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Abstract: Accurate identification of the coronary ostia from 3D coronary computed tomography
angiography (CCTA) is a essential prerequisite step for automatically tracking and segmenting
three main coronary arteries. In this paper, we propose a novel deep reinforcement learning (DRL)
framework to localize the two coronary ostia from 3D CCTA. An optimal action policy is determined
using a fully explicit spatial-sequential encoding policy network applying 2.5D Markovian states
with three past histories. The proposed network is trained using a dueling DRL framework on the
CAT08 dataset. The experiment results show that our method is more efficient and accurate than
the other methods. blueFloating-point operations (FLOPs) are calculated to measure computational
efficiency. The result shows that there are 2.5M FLOPs on the proposed method, which is about
10 times smaller value than 3D box-based methods. In terms of accuracy, the proposed method shows
that 2.22 ± 1.12 mm and 1.94 ± 0.83 errors on the left and right coronary ostia, respectively. The
proposed method can be applied to the tasks to identify other target objects by changing the target
locations in the ground truth data. Further, the proposed method can be utilized as a pre-processing
method for coronary artery tracking methods.

Keywords: reinforcement learning; localization; coronary computed tomography angiography;
coronary ostia

1. Introduction

A landmark identification task is a prerequisite process for medical image analysis.
Because a medical image itself has an arbitrary local coordinate system irrelevant to the
anatomy, a reformation of the initial coordinate into the new coordinate, based on the
patient-specific anatomical landmarks, provides consistent observations for segmentation
and registration tasks for medical image analysis. Because the morphometric relationships
of human organs in medical images are apparent, landmark identification allows this
advantage to be exploited.

Many applications of deep reinforcement learning (DRL) systems have been intro-
duced in the medical field to solve the practical problems of image segmentation, landmark
detection, registration, and view planning on three-dimensional (3D) images [1–3]. DRL
can also be applied to trace blood vessels or to outline anatomical organs [4,5]. Local patch-
based observations have mainly been used in 3D volumetric imaging such as computed
tomography (CT) or magnetic resonance (MR), as shown in Figure 1. For learning in a 3D
space, 2.5D patch-based approaches [6–8] and 3D patch-based networks [1,9,10] have been
developed. A DRL system with a 3D patch + three past histories, as similarly shown in
Figure 1b, has been proposed [2]. Historical information is assumed to stabilize the search
trajectories and prevent an agent from becoming stuck in repeated cycles [2,10–12].
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Figure 1. Various state representations: (a) single 3D boxed patch, (b) 3D patch with multiple
histories, (c) 2.5D patch with three orthogonal view aggregation, and (d) 2.5D patch with multiple
histories, with the state used in this study; ConvNet, convolutional neural network; FCN, fully
connected network.

In DRL implementation, it is necessary to obtain contextual information from the
agent’s location to a certain range to observe its current state. However, learning the
optimal behavior with a large state is challenging and requires numerous trials and errors
in RL problems. There is a trade-off between a 2.5D observation patch and a 3D observation
patch in efficiency and the amount of contextual information. It is not yet known which is
better: 2.5D or 3D observation patches.

Walid et al. [13] proposed a partial policy-based RL framework that trains multiple
policies for each axis (x, y, z). Multiple pseudo-3D-based (2n + 1 adjacent 2D slices) policies
have independent behaviors and are combined with vector additions for each partial action
to decide an actual 3D displacement vector, with an attempt to minimize the state size
while maintaining the performance. However, 2D adjacent slice modeling uses limited
information in the directions of other axes (sagittal and coronal), unlike the axial plane.

