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Abstract: The ability to select, isolate, and manipulate micron-sized particles or small clusters has
made optical tweezers one of the emergent tools for modern biotechnology. In conventional setups,
the classification of the trapped specimen is usually achieved through the acquired image, the
scattered signal, or additional information such as Raman spectroscopy. In this work, we propose a
solution that uses the temporal data signal from the scattering process of the trapping laser, acquired
with a quadrant photodetector. Our methodology rests on a pre-processing strategy that combines
Fourier transform and principal component analysis to reduce the dimension of the data and perform
relevant feature extraction. Testing a wide range of standard machine learning algorithms, it is
shown that this methodology allows achieving accuracy performances around 90%, validating the
concept of using the temporal dynamics of the scattering signal for the classification task. Achieved
with 500 millisecond signals and leveraging on methods of low computational footprint, the results
presented pave the way for the deployment of alternative and faster classification methodologies in
optical trapping technologies.

Keywords: optical tweezers; optical trapping; particle identification; Brownian motion; principal
component analysis

1. Introduction

First introduced in 1986 by Arthur Ashkin [1], optical tweezers (OT) explore optically-
induced forces to capture, manipulate, and isolate micrometer-sized particles. This ability
has made them increasingly popular in the field of biotechnology, where individual analysis
of particles is crucial. Indeed, the technique can be applied from cellular studies, where it
can be used to sort, identify, and manipulate single cells [2,3], to environmental sciences, for
the identification of pollutants and aerosols [4], just to name a few examples. In particular,
the accurate classification of the trapped specimen is a task of paramount importance,
paving the way for OT-based systems that are able to enter into the mesoscopic scale and
real-time operating devices.

The classification task of trapped particles has been shown over three major ap-
proaches. The first, arguably simpler, explores spatial image information, either using the
image directly acquired from the microscope under external illumination [5,6] or using the
spatial scattering pattern coming from the trapping laser itself [7]. In both situations, data
analysis can be performed with a multitude of machine-learning approaches, benefiting
from highly optimized algorithms for image classification such as convolution neural
networks. The drawback of this approach is that the performance is strongly limited by
the spatial resolution and acquisition rate of the optical imaging system, limiting its use to
particles of a few micrometers and hinder the performance at real-time operation speeds.
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A second common methodology combines optical tweezers with Raman spectroscopy,
collecting and analyzing the spectral signature of the trapped particles [8]. Commonly
referred in the literature as Raman tweezers, it can again leverage a multitude of machine-
learning algorithms to extract relevant features from the spectrum collected and train the
classification models [4]. This approach performs well for a wide range of applications,
from detection of cancer in non-adherent blood cells to identification of single bacterial
cells and assessment of its response to antibiotic treatment [8–10]. However, there is an
increase in the cost of the setup due to the addition of the spectrometer. Furthermore,
Raman analysis usually depends on relatively long integration times, decreasing the ability
for high throughput.

More recently, a third approach sought trapped particle identification using the scat-
tered signal signature in the temporal domain. The general concept rests on the fact that
the signal scattered from trapped beads is related to their physical dynamics. This fact
has been used for force calculation [11] and prediction [12], for probing Brownian mo-
tion [13,14], and for distinguishing trapped states even at the nanoscale regime [15,16].
For classification, an interesting approach was recently explored with flexible optical fiber
tweezers [17,18] using the back-scattered signal obtained from trapped cells. Processing
the data to extract a set of features both in the temporal and Fourier domain, a standard
random forest algorithm allowed the discrimination of two gastric cancer cell models [19],
demonstrating the potential of the technology for biomedicine applications such as early
diagnosis and prognosis of cancer and neurodegenerative diseases [20].

Within this context, this work explores the classification of trapped beads from their
scattering signal temporal dynamics, using a standard optical tweezers system equipped
with a quadrant photodetector (QPD). It is proposed an alternative pre-processing strategy
based on the Fourier transform of the acquired signal and subsequent principal component
analysis, a methodology with a significantly lower computational load when compared
with other previously reported feature extraction methods used in this topic of research [19].
The results suggest the possibility of correctly identifying the particle size and type with an
accuracy around 90% with a signal of 500 milliseconds of duration which, to the best of our
knowledge, is significantly smaller compared with previous time-based approaches [19,21].

