 samples long, the results become less obvious and NN results are
no worse or (usually) better than interpolation methods.

• Linear FFNN usually performed better than any other methods (including non-linear
FFNNtanh), for gaps of 50 samples or longer, for most of the sequences.

• In very rare cases of short-gap cases, RNNs performed better than FFNNlin, but, in
general, simpler FFNNlin outperformed more complex NN models.

• There are two situations when the FFNNlin, performed no better or worse than
interpolation methods (walking and falling). This occurred for sequences with larger
monotonicity values in Table 2. They have also increased velocity/acceleration/jerk

Sensors 2021, 21, 6115 12 of 26

values; the ‘running’ sequence has similar values for these, but FFNNlin perform the
best in this case, so the kinematic/dynamic parameters should not be considered.

 10 20 50 100 200
0

50

100

150

R
M

S
E

 [
m

m
]

StaticFFNN
lin

FFNN
tanh

LSTM

GRU

BILSTM

LIN

SPLINE

MAKIMA

PCHIP

mSVD

 10 20 50 100 200
0

50

100

150

200

250

300

Walking

 10 20 50 100 200
0

100

200

300

400

500

600

R
M

S
E

 [
m

m
]

Running

 10 20 50 100 200
0

20

40

60

80

100

120

140

160

Sitting

 10 20 50 100 200

gap size [samples]

0

20

40

60

80

100

120

140

160

R
M

S
E

 [
m

m
]

Boxing

 10 20 50 100 200

gap size [samples]

0

100

200

300

400

500

600

Falling

Figure 7. Results for most of the quality measures for all the test sequences. Bars denote RMSE; for RMSEk: � denotes mean
value, × denotes median, ◦ denotes mode, whiskers indicate IQR; standard deviation is not depicted here; dash-outlined
areas are zoomed in Figure 8.

Sensors 2021, 21, 6115 13 of 26

 10 20 50
0

5

10

15

20

25

R
M

S
E

 [
m

m
]

StaticFFNN
lin

FFNN
tanh

LSTM

GRU

BILSTM

LIN

SPLINE

MAKIMA

PCHIP

mSVD

 10 20 50
0

10

20

30

40

50

60

70

80

90

Walking

 10 20 50
0

10

20

30

40

50

60

70

80

R
M

S
E

 [
m

m
]

Running

 10 20 50
0

5

10

15

20

25

30

35

Sitting

 10 20 50

gap size [samples]

0

5

10

15

20

25

30

35

R
M

S
E

 [
m

m
]

Boxing

 10 20 50

gap size [samples]

0

20

40

60

80

100

120

Falling

Figure 8. Results of the most of the quality measures for all the test sequences—zoomed variant for gaps 10, 20, and 50. Bars
denote RMSE; for RMSEk: � denotes mean value, × denotes median, ◦ denotes mode, whiskers indicate IQR; standard
deviation is not depicted here.

Sensors 2021, 21, 6115 14 of 26

Table 3. Quality measures for the static (No. 1) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 3.830 5.375 2.410 2.494 1.801 1.267 0.348 0.610 0.737 1.267
mean(RMSEk) 3.280 4.869 2.175 2.290 1.708 0.971 0.243 0.468 0.512 0.971
median(RMSEk) 2.746 4.399 2.035 2.120 1.614 0.893 0.205 0.406 0.391 0.893
mode(RMSEk) 0.993 1.821 0.626 0.861 0.455 0.099 0.000 0.045 0.036 0.099
stddev(RMSEk) 1.893 2.209 0.939 0.989 0.573 0.695 0.216 0.336 0.458 0.695
iqr(RMSEk) 2.123 2.905 0.881 0.901 0.684 0.692 0.235 0.370 0.434 0.692

20

RMSE 3.474 5.114 2.559 2.527 2.082 3.366 1.191 1.914 2.354 3.366
mean(RMSEk) 3.187 4.775 2.371 2.351 1.903 2.694 0.933 1.525 1.738 2.694
median(RMSEk) 2.828 4.709 2.274 2.235 1.779 2.147 0.764 1.251 1.287 2.147
mode(RMSEk) 0.605 0.584 0.540 0.381 0.415 0.052 0.005 0.026 0.023 0.052
stddev(RMSEk) 1.442 1.871 0.891 0.898 0.826 1.831 0.664 1.045 1.483 1.831
iqr(RMSEk) 1.841 2.394 1.103 1.013 0.813 1.983 0.866 1.173 1.437 1.983

50

RMSE 3.813 5.910 5.001 4.041 4.777 10.363 5.517 6.928 7.677 10.363
mean(RMSEk) 3.401 5.434 4.233 3.445 3.958 9.207 4.572 6.027 6.573 9.207
median(RMSEk) 2.906 5.154 3.776 3.118 3.496 8.733 3.888 5.512 5.733 8.733
mode(RMSEk) 1.326 1.393 0.831 1.066 1.000 1.169 0.400 0.800 0.793 1.169
stddev(RMSEk) 1.688 2.168 2.430 1.921 2.448 4.464 2.852 3.174 3.764 4.464
iqr(RMSEk) 1.421 2.216 2.169 1.642 2.282 6.078 2.418 3.770 4.373 6.078

100

RMSE 4.759 7.805 10.798 7.678 10.716 24.634 12.548 15.231 18.746 24.634
mean(RMSEk) 4.233 7.134 9.460 6.721 9.302 21.812 11.236 13.587 16.108 21.812
median(RMSEk) 3.658 6.329 8.333 5.953 8.198 21.129 10.345 12.875 14.785 21.129
mode(RMSEk) 1.517 2.252 1.377 1.465 1.400 3.266 2.546 1.986 1.937 3.266
stddev(RMSEk) 2.132 3.143 5.114 3.692 5.230 11.305 5.472 6.825 9.556 11.305
iqr(RMSEk) 2.215 3.473 5.650 4.217 5.700 14.536 6.850 8.029 11.019 14.536

200

RMSE 9.959 18.970 33.147 27.987 33.104 62.786 34.481 47.259 56.570 62.786
mean(RMSEk) 9.062 17.303 30.204 24.837 30.135 55.099 31.616 41.676 48.789 55.099
median(RMSEk) 8.683 16.200 28.352 22.655 28.462 49.641 29.914 38.410 42.155 49.641
mode(RMSEk) 2.404 3.973 5.523 4.263 5.010 8.510 6.518 6.459 6.033 8.510
stddev(RMSEk) 4.013 7.631 13.450 12.743 13.503 29.934 13.511 22.022 28.463 29.934
iqr(RMSEk) 5.084 9.413 18.231 16.895 18.436 48.864 17.125 36.315 46.222 48.864

Looking at the results of various NN architectures, it might be surprising that the
sophisticated RNNs often returned worse results than relatively simple FFNN, especially
for relatively long gaps. Conversely, one might expect that RNNs would outperform other
methods, since they would be able to model longer-term dependencies in the motion.
Presumably, the source of such a result is in the limited amount of training data, which,
depending on the length of the source file, varies between hundreds and thousands of
registered coordinates. Therefore, solvers are unable to find actually good values for a
massive amount of parameters—see Table 4 for the formulas and numbers of learnable
parameters for an exemplary case when input comprises 30 values—coordinates of four
siblings and a parent at current and previous frames.