In this paper, we propose a novel deep reinforcement learning (DRL) framework based
on 2.5D historical observation patches for identifying the left and right coronary artery
ostia (LCA and RCA) from 3D CCTA, one of the essential prerequisite tasks for automatic
analysis of cardiovascular disease. For modeling the state features from 2.5D historical
observation patches, an explicit spatial-sequential encoding policy network (EsseNet) is
newly proposed, as shown in Figure 1d. An optimal action policy is determined by explic-
itly encoding spatio-sequential information from four 2.5D historical observation patches
(one current state plus three past histories). Consideration of the historical observation
patches enables the agent to learn its orientation and stabilize the search trajectory. The pro-
posed network minimizes the size of the input parameters and accumulates more instances
of experience into the experience replay memory than 3D patches in a deep Q-network
implementation and thus benefits the DRL system. To the best of our knowledge, this is the
first study that proposes a highly optimized network for 2.5D historical observation patches
in 3D volumetric medical imaging. In addition, we propose a localization strategy for the
agent to reach the target location quickly and accurately by taking a displacement action
with variable step sizes in a coarse-to-fine manner. The proposed network is trained with a
dueling deep Q-network (Duel DQN) framework on the CAT08 dataset. The experiment
results show that our method is more efficient and accurate than conventional approaches.



Sensors 2021, 21, 6187 3 of 14

Further, the proposed method can be applied to identify other target objects by changing
the target locations in the ground truth data.

2. Related Work

There have been attempts to solve the landmark detection problem from several
perspectives. Some find solutions by modeling anatomical relations using probabilistic
inference [14,15]. The typical machine learning-based approaches effectively use a large-
scale annotated dataset [16–18]. In addition, collaborating multi-agent based methods were
recently introduced for the task of detecting multiple landmarks. Leroy et al. [12] proposed
communicative DRL agents for landmark detection in brain images. The agents in the
method learn explicit communication channels and implicit communication signals. The
method outperforms single and multi-agents approaches for detecting the Brain landmarks.
Kasseroller et al. [19] recently proposed a collaborative multi-agent reinforcement learning
algorithm for landmark localization using continuous action space. Using a continuous
action space reduces the number of steps compared to the other DRL methods based on
discrete actions. These methods rely on precise feature engineering for the appearance
model because learning it and searching the active objects are conducted independently.

Deep neural networks are known to learn the features automaticallywith better data
disentangling pabilities [20]. Amir et al. [2] proposed and evaluated a suite of Deep Q-
Network (DQN) based approaches to identify several cardiac and brain landmarks from
multimodal images. With the method, 3D patches with three histories are considered for
the state of the agent. Ghesu et al. [1] proposed a multi-scale DQN to detect 3D landmarks
in CT scans and used a single boxed region of interest (ROI) for the state.

There is a trade-off between the exploitation of more contextual information for feature
extraction and more accumulation for generalization. By using 2.5D patches, the number of
operations can be reduced by approximately half compared to 3D patches. When fetching
random batches from experience and replay memory, it can be composed with as much
data as possible, improving the generalization. From this perspective, using 2.5D patches
in DQN implementations might be advantageous because more experience data can be
accumulated in the experience replay memory than with 3D patches.

As a decomposition representation, a 2.5D CNN is an alternative learning approach to
reduce the computational cost compared to 3D patch-based learning tasks [6]. It uses input
data consisting of three orthogonal planes (axial, coronal, and sagittal planes) as channels.
Despite the achievement of superior performance in 3D medical applications [7,8], planes
from different axes have less local proximity to each other as they get farther from the
center, and thus combining them as a channel may be insufficient. Because three planes
contain different information, it is more appropriate to separate convolutional layers for
each axis to encode the features [21].

3. Background

To apply the proposed network, we chose a deep Q-learning-based method similar
to the way that humans remember and learn through trial and error. Unlike other rein-
forcement learning methods, because the proposed approach utilizes the experience and
replay memory, it is necessary to reduce the size of the experience instance by using the
optimal size of the observation information needed to select the optimal action. We will
briefly review the theory of a DQN in the following subsections.