2. Materials and Methods
2.1. Physical Model

Optical tweezers exploit light-induced forces generated by a tightly focused beam
to trap and manipulate particles. The combination of the gradient force (associated with
the spatial distribution of the optical intensity) and the scattering component (associated
with the radiation pressure and photon momentum transference) creates an effective three-
dimensional harmonic potential well that allows 3-D manipulation, provided the target
specimen fulfils certain criteria regarding its refractive index and size [22,23].

Nevertheless, while the optical trap brings a trapped particle towards an equilibrium
position, it still experiences a characteristic Brownian-type motion [22,23]. Indeed, from a
microscopic perspective, an immersed particle is permanently moving in random directions
due to the collisions with other molecules in the fluid [23,24]. The behavior of a trapped
particle can be described as a dynamical equilibrium between random and deterministic
contributions, expressed by the Langevin equation [23,25]

mr̈(t) = −γṙ(t)− kp � r(t) +
√

2kBTγW(t) (1)

where r represents the position of the particle, m is the mass of the particle, γ is the particle
friction coefficient, kp is the trap stiffness constant, � represents the Hadamard product,
and W(t) is a stochastic term accounting for random collisions. Note the inclusion of the
first term on the right-hand side, corresponding to a friction imposed by the medium, with
a drag coefficient that can be approximated by the Stokes law of a spherical particle of
radius a as:

γ = 6πηa, (2)
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where η is the viscosity of the medium. Typically, optical tweezers exploit systems of low
Reynolds number, allowing us to drop the inertial term in Equation (1) and thus simplifying
the model to its asymptotic behavior [23,25].

The existence of the Brownian motion allows us to experimentally probe physical
properties of the trapped particle such as the optical force acting on it. Indeed, a wide
range of passive methods (i.e. that do not require the action of an external force [26]) exist
for computing the optical force, from which we can highlight two of the most commonly
used: (i) the energy equipartition method and (ii) the power spectrum method.

The first method explores the equipartition theorem that states that, at thermal equi-
librium, each degree of freedom contributes with kBT/2, associated with the thermal
fluctuations of the particle in a potential well, meaning that [22,27]:

1
2

kx
p

〈(
x − xeq

)2
〉
=

1
2

kBT, (3)

with kB being the Boltzmann constant, kx
p the stiffness constant along the x axis, and T the

absolute temperature. One of the drawbacks of the method is that precise information
regarding the standard deviation of the position must be computed. This can be accom-
plished using the information of a QPD but requires prior calibration procedures [28,29].

The second method works around some of the drawbacks of the equipartition method
by exploiting the evaluation of the dynamics in the frequency domain. At low Reynolds
number, it can be shown that the one-sided power spectrum of the fluctuations of a trapped
bead is given by the equation [22,27]:

Sxx( f ) =
kBT

π2γ( f 2
0 + f 2)

(4)

where f0 corresponds to a particle-dependent corner frequency, related with the stiffness of
the trap as:

kx
p = 2π foγ. (5)

By fitting the power spectrum to a Lorentzian function, the roll-off frequency can be
easily extracted. This approach requires previous information regarding the particle radius
as well as the drag coefficient to be known [27,28]. As such, the signal in the Fourier domain
contains information regarding particle-specific behaviors and thus can in principle be
explored for deploying a classification algorithm.

The temporal scattering signal depends on the particle characteristics, such as their
size and refractive index [30]. With that in mind, different behaviors associated with
distinct trapped particles can be exploited with a QPD.