An obvious solution to such an issue would be increasing the training data. We could
achieve this by employing very long recordings or by using numerous recordings. In
the former, it would be difficult to achieve long enough recordings; the latter is different
from the case which we try to address, where we only obtain a fresh mocap recording and
reconstruct it with the minimal model given by FBM. Training the predictive model in
advance with a massive amount of data is, of course, an interesting solution, but would
cost the generality. For every marker configuration, a separate set of predicting NNs would
need to be trained, so the result would only be practical for standardized body models.

Considering the length of the training sequences, its contribution to the final results
seems far less important than other factors, at least within the range of considered cases.
The analysis of its influence is illustrated in Figure 9. Since the MSE results are entangled,
we employed two additional information criterions, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), which disentangle the results by accounting for the

Sensors 2021, 21, 6115 15 of 26

number of trainable parameters. For every sequence and every NN model, we obtain a
series of five results, which decrease, as the training sequence grows longer when we have
shorter gaps (i.e., the annotated quintuple in the Figure). Analyzing the results in Figure 9,
it is most convenient to observe this in the AIC/BIC plots since, for each model, the number
of parameters remains the same (Table 4), so we can easily compare the results of the testing
sequences. The zoomed versions (to the right) reveal differences at appropriate scales for
the RNN results.

Lookng at the reults, we observe that, regardless the length of the training sequence,
the MSE (AIC/BIC) of the NN model remains at the same order of magnitude—this is
clearly visible in the Figure, where we have very similar values for each gap size for
variable sequences (represented as different marker shapes) for each of the NN types
(represented by a color). The most notable reduction in the error is probably observed with
the increased sequence length, when the sequence (Seq. 1—static) is several folds longer
than the others. However, we cannot observe this difference for shorter sequences in our
data, with notably different lengths (e.g., walking—running). The quality of prediction
could be likely improved if the recordings were longer, but, in everyday praxis, the length
of the motion caputre sequences is only minutes, so one should not expect the results for
RNN data to be notably improved compared to those for FFNN.

The observations hold for both FFNN models and all RNNs. These ambiguous
outcomes confirm the results shown in [40], where the quality of results does not depend
on the length of the training data in a straightforward way.

Table 4. List of mocap sequence scenarios used for the testing.

NN Type Number of Learnable Parameters Value for Exemplary Case

FFNN: hiddenLayerSize× inputvectorSize + hiddenLayerSize 275
+3× hiddenLayerSize + 3

LSTM: 4× hiddenRecurrentNeurons× inputvectorSize 22,023
+4× hiddenRecurrentNeurons×
hiddenRecurrentNeurons
+4× hiddenRecurrentNeurons
+3× hiddenRecurrentNeurons + 3

GRU: 3× hiddenRecurrentNeurons× inputvectorSize 16,563
+3× hiddenRecurrentNeurons×
hiddenRecurrentNeurons
+3× hiddenRecurrentNeurons
+3× hiddenRecurrentNeurons + 3

BILSTM: 8× hiddenRecurrentNeurons× inputvectorSize 47,043
+8× hiddenRecurrentNeurons×
hiddenRecurrentNeurons
+8× hiddenRecurrentNeurons
+3× 2× hiddenRecurrentNeurons + 3

4.2. Motion Factors Affecting Performance

In this section, we try to identify the correlation in which features (parameters) of the
input sequences relate to the performance of gap-filling methods. The results presented
here are concise; we only present and discuss the most conclusive results. The complete
tables containing correlation values for all gap sizes are presented in Appendix B.

Foremost, a generalized view into the correlation between gap-filling outcomes and
input sequence characteristics is given in Table 5. It contains Pearson correlation coefficients
(CC) between RMSE and input sequence characteristic parameters; the values are Pearson
CCs, averaged across all the considered gap sizes. Additionally, for the interpretation of
the results, in Table 6, we provide CCs between RMSE and the descriptive parameters for
the whole sequences for all the test recordings.

Sensors 2021, 21, 6115 16 of 26

0 500 1000 1500 2000 2500 3000 3500

training length

100

101

102

M
S

E

FFNN
lin

FFNN
tanh

LSTM

GRU

BILSTM

Methods

Static

Walking

Running

Sitting

Boxing

Falling

Sequences

0 500 1000 1500 2000 2500 3000 3500

training length

0.5

1

1.5

2

2.5

3
B

IC
105

0 500 1000 1500 2000 2500 3000 3500

training length

3

4

5

6

7

8

9

10

A
IC

104

200

100
50

20

10
0 500 1000 1500 2000 2500 3000 3500

training length

103

104

105

A
IC

20

50

100

200

10

0 500 1000 1500 2000 2500 3000 3500

training length

103

104

105

106

B
IC

Figure 9. Influence of training sequence length on the quality of obtained results for NN methods: Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and MSE.

Knowing that correlation, as a statistical measure, makes little sense for a sparse
dataset, we treat it as a kind of measurement of co-linearity between the measures. How-
ever, for part of the parameters, the (high) correlation values are connected, with quite
satisfactory low p-values; these are given in Appendix B.

Sensors 2021, 21, 6115 17 of 26

Table 5. Correlation between RMSE and sequence parameters (averaged for all gap sizes).

FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

Entropy 0.708 0.793 0.775 0.736 0.735 0.680 0.486 0.624 0.630 0.680
Stddev 0.741 0.892 0.805 0.781 0.778 0.706 0.517 0.653 0.631 0.706
Velocity 0.744 0.886 0.813 0.784 0.781 0.713 0.521 0.656 0.640 0.713
Acceleration 0.905 0.912 0.903 0.907 0.890 0.854 0.791 0.844 0.818 0.854
Jerk 0.803 0.794 0.777 0.799 0.779 0.753 0.758 0.763 0.725 0.753
Monotonicity 0.900 0.713 0.798 0.847 0.819 0.824 0.926 0.888 0.862 0.824
Complexity −0.779 −0.886 −0.815 −0.804 −0.794 −0.742 −0.589 −0.702 −0.670 −0.742

Table 6. Correlation between sequence parameters.

Entropy Stddev Velocity Acceleration Jerk Monotonicity Complexity

Entropy 1.000 0.869 0.898 0.730 0.459 0.465 −0.712
Stddev 0.869 1.000 0.992 0.879 0.732 0.501 −0.949
Velocity 0.898 0.992 1.000 0.890 0.731 0.477 −0.929
Acceleration 0.730 0.879 0.890 1.000 0.941 0.735 −0.913
Jerk 0.459 0.732 0.731 0.941 1.000 0.695 −0.847
Monotonicity 0.465 0.501 0.477 0.735 0.695 1.000 −0.560
Complexity −0.712 −0.949 −0.929 −0.913 −0.847 −0.560 1.000

p-values

Entropy 1.000 0.025 0.015 0.100 0.360 0.353 0.112
Stddev 0.025 1.000 0.000 0.021 0.098 0.311 0.004
Velocity 0.015 0.000 1.000 0.017 0.099 0.338 0.007
Acceleration 0.100 0.021 0.017 1.000 0.005 0.096 0.011
Jerk 0.360 0.098 0.099 0.005 1.000 0.125 0.033
Monotonicity 0.353 0.311 0.338 0.096 0.125 1.000 0.248
Complexity 0.112 0.004 0.007 0.011 0.033 0.248 1.000

Looking into the results in Table 5, we observe that all the considered sequence pa-
rameters are related, to some extent, to RMSE. However, for all the gap-filling methods, we
identified two key parameters that have higher CCs than the others. These are acceleration
and monotonicity, which seem to be promising candidate measures for describing the
susceptibility of sequences to the employed reconstruction methods.