3.1. Q-Learning

Watkins and Dayan [22] presented and proved a convergence theorem for Q-learning, a
simple way for agents to learn to select an optimal action in controlled Markovian domains.
The optimal action-selection policy can be found by the learning quality function Q(s, a),
which measures the quality of a certain action at given state st. In addition, Q(s, a) is defined
as the expected value of the discounted future rewards E[rt+1 + γrt+2 + . . . + γn−1rt+n]
where γ is a discount factor. This function can be found recursively based on the Bellman
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equation [23] as Qi+1 = E[r + γmaxa′Qi(s′, a′)], where s′ and a′ are the next state and
action. The optimal action-selection policy is then found using the highest long-term
reward Q∗(s, a).

3.2. Deep Q-Learning

Based on Q-learning, briefly described in Section 3.1, a deep neural network with
the network parameter θ is an alternative to a table-based policy as Q(s, a) ≈ Q(s, a; θ).
However, reinforcement learning using a non-linear approximator for the Q-function is
known to be unstable [24]. The effort required to solve two main causes of instability
brought about a breakthrough in the stability of deep reinforcement learning [11]. The
main ideas here are to remove the correlations between the adjacent data to make the target
data stationary. First, the experience replay buffer is maintained as randomized over the
experience data to remove the correlations in the observation sequence. Second, prediction
and target models are separated, and the target values are only periodically updated. The
deep neural network-based optimal policy is trained using the Bellman optimal equation
and the loss function as follows:

LDQN(θ) = E[{r + γmaxa′Q(s′, a′; θ−)−Q(s, a; θ)}2]. (1)

where θ and θ− are parameters for the prediction and target models, respectively.

3.3. Dueling Deep Q-Learning

The dueling network architecture [25] is explicitly decomposed into state values and
state-dependent action advantages. Here, Q(s, a) is a quality function of a certain action a
given a certain state s.

Q(s, a; θ, α, β) = V(s; θ, β) + A(s, a; θ, α) (2)

where V and A are the state value and action advantage function, respectively; θ represents
the parameters of the convolution layer; and α and β represent the parameters of two fully
connected layers for V and A.

However, Q(s, a; θ, α, β) in Equation (2) is only a parameterized estimate of the true
quality function, and V and A cannot be uniquely identified. The alternative action advan-
tage module in Equation (3) increases the stability of the optimization. The advantages
only need to change as quickly as the mean, instead of having to compensate any changes
to the advantage of the optimal action in Equation (2).

Q(s, a; θ, α, β) = V(s; θ, β) + (A(s, a; θ, α)− 1
|A|∑a′

A(s, a′; θ, α)) (3)

4. Automatic Landmark Detection System
4.1. Markov Decision Process

The proposed system sequentially searches and fixes 3D locations from a randomly
given seed point to each coronary ostium. The elements of MDP are described in this section.

State: In a 3D CCTA environment, we define state st ∈ S as a 2.5D region of interest
centered around the agent location for memory efficiency during training. Only three
2D patches (3× N2), the normal of which is the x-, y-, z-axis, respectively, are considered
instead of considering the entire boxed 3D patch (N3). Moreover, in the sequence of the
search trajectory, the last three previous states are contextually considered. Considering
them lets the agent know where the agent came from and will move to, stabilizing the
search trajectories. Thus, the state used by the proposed method can be expressed as
st = {st−h|0 ≤ h ≤ H}, which has a H order of the Markovian property. We chose the
third-order Markovian property (H = 3), and the agent observes H× 3× N2. The diagram
of the state is shown in Figure 2.
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Figure 2. Schematic diagram of an environment: The CT volume is defined as the environment, and
the trained agent aims to find the target location optimally. Local 2.5D patches at the current position
t along the 3D trajectory are configured using the state of four histories {st−h|0 ≤ h ≤ H} such that
the orientation can be learned together. H is the order of the Markovian property and H = 3 in the
example. The action set A = {±ax,±ay,±az, 0} consists of six three-dimensional actions, including
a stationary action.