2.2. Experimental Methods and Tools

The optical tweezers system used in this work explores a conventional inverted mi-
croscope configuration (OTKB—Thorlabs modular optical tweezers system) for which
schematic is provided in Figure 1A. The trapping laser, a fiber-coupled laser diode (Lumen-
tum s27-7602-460) emitting at 976 nm, is coupled into the system through a Galilean beam
expander. It is then focused by a 100× oil immersion objective to a focal spot of approxi-
mately 1.1 µm onto the sample, forming the optical trap. The transmitted laser is collimated
by a condenser lens and directed towards a quadrant photodetector (PDQ80A-Thorlabs)
placed at a conjugate back focal plane of the condenser. The detector is characterized by
a wavelength range of 400–1050 nm, a bandwidth of 150 kHz, and the detector respon-
sivity at 976 nm is approximately 0.65 (W/A). This type of detector yields a set of three
signals (X, Y, SUM) that, upon calibration [22], may allow retrieving the x and y position
of the particle scattered laser beam, along with the integral of the optical signal (SUM).
Being sensitive to the displacement of the trapped particle in the transverse directions, the
acquired signals reflect position fluctuations over time allowing to probe the Brownian
motion of the trapped beads. Finally, to control the trapping procedure, an additional
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illumination system allows the imaging of the sample, with a standard 1280 × 1024 pixel
color CMOS camera.

For testing the classification capabilities of the system, a set of reference particles (from
Phosphorex) of different sizes and materials was used. The experimental measurements
were conducted within aqueous solutions (deionized water, n = 1.3270 @976 nm [31]) of
0.05% polystyrene (PS) and polymethyl methacrylate (PMMA) microparticles with sizes
ranging from 3 µm to 8 µm (Table 1). For each bead type, we acquired 6 distinct signals of
120 s of total duration at an acquisition rate of 10 kHz. These signals were employed to
train and test a classification algorithm, which schematic is provided in Figure 1B.

Figure 1. (A) Schematic of the optical tweezers system. (B) Schematic representation of the classification procedure,
depicting the time scope of signals acquired from the quadrant photodetector (X, Y, SUM) and the PCA plots of the
corresponding Fourier transforms for all the tested particles.

Table 1. Materials and optical characteristics of the particles and solution used in the experimental
measurements.

Particle Type Particle Size Refractive Index (@976 nm)

Polystyrene 3 µm
microspheres 4 µm 1.5731 [32]

(PS) 8 µm

Polymethyl 3 µm
Methacrylate 8 µm 1.4824 [32]

(PMMA)

2.3. Classification Algorithms and Procedures

The classification procedure proposed in this work aims to utilize the 3-channel signal
acquired from the QPD (X, Y, SUM), to classify individual particles of different classes. As
described above, the signal acquired is in principle related to the properties of the trapped
particle through its dynamics, which may be sufficient to distinguish particles of distinct
sizes and materials. As a test case, our goal was to discriminate between the different
particle classes, presented in Table 1.
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For the purpose of increasing the amount of data to train the model and approximate
to a real-world scenario, each acquired signal (with a total duration of 120 s) was divided
into individual segments of 500 milliseconds forming the total dataset to be classified.
Then, for each signal and for each channel, was computed the Fourier transform using
the fast Fourier transform (FFT) algorithm of the standard numpy library. Disregarding
the continuum component, which does not contain information relative to the dynamics
itself and thus can introduce unnecessary noise in the classifier, a principal component
analysis (PCA) was applied using the sklearn library [33], keeping only the two most
relevant principal components for each channel signal (see Appendix A). In short, these
pre-processing procedures allow performing a dimensionality reduction from a signal of
dimension 3 channels × 5000 data points into a final set of the 6 most relevant features of the
co-variance space in the Fourier space, which by hypothesis are related to the properties of
the particle dynamics and therefore can be used for deploying a final classification model.

To assess the performance of several classification algorithms and achieve the best
results, a comprehensive set of algorithms exploiting the modular framework of the sklearn
library were used. In particular, random forests (RF), support vector machines (SVM),
k-nearest neighbors (KNN), and neural-network (NN) classifiers. The distinct algorithms
were chosen to guarantee the diversity of the classification strategy employed and under-
stand if any particular classifier is more suitable for this type of dataset. For each method,
the hyper-parameter optimization was performed using a stratified 6-fold cross-validation
procedure. For each fold, a subset containing all the signals corresponding to an individual
particle of each type is left outside the training dataset and used only for the test dataset.
Finally, the accuracy was computed using the same procedure after the hyper-parameter
tuning procedure.