Regarding inter-parameter correlations in Table 6, we can observe that most of the
measures are correlated with each other. This is expected, since kinematic/dynamic
parameters are connected with the location of the markers over time, so values such as
entropy, position standard deviation, velocity, acceleration, and jerk are correlated (for the
derivatives, the smaller the difference in the derivative order, the higher the CCs).

On the other hand, the two less typical measures, monotonicity and complexity, are
different; therefore, their correlation with the other measures is less predictable. Com-
plexity appeared to have a notable negative correlation with most of the typical measures.
Monotonicity, on the other hand, is more interesting. Since it is only moderately correlated
with remaining measures, it still has quite a high CC, with RMSEs for all the gap recon-
struction methods. Therefore, we can suppose this describes an aspect of the sequence
that is independent of the other measures, which is related to susceptibility to the gap
reconstruction procedures.

5. Summary

In this article, we addressed the issue of filling the gaps that occurred in the mocap
signal. We considered this to be a regressive problem and reviewed the results of several
NN-based regressors, which were compared with several interpolation and low-rank
matrix completion (mSVD) methods.

Generally, in the case of short gaps, the interpolation methods returned the best results,
but since the gaps became longer, part of the NNs gained an advantage. We reviewed

Sensors 2021, 21, 6115 18 of 26

five variants of neural networks. Surprisingly, the tests revealed that simple linear FFNNs,
using momentary (current and previous sample) and local (from neighboring markers)
coordinates as input data, outperformed quite advanced recurrent NNs for the longer gaps.
For the shorter gaps, RNNs offered better results, but all the NNs were outperformed by
interpolations. The boundary between ’long’ and ’short’ terms are gaps of 50 samples long.
Finally, we were able to identify which factors of the input mocap sequence influence the
reconstruction errors.

The approach to the NNs given here does not incorporate skeletal information. In-
stead, the kinematic structure is based on the FBM framework and all the predictions are
performed with the local data, as obtained from FBM. Currently, none of the analyzed ap-
proaches considered body constraints such as limb length or size, but we can easily obtain
such information from the FBM model. We plan to apply this as an additional processing
stage in the future. In the future, we plan to test more sophisticated NN architectures, such
as combined LSTM convolution, or averaged multiregressions.

Supplementary Materials: The following are available at https://www.mdpi.com/1424-8220/21/1
8/6115/s1, The motion capture sequences.

Author Contributions: conceptualization, P.S.; methodology, P.S., M.P.; software, P.S., M.P.; investiga-
tion, P.S.; resources, M.P.; data curation, M.P.; writing—original draft preparation, P.S.; writing—review
and editing, P.S., M.P.; visualization, P.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The research described in the paper was performed within the statutory project of the
Department of Graphics, Computer Vision and Digital Systems at the Silesian University of Technol-
ogy, Gliwice (RAU-6, 2021). APC were covered from statutory research funds. M.P. was supported
by grant no WND-RPSL.01.02.00-24-00AC/19-011 funded by under the Regional Operational Pro-
gramme of the Silesia Voivodeship in the years 2014–2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The motion capture sequences are provided as Supplementary Files
accompanying the article.

Acknowledgments: The research was supported with motion data by Human Motion Laboratory of
Polish-Japanese Academy of Information Technology.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

BILSTM bidirectional LSTM
CC correlation coefficient
FC fully connected
FBM functional body mesh
FFNN feed forward neural network
GRU gated recurrent unit
HML Human Motion Laboratory
IK inverse kinematics
KF Kalman filter
LS least squares
LSTM long-short term memory
Mocap MOtion CAPture
MSE Mean Square Error
NARX-NN nonlinear autoregressive exogenous neural network

https://www.mdpi.com/1424-8220/21/18/6115/s1
https://www.mdpi.com/1424-8220/21/18/6115/s1

Sensors 2021, 21, 6115 19 of 26

NaN not a number
NN neural network
OMC optical motion capture
PCA principal component analysis
PJAIT Polish-Japanese Academy of Information Technology
RMSE root mean squared error
RNN recurrent neural network
STDDEV standard deviation
SVD singular value decomposition

Appendix A. Performance Results for All Sequences

Table A1. Quality measures for the walking (No. 2) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 14.222 26.428 8.844 9.932 7.004 5.088 1.287 2.464 2.507 5.088
mean(RMSEk) 12.398 23.213 7.659 9.014 6.495 3.442 0.810 1.621 1.697 3.442
median(RMSEk) 10.865 21.290 6.327 8.262 5.956 2.051 0.511 1.087 1.180 2.051
mode(RMSEk) 3.499 4.068 1.755 1.140 2.344 0.536 0.056 0.237 0.239 0.536
stddev(RMSEk) 6.930 12.645 4.634 4.744 3.371 3.505 0.938 1.773 1.788 3.505
iqr(RMSEk) 8.986 12.914 3.644 4.297 3.444 3.180 0.652 1.293 1.334 3.180

20

RMSE 15.490 32.802 13.491 13.382 13.303 12.274 4.031 6.590 6.619 12.274
mean(RMSEk) 13.743 27.978 10.155 11.171 8.396 9.071 2.591 4.798 4.904 9.071
median(RMSEk) 12.334 24.575 7.568 9.116 6.209 6.508 1.823 3.767 3.728 6.508
mode(RMSEk) 2.654 5.774 3.242 5.247 2.352 0.401 0.314 0.316 0.382 0.401
stddev(RMSEk) 6.723 16.042 8.161 6.609 8.827 8.020 2.828 4.290 4.175 8.020
iqr(RMSEk) 7.454 15.726 4.545 5.667 2.491 6.791 1.571 3.308 3.921 6.791

50

RMSE 21.907 40.375 24.343 23.833 23.434 42.517 21.474 26.332 25.995 42.517
mean(RMSEk) 19.168 36.769 19.788 19.867 18.831 33.944 16.673 21.757 21.607 33.944
median(RMSEk) 16.432 32.752 15.196 15.655 14.926 23.652 12.952 16.134 15.996 23.652
mode(RMSEk) 5.905 13.574 6.336 7.173 6.100 5.500 4.293 3.782 3.921 5.500
stddev(RMSEk) 10.486 16.289 13.174 12.408 13.037 25.484 12.659 14.438 13.993 25.484
iqr(RMSEk) 12.421 22.207 13.308 11.413 12.903 29.918 12.189 17.991 18.129 29.918

100

RMSE 39.346 75.817 61.641 60.420 60.823 76.058 58.357 62.302 62.419 76.058
mean(RMSEk) 32.287 66.701 50.195 49.019 49.453 63.445 46.476 50.803 50.693 63.445
median(RMSEk) 23.318 56.329 38.960 37.001 39.074 51.683 35.447 40.065 40.418 51.683
mode(RMSEk) 8.122 22.940 14.125 15.094 14.334 12.943 12.407 12.074 12.493 12.943
stddev(RMSEk) 22.397 35.709 35.107 34.707 34.685 41.564 34.503 35.371 35.700 41.564
iqr(RMSEk) 18.933 41.446 39.727 40.427 40.813 63.062 39.062 49.784 50.440 63.062