Action: The action set A is composed of six 3D-directional actions and a stationary
action, A = {±ax,±ay,±az, 0}. The agent moves from pi to pi+1 with a 3D unit displace-
ment vector~a using Equation (4). Here, ρ is a variable step size, which we set initially to
ρ = 3 voxels(≈1 mm).

pi+1 = pi + ρ~a (4)

Reward: A scalar reward, which is distance-based feedback, is chosen to drive the
behavior of the agent approaching the target location. Ri+1 = ||~pi − ~pGT ||22 − ||~pi+1 −
~pGT ||22 where R ∈ R. As the agent approaches or moves away from the target, the
difference between the distance to the target in the previous stage and the distance to the
target in the current stage, i.e., the reward R is increased or decreased.

4.2. EsseNet: Explicit Spatio-Sequential Encoding Policy Network

For the local observation in 3D learning tasks, 3D contextual information can be
observed by sampling 3D patches Φi from a volume image I given a voxel location pi.
The 3D patches provide more the surroundings information at the voxel location to be
classified; however, the size will be N3, which is computationally and memory expensive.
In addition, it is difficult to accumulate a large amount of experience and replay buffer
when implementing a DQN. Considering the sizes of the current, the next states 2× N3,
and sequential history size H, we need to store the experience instance (s, a, r,′ s′) with a
size of at least H × 2× N3 + 2, which is difficult to accumulate in an experience buffer.

To reduce the computational cost and required size of input data for 3D learning, a 2.5D
CNN [6] using three orthogonal view aggregation is an alternative for our network in terms
of RL implementation. In CT scans, the axial, coronal, and sagittal Φh,j=1, Φh,j=2, Φh,j=3
will be the three representative views as 2D patches in CT scans [8,21], and we can then
use 2.5D patches tghat have a size reduced from H × 2× N3 to H × 2× 3× N2.

Let the functions of the convolutional layers with the parameters θj be ξ(Φh,j; θj).
Importantly, the parameters θj are shared with respect to historical sequence h, but are
not shared with respect to the image axes j. Then, the output vectors th,j by ξ(Φh,j; θj) are
encoded with respect to each axis j and sequence h as,

th,j ← ξ(Φh,j; θj) (5)
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We then concatenate the convolution outputs th,j in Equation (5) from each plane as
Th =

⋃3
j=1 th,j. The concatenated 2.5D information now needs to be processed through

local inference. Let the functions of the local inference with the parameters ωh for each
sequence be ψ(Th; ωh), and the inferenced output vectors T̄h for three view aggregation are
then found as follows:

T̄h ← ψ(Th; ωh). (6)

Now, the input vector s̄ of the global inference is found for both dueling and action
advantage paths by s̄ =

⋃H
h=0 T̄h. The entire visualization of our process for explicit spatio-

sequential encoding with several parameters from Equations (5) and (6) is described in
detail in Figure 3.

3rd order’s Markovian State
𝑠

Convolution Layers for Spatial Encoding 𝜉

Global InferenceLocal inference 𝜓

Axial 32x32

Coronal 32x32

Sagittal 32x32
Action Advantage 𝛼

𝐴(𝑠, 𝑎)
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Figure 3. Explicit spatio-sequential encoding network (EsseNet): The four sequential states s and each orthogonal view
patch Φ are independently encoded in the convolutional layer ψ. However, convolution parameters θ are shared for the
same view despite being observed from different sequences. Features encoded from each view are collected into the
corresponding sequence domain, and local inference is applied for each sequence. Finally, all information is concatenated,
and the final action values can be obtained by passing through the dueling and action advantage paths.

A dueling DQN with our EsseNet is expressed as follows:

Q(s, a; Θ, Ω, α, β) = V(s̄; β) + (A(s̄, a; α)− 1
|A|∑a′

A(s̄, a′; α)) (7)

where Θ = {θj|1 ≤ j ≤ 3} are the parameters of convolutional layers for the spatial

encoding of the 2D planes Φ(s) = {Φj
h|0 ≤ h < H, 1 ≤ j ≤ 3} with respect to the x-,

y- and z-axes, Ω = {ωs|0 ≤ h < H} are the parameters of fully connected layers for
sequential encoding of the aggregated 2D planes, and the global inference input vector
s̄ = ψ(ξ(Φ(s); Θ); Ω). Here, α and β are the parameters for two streams of fully connected
layers for the state value and action advantage, respectively.