3. Results

The results obtained for the accuracy of each method are presented in Table 2, in-
cluding the mean, the best, and the worst performance during the 6-fold cross-validation
procedure. As can be seen, the performance of most of the methods is comparable, with
KNN performing slightly better and RF slightly worse for the train–test dataset splits used.
Furthermore, there is no significant variation of the performance across the validation
folds, which suggest that the mean accuracy presented converges to a real-world scenario
performance. These findings suggest that, for the classes of particles tested, the relations
in the reduced PCA space can be easily identified by standard classification algorithms,
demonstrating that it is possible to discriminate the particles using the implemented signal
processing procedure.

Table 2. Performance results for various classification algorithms obtained for the test datasets of the
cross-validation procedure described in the main text.

Method Accuracy—Test Dataset

Mean Best Worst
Random Forests 0.91 0.99 0.77

Support Vector Machines 0.92 0.98 0.74
K-Nearest Neighbours 0.91 0.99 0.77
Multi-layer Perceptron 0.91 0.99 0.69

Regarding the accuracy of the discrimination of particles itself, the confusion matrix
for each algorithm was computed (see Figure 2), accumulating the results for each cross-
validation fold and normalizing them at the end. The confusion matrix is useful to interpret
the results, namely to understand the classifier performance for an individual class and
understand possible reasons for its underperformance. As it can be appreciated, the
classifier was able to successfully identify most of the classes. First, it can be observed that
any algorithm can successfully identify all the situations that have no particle trapped,
and correctly discriminate large and small-sized particles. Additionally, it is interesting to
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notice that at the 8 µm size, the model can discriminate between the two materials quite
well, at around 98% accuracy level. Still, it can be seen that significant confusion appears
for 3 µm PS and 3 µm PMMA particles, being also misidentified as 4 µm PS. The origin
of this behavior may be either related to the proximity of the size of the particles, with
some experimental uncertainty of their actual size during the fabrication procedure or even
with the algorithm itself, something that shall be carefully evaluated in future studies with
specifically designed experiments.

Figure 2. Confusion matrices showing the classification performance of the tested algorithms. The labels correspond to each
particle type with the score corresponding to the mean accuracy obtained for the cross-validation procedure, as described in
the main text.

Finally, it was also compared the performance of using all 3-channel information from
the QPD against using only the SUM channel, which allows us to infer any benefits of
using the QPD against a conventional photodetector for probing the front or back-scattered
radiation. As it can be seen from Table 3 and Figure 3, the performance of using only the
SUM channel is significantly lower, dropping to values just above 50%. Indeed, looking
at the confusion matrices in Figure 3, it is straightforward to observe that while it can
still differentiate between having a particle trapped or not, and between the small-sized
particles and larger ones, the trained models are unable to discriminate the material types
for similar sizes correctly. These findings suggest that a conventional OT system equipped
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with a fast response, position-sensitive QPD may outperform single detector scattering
analysis methodologies previously reported in the literature [19].

Table 3. Performance results for various classification algorithms obtained using only the SUM
channel from the QPD.

Method Accuracy—Test Dataset

Mean Best Worst
Random Forests 0.54 0.64 0.45

Support Vector Machines 0.53 0.64 0.42
K-Nearest Neighbours 0.55 0.67 0.44
Multi-layer Perceptron 0.49 0.61 0.41

Figure 3. Confusion matrices showing the classification performance of the tested algorithms as in Figure 2. In this case,
only the SUM channel of the QPD used.
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4. Conclusions

This manuscript explored the possibility of classifying trapped particles on an optical
tweezers setup by using scattered signal information from the trapping laser acquired
by a quadrant photodetector. To perform dimensionality reduction and extraction of
relevant features from the 3-channel time signal, a pre-processing procedure was introduced
based on the transformation to the Fourier domain and subsequent principal components
analysis. The processed data was then used to train and test various standard machine-
learning classification models with a stratified cross-validation procedure. The results
obtained suggest that this methodology can successfully discriminate a 6-class identification
problem in controlled experimental conditions: polystyrene particles of 3 µm, 4 µm, and
8 µm, PMMA particles of 3 µm and 8 µm, and the case of no trapped particle. From the
analysis of the confusion matrices, it can be concluded that the method is robust for most
classes, allowing to discriminate particles not only in size but also in composite material.
Furthermore, the lower accuracy obtained for the case when the SUM intensity channel
alone suggests that the use of a quadrant photodetector may enhance the accuracy when
compared against previously reported results that rely on the use of the full back-scattered
signal [18,19].