200

RMSE 112.933 134.121 127.416 132.150 124.566 79.741 105.237 79.407 80.457 79.741
mean(RMSEk) 87.084 121.229 108.733 111.164 107.192 75.307 91.826 69.585 70.031 75.307
median(RMSEk) 59.288 104.710 91.987 89.523 91.019 68.567 80.427 63.559 61.704 68.567
mode(RMSEk) 26.007 46.150 23.032 23.675 22.813 42.408 21.841 21.984 21.602 42.408
stddev(RMSEk) 71.160 57.197 66.944 71.470 63.693 26.502 53.401 39.296 40.746 26.502
iqr(RMSEk) 61.864 71.116 90.839 90.285 90.685 42.057 88.500 65.862 66.873 42.057

Table A2. Quality measures for the running (No. 3) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 11.702 25.988 8.748 8.666 7.066 3.001 0.701 1.291 1.259 3.001
mean(RMSEk) 9.939 23.049 7.675 7.581 6.105 2.221 0.476 0.985 0.942 2.221
median(RMSEk) 8.661 20.122 6.973 6.485 5.540 1.743 0.346 0.831 0.720 1.743
mode(RMSEk) 1.933 6.022 1.838 1.236 1.106 0.234 0.079 0.149 0.151 0.234
stddev(RMSEk) 5.919 11.837 4.214 4.245 3.797 1.714 0.439 0.692 0.691 1.714
iqr(RMSEk) 7.005 15.692 5.106 4.850 3.513 1.835 0.286 0.835 0.799 1.835

Sensors 2021, 21, 6115 20 of 26

Table A2. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

20

RMSE 12.141 27.729 11.594 11.232 9.321 7.397 1.742 3.401 3.439 7.397
mean(RMSEk) 10.331 25.124 9.324 9.440 6.919 5.676 1.274 2.601 2.589 5.676
median(RMSEk) 8.695 23.641 7.664 7.948 5.424 4.496 0.968 1.988 1.853 4.496
mode(RMSEk) 2.547 6.946 2.438 1.512 1.953 0.661 0.237 0.453 0.438 0.661
stddev(RMSEk) 6.215 11.425 6.552 5.753 5.787 4.017 1.010 1.889 2.021 4.017
iqr(RMSEk) 8.168 12.490 4.481 5.442 3.111 3.995 1.017 2.154 2.061 3.995

50

RMSE 23.573 39.084 31.147 24.057 23.597 34.144 12.857 19.473 21.328 34.144
mean(RMSEk) 14.767 31.801 17.835 15.504 14.637 27.624 8.608 14.842 16.431 27.624
median(RMSEk) 9.523 25.412 10.904 10.501 8.853 25.122 6.834 12.894 13.844 25.122
mode(RMSEk) 3.229 9.379 4.119 2.888 3.306 2.559 0.896 1.291 1.737 2.559
stddev(RMSEk) 18.345 22.596 25.456 18.049 18.231 18.865 8.914 11.837 12.760 18.865
iqr(RMSEk) 6.432 16.838 6.719 7.811 7.903 20.224 6.920 9.883 11.590 20.224

100

RMSE 38.173 61.656 68.606 54.639 58.223 94.347 45.740 58.606 62.724 94.347
mean(RMSEk) 25.165 49.288 44.780 40.344 42.251 83.854 37.303 51.072 55.958 83.854
median(RMSEk) 18.493 41.944 33.811 31.168 32.177 77.220 32.103 46.438 50.903 77.220
mode(RMSEk) 4.901 11.780 8.178 5.555 4.181 4.989 4.549 3.554 3.884 4.989
stddev(RMSEk) 27.594 35.231 50.041 35.158 38.271 41.350 25.286 27.575 27.272 41.350
iqr(RMSEk) 13.060 29.863 24.844 24.922 25.449 47.512 25.816 26.432 29.725 47.512

200

RMSE 110.196 145.641 145.387 143.360 145.050 248.552 138.231 167.249 199.417 248.552
mean(RMSEk) 88.708 129.262 125.767 123.634 125.213 235.787 119.848 146.780 185.085 235.787
median(RMSEk) 70.845 113.902 108.387 105.181 107.987 233.618 103.952 128.657 171.109 233.618
mode(RMSEk) 20.092 53.434 39.113 39.722 38.728 96.336 38.444 36.027 74.145 96.336
stddev(RMSEk) 63.969 65.135 70.990 70.695 71.285 73.293 66.963 77.021 70.628 73.293
iqr(RMSEk) 67.200 73.343 87.747 82.080 89.947 77.986 83.010 64.869 47.085 77.986

Table A3. Quality measures for the sitting (No. 4) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 3.701 3.792 1.664 1.954 1.373 1.697 0.711 0.841 0.839 1.697
mean(RMSEk) 3.272 3.386 1.463 1.737 1.210 1.218 0.478 0.617 0.606 1.218
median(RMSEk) 2.996 2.987 1.351 1.682 1.108 0.948 0.339 0.475 0.429 0.948
mode(RMSEk) 0.437 0.558 0.197 0.212 0.249 0.072 0.059 0.041 0.043 0.072
stddev(RMSEk) 1.896 1.767 0.806 0.846 0.642 1.094 0.483 0.530 0.537 1.094
iqr(RMSEk) 2.282 2.025 0.991 1.301 0.702 1.049 0.260 0.467 0.480 1.049

20

RMSE 3.464 3.829 2.060 2.025 1.688 3.902 1.285 1.904 2.029 3.902
mean(RMSEk) 3.106 3.429 1.708 1.797 1.475 3.057 0.942 1.515 1.559 3.057
median(RMSEk) 2.911 3.319 1.519 1.572 1.318 2.434 0.739 1.230 1.169 2.434
mode(RMSEk) 0.522 0.497 0.300 0.240 0.271 0.211 0.126 0.155 0.161 0.211
stddev(RMSEk) 1.577 1.750 1.122 0.962 0.812 2.415 0.838 1.153 1.311 2.415
iqr(RMSEk) 2.233 2.263 1.038 1.069 0.934 2.762 0.781 0.979 0.995 2.762

20

RMSE 4.901 6.291 6.392 5.952 6.255 15.596 6.334 9.332 10.056 15.596
mean(RMSEk) 4.383 5.355 5.064 4.697 4.895 12.767 4.902 7.260 7.710 12.767
median(RMSEk) 3.982 4.831 4.007 3.623 3.803 11.036 3.652 5.788 6.343 11.036
mode(RMSEk) 0.482 0.417 0.313 0.422 0.277 0.267 0.332 0.267 0.240 0.267
stddev(RMSEk) 2.276 3.254 3.793 3.568 3.778 8.741 3.880 5.667 6.265 8.741
iqr(RMSEk) 2.978 3.833 5.160 4.098 4.999 11.116 5.269 6.546 6.801 11.116

20

RMSE 15.716 21.780 23.727 23.023 23.575 38.083 23.547 28.358 28.813 38.083
mean(RMSEk) 11.904 16.468 18.440 17.539 18.222 33.439 18.245 23.435 24.033 33.439
median(RMSEk) 8.596 13.132 15.903 14.109 15.147 30.517 15.467 20.365 20.691 30.517
mode(RMSEk) 0.643 0.711 0.927 0.743 0.950 1.324 1.170 1.139 1.121 1.324
stddev(RMSEk) 9.980 13.839 14.495 14.484 14.524 17.840 14.459 15.569 15.542 17.840
iqr(RMSEk) 7.816 11.087 13.380 12.476 13.201 23.419 13.054 15.405 14.280 23.419

Sensors 2021, 21, 6115 21 of 26

Table A3. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

20

RMSE 37.101 48.909 51.388 50.842 51.274 72.745 51.478 59.839 59.857 72.745
mean(RMSEk) 31.439 41.811 44.331 43.711 44.219 66.280 44.321 54.030 54.156 66.280
median(RMSEk) 26.422 36.792 40.178 39.257 40.099 71.201 39.395 55.235 54.311 71.201
mode(RMSEk) 1.783 2.342 2.592 2.372 2.558 0.972 2.819 0.875 0.912 0.972
stddev(RMSEk) 20.198 25.924 26.514 26.496 26.480 30.443 26.659 26.183 26.001 30.443
iqr(RMSEk) 22.947 30.188 29.510 29.617 29.241 37.209 29.316 29.572 28.094 37.209

Table A4. Quality measures for the boxing (No. 5) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 2.603 3.006 1.217 1.467 1.008 1.175 0.986 0.668 0.735 1.175
mean(RMSEk) 2.321 2.697 1.087 1.316 0.885 0.848 0.484 0.461 0.507 0.848
median(RMSEk) 2.036 2.476 1.001 1.173 0.783 0.666 0.276 0.317 0.322 0.666
mode(RMSEk) 0.505 0.309 0.270 0.303 0.218 0.036 0.043 0.035 0.034 0.036
stddev(RMSEk) 1.174 1.354 0.521 0.613 0.456 0.712 0.765 0.420 0.473 0.712
iqr(RMSEk) 1.449 1.769 0.504 0.705 0.542 0.709 0.307 0.341 0.490 0.709

20

RMSE 2.581 3.298 1.446 1.591 1.200 3.534 1.157 1.648 2.021 3.534
mean(RMSEk) 2.295 3.030 1.341 1.458 1.070 2.818 0.797 1.309 1.519 2.818
median(RMSEk) 2.022 2.780 1.242 1.353 0.934 2.282 0.608 0.983 1.071 2.282
mode(RMSEk) 0.826 0.700 0.326 0.402 0.303 0.273 0.106 0.125 0.126 0.273
stddev(RMSEk) 1.161 1.308 0.541 0.606 0.549 1.965 0.819 0.930 1.249 1.965
iqr(RMSEk) 1.415 1.704 0.736 0.732 0.494 2.153 0.491 1.038 1.333 2.153

50

RMSE 4.045 5.038 4.965 4.067 4.295 14.095 3.956 7.248 9.171 14.095
mean(RMSEk) 3.211 4.183 3.609 3.109 3.306 11.957 3.262 6.083 7.562 11.957
median(RMSEk) 2.546 3.503 2.661 2.500 2.634 10.384 2.736 5.271 6.318 10.384
mode(RMSEk) 0.699 1.102 0.699 0.538 0.480 0.444 0.542 0.513 0.546 0.444
stddev(RMSEk) 2.460 2.788 3.404 2.614 2.747 7.236 2.235 3.802 4.994 7.236
iqr(RMSEk) 1.743 1.595 1.968 1.540 2.062 9.821 2.059 5.074 7.302 9.821

100

RMSE 10.134 16.216 21.424 19.275 21.386 36.436 21.538 27.723 30.374 36.436
mean(RMSEk) 8.175 13.241 17.438 15.384 17.357 31.336 17.608 23.779 26.421 31.336
median(RMSEk) 6.398 11.337 14.702 12.285 14.627 27.834 14.823 22.008 24.825 27.834
mode(RMSEk) 0.864 1.156 1.085 0.973 1.090 0.514 0.912 0.632 0.490 0.514
stddev(RMSEk) 5.837 9.220 12.123 11.372 12.169 18.465 12.075 14.128 14.876 18.465
iqr(RMSEk) 6.261 12.033 16.415 16.672 16.414 25.577 16.361 18.637 19.008 25.577

200

RMSE 42.833 60.847 71.465 70.625 71.514 64.829 72.201 60.721 61.704 64.829
mean(RMSEk) 36.693 54.330 64.743 63.732 64.805 61.507 65.477 56.493 57.666 61.507
median(RMSEk) 33.631 50.764 61.017 60.170 61.057 60.782 62.218 55.492 57.030 60.782
mode(RMSEk) 4.592 9.116 10.042 9.788 9.974 8.998 10.077 8.616 8.609 8.998
stddev(RMSEk) 21.768 26.954 29.620 29.819 29.609 20.171 29.798 22.097 21.740 20.171
iqr(RMSEk) 21.992 31.408 36.039 35.205 36.075 24.945 36.485 29.814 28.505 24.945

Table A5. Quality measures for the falling (No. 6) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 19.193 17.106 8.537 9.585 6.720 5.763 1.601 2.872 3.365 5.763
mean(RMSEk) 15.455 15.022 7.818 8.772 6.166 3.827 0.994 1.851 1.968 3.827
median(RMSEk) 13.186 13.571 6.947 8.341 5.616 2.359 0.618 1.107 1.145 2.359
mode(RMSEk) 2.760 3.139 2.310 2.880 2.110 0.244 0.105 0.145 0.149 0.244
stddev(RMSEk) 11.270 8.163 3.494 3.852 2.555 4.023 1.138 2.039 2.551 4.023
iqr(RMSEk) 9.203 10.174 3.101 4.009 3.520 3.723 0.789 1.795 1.813 3.723

Sensors 2021, 21, 6115 22 of 26

Table A5. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

20

RMSE 18.496 17.762 10.664 11.914 9.057 15.278 6.073 9.213 9.596 15.278
mean(RMSEk) 16.206 16.199 8.940 10.261 7.897 10.937 3.694 5.981 6.392 10.937
median(RMSEk) 14.108 14.897 8.130 9.530 7.106 7.613 2.089 3.687 4.319 7.613
mode(RMSEk) 4.659 2.388 2.143 1.822 2.821 0.953 0.339 0.756 0.832 0.953
stddev(RMSEk) 8.511 7.184 6.211 5.915 4.455 9.596 4.383 6.169 6.567 9.596
iqr(RMSEk) 9.496 8.219 4.321 5.520 3.642 10.133 3.402 5.298 5.154 10.133

50

RMSE 38.618 43.058 50.077 47.367 47.474 60.232 46.220 42.945 44.782 60.232
mean(RMSEk) 28.149 30.795 32.292 30.356 30.213 43.423 28.314 29.543 31.603 43.423
median(RMSEk) 18.927 18.873 16.214 15.491 14.312 29.262 14.172 17.724 19.705 29.262
mode(RMSEk) 5.585 3.883 3.061 4.112 2.789 4.507 1.345 2.710 2.615 4.507
stddev(RMSEk) 25.916 29.395 37.233 35.345 35.587 42.053 35.660 31.333 31.914 42.053
iqr(RMSEk) 15.417 17.126 31.871 21.094 29.043 38.828 27.009 24.239 28.168 38.828