Overall, compared with the previous literature on the topic [18,19], we shall highlight
that the methodology hereby proposed requires smaller signal intervals, around 500 mil-
liseconds, and features a simpler feature extraction procedure with a lower computational
load. Therefore, the results not only validate the capability of the standard optical tweezers
system equipped with QPD but also pave the way for significantly faster operation rates
towards real-time monitoring applications, enabling a new set of applications for which
real-time performance is paramount.

To finalize, we can also put the work in a broader perspective by discussing it at
the application level. Indeed, while multiple experimental techniques are known capable
of identifying micrometer size particles, the features of the OT systems offer an array of
unique possibilities. For example, when compared with systems based on flow cytometry
or electrodynamic balance [34–36], OT presents itself as an integrated technological solution
that is capable to perform simultaneously the identification and manipulation of individual
particles. In this context, the ability to perform both sensor and actuator functionalities
with a single optical tool makes it more suitable for integration into optofluidic chips, thus
being an enabler for future technological solutions on challenges such as point of care
diagnostic, liquid biopsies, and process control in bioreactors.
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QPD Quadrant Photodetector
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FFT Fast Fourier Transform

Appendix A. Notes on the Pre-Processing Procedure

The methodology employed in this work made use of a principal component analysis
during the pre-processing procedure. As briefly introduced in the main text, the option for
this unsupervised data analysis methodology has two major purposes, discussed in this
appendix in more detail.

The first objective of performing the PCA was to extract a set of relevant features
that was capable of describing the information gathered from the scattering signal of
the position fluctuations of a particle in the Fourier domain. Acting in the co-variance
space formed by all acquired signals, the PCA algorithm seeks the linear combinations
of variables in this initial high-dimensional space which are associated with the largest
amount of the variance of the data. Putting it in context with our work, the procedure
extracts a tendency along the frequency space that is suitable to describe the variation of
the Fourier transform observed for the total set of signals.

The second objective of the procedure was to perform a dimensionality reduction and
thus avoid the curse of dimensionality [37]. Indeed, the segment to classify has a total
of 3 channels × 5000 data points = 15,000 variables, an impracticable number of features
to deploy a standard classifier due to sparsity issues that usually occurs in data of such
high-dimensionality. To avoid this curse of dimensionality, we performed a dimensionality
reduction by keeping only the information associated with most relevant components of
the PCA. Furthermore, this comes with an additional advantage, as the PCA analysis also
proves helpful to deal with the stochastic noise characteristic of the measures. Indeed, this
projection into a final space of reduced dimensionality plays a similar role of a filter [38],
thus working around the stochastic noise of the data.

All these remarks can be observed and confirmed in the graphical display of the results
of the PCA algorithm presented in Figure A1. First, on the left-hand side, it can be noticed
that while a typical signal is extremely noisy, the first two principal components are smooth
lines across the frequency domain, which indicate the filter capacity of the PCA algorithm.
Plots on the right-hand side show that each channel provides some degree of discrimination
between distinct classes, which can be combined and used for deploying the classification
algorithm. Finally Figure A2 presents the scree plot for the PCA analysis of Figure A1,
showing the explained variance ratio in function of the number of components. Clearly the
largest amount of variation is concentrated in the two first principal components, with the
remaining variance equally distributed by the other components, most possibly accounting
for the noisy part of the data. This observation alone does not warrant that the best set
of features to separate the data is being used but is a strong suggestion of the validity of
the dimensional reduction procedure, a fact that is confirmed by the performance of our
algorithm as presented in the manuscript.
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Figure A1. Results of the PCA analysis of Channels X, Y and SUM. Left-hand side plots depict the first two principal
components obtained for the PCA analysis as well as a typical signal obtained for two distinct particles for the 3 distinct
channels. Subfigures on the right-hand side display the results of the PCA analysis as a two-dimensional plot with the first
two principal components as the extracted features. Additionally represented and highlighted by the arrows are the signals
for the particles represented on the left-hand side plots.

Figure A2. Scree plot for the PCA analysis presented in Figure A1, displaying the explained and accumulated variance ratio
in function of the principal components used.
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