100

RMSE 70.671 89.650 100.005 95.523 100.282 125.495 98.770 92.878 97.573 125.495
mean(RMSEk) 55.641 72.172 81.983 76.503 81.814 104.667 81.794 76.620 81.261 104.667
median(RMSEk) 42.728 57.532 66.468 62.277 66.311 86.119 68.990 59.710 66.757 86.119
mode(RMSEk) 7.967 8.688 10.247 7.912 9.749 7.809 9.146 6.892 7.449 7.809
stddev(RMSEk) 43.593 53.283 57.286 57.268 58.033 69.796 55.712 52.857 54.185 69.796
iqr(RMSEk) 52.533 72.029 82.980 85.218 86.618 85.060 92.529 71.859 75.211 85.060

200

RMSE 192.371 224.989 240.459 237.068 240.104 219.332 238.962 182.390 177.973 219.332
mean(RMSEk) 168.542 199.701 214.118 209.626 213.731 198.998 212.497 165.908 161.330 198.998
median(RMSEk) 145.399 185.636 190.954 187.446 191.565 196.704 189.560 169.458 163.676 196.704
mode(RMSEk) 43.924 47.226 58.636 49.156 60.128 38.386 60.706 33.396 32.207 38.386
stddev(RMSEk) 92.157 103.406 108.703 110.129 108.684 94.898 108.542 77.915 77.491 94.898
iqr(RMSEk) 102.432 114.007 119.186 116.515 119.440 153.708 117.857 121.289 120.480 153.708

Appendix B. Correlations between RMSE an Sequence Parameters

Table A6. Correlation between RMSE and entropy of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.741 0.878 0.890 0.849 0.890 0.614 0.261 0.552 0.520 0.614
20 0.760 0.827 0.852 0.842 0.790 0.608 0.466 0.550 0.533 0.608
50 0.744 0.851 0.740 0.678 0.670 0.660 0.503 0.603 0.608 0.660
100 0.639 0.719 0.724 0.649 0.662 0.742 0.576 0.661 0.679 0.742
200 0.658 0.691 0.667 0.665 0.664 0.777 0.626 0.756 0.812 0.777

10 0.092 0.021 0.017 0.033 0.017 0.195 0.617 0.256 0.290 0.195
20 0.080 0.042 0.031 0.036 0.061 0.200 0.352 0.258 0.276 0.200
50 0.090 0.032 0.093 0.139 0.146 0.153 0.309 0.205 0.200 0.153
100 0.172 0.108 0.104 0.163 0.152 0.091 0.231 0.153 0.138 0.091
200 0.155 0.129 0.148 0.150 0.150 0.069 0.184 0.082 0.050 0.069

Table A7. Correlation between RMSE and standard deviation of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.775 0.997 0.950 0.928 0.956 0.729 0.419 0.668 0.586 0.729
20 0.823 0.986 0.969 0.943 0.948 0.688 0.505 0.595 0.556 0.688
50 0.736 0.924 0.703 0.661 0.645 0.718 0.479 0.627 0.614 0.718
100 0.673 0.833 0.755 0.708 0.698 0.747 0.611 0.718 0.707 0.747
200 0.696 0.719 0.649 0.667 0.641 0.648 0.570 0.659 0.694 0.648

Sensors 2021, 21, 6115 23 of 26

Table A7. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.070 0.000 0.004 0.007 0.003 0.100 0.408 0.147 0.222 0.100
20 0.044 0.000 0.001 0.005 0.004 0.131 0.307 0.213 0.252 0.131
50 0.095 0.008 0.119 0.153 0.167 0.108 0.336 0.183 0.195 0.108
100 0.143 0.040 0.083 0.115 0.123 0.088 0.198 0.108 0.116 0.088
200 0.125 0.107 0.163 0.148 0.170 0.164 0.237 0.155 0.126 0.164

Table A8. Correlation between RMSE and velocity of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.768 0.983 0.943 0.915 0.950 0.701 0.419 0.640 0.564 0.701
20 0.812 0.962 0.950 0.927 0.916 0.669 0.486 0.576 0.540 0.669
50 0.749 0.921 0.724 0.672 0.657 0.716 0.478 0.624 0.619 0.716
100 0.681 0.825 0.772 0.715 0.709 0.771 0.615 0.728 0.723 0.771
200 0.712 0.742 0.679 0.694 0.673 0.710 0.609 0.714 0.755 0.710

10 0.074 0.000 0.005 0.011 0.004 0.121 0.409 0.172 0.243 0.121
20 0.050 0.002 0.004 0.008 0.010 0.146 0.328 0.231 0.269 0.146
50 0.087 0.009 0.104 0.143 0.157 0.110 0.338 0.186 0.190 0.110
100 0.136 0.043 0.072 0.111 0.115 0.072 0.194 0.101 0.104 0.072
200 0.112 0.091 0.138 0.126 0.143 0.114 0.199 0.111 0.083 0.114

Table A9. Correlation between RMSE and acceleration of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.901 0.867 0.917 0.928 0.922 0.879 0.775 0.853 0.806 0.879
20 0.923 0.853 0.916 0.932 0.894 0.870 0.754 0.806 0.779 0.870
50 0.896 0.952 0.870 0.858 0.846 0.909 0.740 0.845 0.844 0.909
100 0.886 0.960 0.928 0.916 0.907 0.914 0.858 0.926 0.916 0.914
200 0.918 0.929 0.884 0.901 0.879 0.699 0.830 0.789 0.745 0.699

10 0.014 0.025 0.010 0.008 0.009 0.021 0.070 0.031 0.053 0.021
20 0.009 0.031 0.010 0.007 0.016 0.024 0.083 0.053 0.068 0.024
50 0.016 0.003 0.024 0.029 0.034 0.012 0.093 0.034 0.034 0.012
100 0.019 0.002 0.008 0.010 0.012 0.011 0.029 0.008 0.010 0.011
200 0.010 0.007 0.019 0.014 0.021 0.122 0.041 0.062 0.089 0.122

Table A10. Correlation between RMSE and jerk of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.784 0.711 0.752 0.785 0.760 0.823 0.861 0.818 0.765 0.823
20 0.811 0.723 0.778 0.798 0.784 0.810 0.720 0.750 0.720 0.810
50 0.772 0.813 0.736 0.749 0.737 0.833 0.674 0.770 0.766 0.833
100 0.806 0.881 0.826 0.846 0.827 0.797 0.800 0.855 0.830 0.797
200 0.843 0.843 0.791 0.816 0.785 0.502 0.736 0.625 0.546 0.502

10 0.065 0.113 0.084 0.064 0.080 0.044 0.028 0.047 0.076 0.044
20 0.050 0.104 0.068 0.057 0.065 0.051 0.107 0.086 0.106 0.051
50 0.072 0.049 0.095 0.086 0.095 0.040 0.142 0.073 0.076 0.040
100 0.053 0.020 0.043 0.034 0.042 0.057 0.056 0.030 0.041 0.057
200 0.035 0.035 0.061 0.048 0.064 0.311 0.095 0.185 0.262 0.311

Sensors 2021, 21, 6115 24 of 26

Table A11. Correlation between RMSE and monotonicity of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.918 0.533 0.722 0.781 0.709 0.952 0.866 0.971 0.993 0.952
20 0.898 0.529 0.694 0.759 0.703 0.971 0.999 0.993 0.996 0.971
50 0.883 0.774 0.857 0.914 0.918 0.937 0.974 0.965 0.953 0.937
100 0.908 0.873 0.853 0.908 0.904 0.817 0.951 0.897 0.890 0.817
200 0.892 0.858 0.866 0.871 0.862 0.441 0.842 0.612 0.476 0.441

10 0.010 0.276 0.106 0.067 0.115 0.003 0.026 0.001 0.000 0.003
20 0.015 0.281 0.126 0.080 0.119 0.001 0.000 0.000 0.000 0.001
50 0.020 0.071 0.029 0.011 0.010 0.006 0.001 0.002 0.003 0.006
100 0.012 0.023 0.031 0.012 0.013 0.047 0.003 0.015 0.018 0.047
200 0.017 0.029 0.026 0.024 0.027 0.381 0.036 0.196 0.340 0.381

Table A12. Correlation between RMSE and complexity of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 −0.795 −0.937 −0.913 −0.906 −0.922 −0.781 −0.532 −0.729 −0.645 −0.781
20 −0.837 −0.931 −0.936 −0.920 −0.919 −0.733 −0.568 −0.644 −0.599 −0.733
50 −0.763 −0.914 −0.730 −0.703 −0.687 −0.770 −0.544 −0.685 −0.670 −0.770
100 −0.744 −0.878 −0.802 −0.775 −0.758 −0.787 −0.682 −0.780 −0.759 −0.787
200 −0.754 −0.769 −0.692 −0.714 −0.685 −0.637 −0.618 −0.673 −0.675 −0.637

10 0.059 0.006 0.011 0.013 0.009 0.067 0.278 0.100 0.167 0.067
20 0.038 0.007 0.006 0.009 0.010 0.097 0.239 0.167 0.209 0.097
50 0.078 0.011 0.099 0.119 0.131 0.074 0.265 0.134 0.145 0.074
100 0.090 0.021 0.055 0.070 0.081 0.063 0.135 0.067 0.080 0.063
200 0.083 0.074 0.128 0.111 0.133 0.174 0.191 0.143 0.141 0.174

References
1. Kitagawa, M.; Windsor, B. MoCap for Artists: Workflow and Techniques for Motion Capture; Elsevier: Amsterdam, The Netherlands;

Focal Press: Boston, MA, USA, 2008.
2. Menache, A. Understanding Motion Capture for Computer Animation, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2011.
3. Mündermann, L.; Corazza, S.; Andriacchi, T.P. The evolution of methods for the capture of human movement leading to

markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. 2006, 3, 6. [CrossRef] [PubMed]
4. Szczęsna, A.; Błaszczyszyn, M.; Pawlyta, M. Optical motion capture dataset of selected techniques in beginner and advanced

Kyokushin karate athletes. Sci. Data 2021, 8, 13. [CrossRef] [PubMed]
5. Świtoński, A.; Mucha, R.; Danowski, D.; Mucha, M.; Polański, A.; Cieślar, G.; Wojciechowski, K.; Sieroń, A. Diagnosis of the

motion pathologies based on a reduced kinematical data of a gait. PrzegląD Elektrotechniczny 2011, 87, 173–176.
6. Lachor, M.; Świtoński, A.; Boczarska-Jedynak, M.; Kwiek, S.; Wojciechowski, K.; Polański, A. The Analysis of Correlation between

MOCAP-Based and UPDRS-Based Evaluation of Gait in Parkinson’s Disease Patients. In Brain Informatics and Health; Ślęzak, D.,
Tan, A.H., Peters, J.F., Schwabe, L., Eds.; Number 8609 in Lecture Notes in Computer Science; Springer International Publishing:
Cham, Switzerland, 2014; pp. 335–344. [CrossRef]

7. Josinski, H.; Świtoński, A.; Stawarz, M.; Mucha, R.; Wojciechowski, K. Evaluation of rehabilitation progress of patients with
osteoarthritis of the hip, osteoarthritis of the spine or after stroke using gait indices. Przegląd Elektrotechniczny 2013, 89, 279–282.

8. Windolf, M.; Götzen, N.; Morlock, M. Systematic accuracy and precision analysis of video motion capturing systems—Exemplified
on the Vicon-460 system. J. Biomech. 2008, 41, 2776–2780. [CrossRef]

9. Jensenius, A.; Nymoen, K.; Skogstad, S.; Voldsund, A. A Study of the Noise-Level in Two Infrared Marker-Based Motion Capture
Systems. In Proceedings of the 9th Sound and Music Computing Conference, SMC 2012, Copenhagen, Denmark, 11–14 July 2012;
pp. 258–263.

10. Skurowski, P.; Pawlyta, M. On the Noise Complexity in an Optical Motion Capture Facility. Sensors 2019, 19, 4435. [CrossRef]
[PubMed]

11. Skurowski, P.; Pawlyta, M. Functional Body Mesh Representation, A Simplified Kinematic Model, Its Inference and Applications.
Appl. Math. Inf. Sci. 2016, 10, 71–82. [CrossRef]

12. Herda, L.; Fua, P.; Plankers, R.; Boulic, R.; Thalmann, D. Skeleton-based motion capture for robust reconstruction of human
motion. In Proceedings of the Proceedings Computer Animation 2000, Philadelphia, PA, USA, 3–5 May 2000; pp. 77–83.
ISSN: 1087-4844. [CrossRef]

http://doi.org/10.1186/1743-0003-3-6
http://www.ncbi.nlm.nih.gov/pubmed/16539701
http://dx.doi.org/10.1038/s41597-021-00801-5
http://www.ncbi.nlm.nih.gov/pubmed/33462240
http://dx.doi.org/10.1007/978-3-319-09891-3_31
http://dx.doi.org/10.1016/j.jbiomech.2008.06.024
http://dx.doi.org/10.3390/s19204435
http://www.ncbi.nlm.nih.gov/pubmed/31614939
http://dx.doi.org/10.18576/amis/100107
http://dx.doi.org/10.1109/CA.2000.889046

Sensors 2021, 21, 6115 25 of 26

13. Aristidou, A.; Lasenby, J. Real-time marker prediction and CoR estimation in optical motion capture. Vis. Comput. 2013, 29, 7–26.
[CrossRef]

14. Perepichka, M.; Holden, D.; Mudur, S.P.; Popa, T. Robust Marker Trajectory Repair for MOCAP using Kinematic Reference. In
Motion, Interaction and Games; Association for Computing Machinery: New York, NY, USA, 2019; MIG’19, pp. 1–10. [CrossRef]

15. Lee, J.; Shin, S.Y. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 8–13 August 1999; ACM
Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1999; pp. 39–48. [CrossRef]

16. Howarth, S.J.; Callaghan, J.P. Quantitative assessment of the accuracy for three interpolation techniques in kinematic analysis of
human movement. Comput. Methods Biomech. Biomed. Eng. 2010, 13, 847–855. [CrossRef]

17. Reda, H.E.A.; Benaoumeur, I.; Kamel, B.; Zoubir, A.F. MoCap systems and hand movement reconstruction using cubic spline. In
Proceedings of the 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki,
Greece, 10–13 April 2018; pp. 1–5. [CrossRef]

18. Liu, G.; McMillan, L. Estimation of missing markers in human motion capture. Vis. Comput. 2006, 22, 721–728. [CrossRef]
19. Lai, R.Y.Q.; Yuen, P.C.; Lee, K.K.W. Motion Capture Data Completion and Denoising by Singular Value Thresholding. In

Eurographics 2011—Short Papers; Avis, N., Lefebvre, S., Eds.; The Eurographics Association: Geneve, Switzerland, 2011. [CrossRef]
20. Gløersen, Ø.; Federolf, P. Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations. PLoS

ONE 2016, 11, e0152616. [CrossRef]
21. Tits, M.; Tilmanne, J.; Dutoit, T. Robust and automatic motion-capture data recovery using soft skeleton constraints and model

averaging. PLoS ONE 2018, 13, e0199744. [CrossRef]
22. Piazza, T.; Lundström, J.; Kunz, A.; Fjeld, M. Predicting Missing Markers in Real-Time Optical Motion Capture. In Mod-

elling the Physiological Human; Magnenat-Thalmann, N., Ed.; Number 5903 in Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 125–136.

23. Wu, Q.; Boulanger, P. Real-Time Estimation of Missing Markers for Reconstruction of Human Motion. In Proceedings of the 2011
XIII Symposium on Virtual Reality, Uberlandia, Brazil, 23–26 May 2011; pp. 161–168. [CrossRef]

24. Li, L.; McCann, J.; Pollard, N.S.; Faloutsos, C. DynaMMo: Mining and summarization of coevolving sequences with missing
values. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for
Computing Machinery: New York, NY, USA, 2009; pp. 507–516. [CrossRef]

25. Li, L.; McCann, J.; Pollard, N.; Faloutsos, C. BoLeRO: A Principled Technique for Including Bone Length Constraints in
Motion Capture Occlusion Filling. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation;
Eurographics Association: Aire-la-Ville, Switzerland, 2010; pp. 179–188.

26. Burke, M.; Lasenby, J. Estimating missing marker positions using low dimensional Kalman smoothing. J. Biomech. 2016,
49, 1854–1858. [CrossRef]

27. Wang, Z.; Liu, S.; Qian, R.; Jiang, T.; Yang, X.; Zhang, J.J. Human motion data refinement unitizing structural sparsity and
spatial-temporal information. In Proceedings of the IEEE 13th International Conference on Signal Processing (ICSP), Chengdu,
China, 6–10 November 2017; pp. 975–982.

28. Aristidou, A.; Cohen-Or, D.; Hodgins, J.K.; Shamir, A. Self-similarity Analysis for Motion Capture Cleaning. Comput. Graph.
Forum 2018, 37, 297–309. [CrossRef]

29. Zhang, X.; van de Panne, M. Data-driven autocompletion for keyframe animation. In Proceedings of the 11th Annual International
Conference on Motion, Interaction, and Games, New York, NY, USA, 8–10 November 2018; Association for Computing Machinery:
New York, NY, USA, 2018; pp. 1–11. [CrossRef]

30. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
31. Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent Network Models for Human Dynamics. In Proceedings of the 2015

IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4346–4354. ISSN: 2380-
7504. [CrossRef]

32. Harvey, F.G.; Yurick, M.; Nowrouzezahrai, D.; Pal, C. Robust motion in-betweening. ACM Trans. Graph. 2020, 39, 60:60:1–60:60:12.
[CrossRef]

33. Mall, U.; Lal, G.R.; Chaudhuri, S.; Chaudhuri, P. A Deep Recurrent Framework for Cleaning Motion Capture Data. arXiv 2017,
arXiv:1712.03380.

34. Kucherenko, T.; Beskow, J.; Kjellström, H. A Neural Network Approach to Missing Marker Reconstruction in Human Motion
Capture. arXiv 2018, arXiv:1803.02665.

35. Holden, D. Robust solving of optical motion capture data by denoising. ACM Trans. Graph. 2018, 37, 165:1–165:12. [CrossRef]
36. Ji, L.; Liu, R.; Zhou, D.; Zhang, Q.; Wei, X. Missing Data Recovery for Human Mocap Data Based on A-LSTM and LS Constraint.

In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 23–25
October 2020; pp. 729–734. [CrossRef]

37. Kaufmann, M.; Aksan, E.; Song, J.; Pece, F.; Ziegler, R.; Hilliges, O. Convolutional Autoencoders for Human Motion Infilling.
arXiv 2020, arXiv:2010.11531.

38. Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big
Data 2021, 9, 3–21. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00371-011-0671-y
http://dx.doi.org/10.1145/3359566.3360060
http://dx.doi.org/10.1145/311535.311539
http://dx.doi.org/10.1080/10255841003664701
http://dx.doi.org/10.1109/CoDIT.2018.8394887
http://dx.doi.org/10.1007/s00371-006-0080-9
http://dx.doi.org/10.2312/EG2011/short/045-048
http://dx.doi.org/10.1371/journal.pone.0152616
http://dx.doi.org/10.1371/journal.pone.0199744
http://dx.doi.org/10.1109/SVR.2011.35
http://dx.doi.org/10.1145/1557019.1557078
http://dx.doi.org/10.1016/j.jbiomech.2016.04.016
http://dx.doi.org/10.1111/cgf.13362
http://dx.doi.org/10.1145/3274247.3274502
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1109/ICCV.2015.494
http://dx.doi.org/10.1145/3386569.3392480
http://dx.doi.org/10.1145/3197517.3201302
http://dx.doi.org/10.1109/ICSIP49896.2020.9339359
http://dx.doi.org/10.1089/big.2020.0159
http://www.ncbi.nlm.nih.gov/pubmed/33275484

Sensors 2021, 21, 6115 26 of 26

39. Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos
Solitons Fractals 2020, 140, 110212. [CrossRef] [PubMed]

40. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings
of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292.
[CrossRef]

41. Czekalski, P.; Łyp, K. Neural network structure optimization in pattern recognition. Stud. Inform. 2014, 35, 17–32.
42. Srebro, N.; Jaakkola, T. Weighted low-rank approximations. In Proceedings of the Twentieth International Conference on

International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; AAAI Press: Washington, DC, USA,
2003; pp. 720–727.

http://dx.doi.org/10.1016/j.chaos.2020.110212
http://www.ncbi.nlm.nih.gov/pubmed/32839642
http://dx.doi.org/10.1109/BigData47090.2019.9005997

	Introduction
	Background
	Optical Motion Capture Pipeline
	Functional Body Mesh
	Previous Works

	Materials and Methods
	Proposed Regression Approach
	Feed Forward Neural Network
	Recurrent Neural Networks
	Employed Reconstruction Methods
	Implementation Details

	Input Data Preparation
	Test Dataset
	Quality Evaluation
	Experimental Protocol

	Results and Discussion
	Gap Reconstruction Efficiency
	Motion Factors Affecting Performance

	Summary
	Performance Results for All Sequences
	Correlations between RMSE an Sequence Parameters
	References