Now, the 2.5D network is modeled for explicit spatial-sequential parameters j and
h. EsseNet is not only accurate, but it also has significant efficiency in both memory and
operation. The experience replay memory can be loaded approximately 10 times (N = 32)
compared to the 3D patch-based network, increasing generality during the learning phase.
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4.3. Localization Strategy for Robust Convergence

The agent reaches the target location from a random location by taking the displace-
ment action step by step to maximize the reward considering the current state. It is
challenging to set the termination criterion because it is impossible to specify a completely
accurate location in the input data limited to a discrete space. Furthermore, because
there is a trade-off between the convergence time and precision, the appropriate step size
settings must also be considered. Owing to the property of the step size independence
among historical states when using EsseNet, it is possible to apply the variable step size
by decaying ρ in Equation (4) during the testing phase. In this paper, to reach the target
location quickly and accurately, the agent takes a displacement action with a variable step
size in a coarse-to-fine manner as described in Figure 4. First, the agent proceeds with a
coarse step size of (ρ = 3) based on the learned policy during a sufficient fixed number of
steps (≈100 steps) from a random seed point, and the agent reaches the target location or
somewhere near the target location. However, it is difficult to assure that its location is the
true target location. The five new agents are then generated with a random displacement
from the location of the first agent and proceed with a smaller step size (ρ = 1) during a
fixed number of steps (≈50 steps) to the target locations. Finally, we obtain a weighted
average location from the five new agents for determining the final solution. The entire
process is presented in Algorithm 1.

Figure 4. (a) Training phase: The agent directly tracks the target location (red) from randomly
distributed locations (green). (b) Testing Phase: A Monte Carlo-like approach is used for better
convergence. First, the agent moves from the center point (blue sphere) based on the learned policy
with a fixed iteration. The agent converges with the predicted initial target (yellow sphere), which
would be located near the target (red sphere), and new multiple seed points (green spheres) are
generated using the random displacement vectors (yellow arrows) from the initial target. Now, the
new agents quickly converge to the target (red sphere), and the final target location is defined by
computing the weighted average of the multiple converged locations. Note that all dotted lines
represent the trajectories based on the learned policy.
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Algorithm 1: The algorithm for Robust convergence
Input: 3D volume

/* Initialize */
The trained policy network Q
coarse f ixed step← 100 steps
f ine f ixed step← 50 steps
num f ine agents← 5

/* (Step1) Coarse step */
ρ← 3 mm
H = {p1, p2, p3, p4} // Four random locations set for history
while coarse fixed step do

s← 2.5D patches from history H
a∗ = maxaQ(s, a)
pnew = H4 + a∗ ∗ ρ
Update H with pnew

end

/* (Step2) Fine step */
ρ← 1 mm
T ← {}
while num fine agents do

Get a new random location pnew near H4
H̄ ← history H2:4 and pnew
while coarse fixed step do

s← 2.5D patches from history H̄
a∗ = maxaQ(s, a)
pnew = H̄4 + a∗ ∗ ρ
Update H̄ with pnew

end
Add H̄4 to T

end
L = 1

|T| ∑i Ti

Result: The target location L from the given 3D volume

5. Experiments

The experiment was conducted using a publicly available dataset [26], consisting
of 32 cardiac 3D-CT scans and the corresponding ground truth (GT). The dataset was
intended for the extraction of a coronary artery centerline. Thus, the GT in the dataset was
the trajectories from the coronary ostia to each distal end. Coronary ostia are important
anatomical landmarks for the seed points of coronary artery segmentation and are included
in our target landmarks. We trained the agents to find two ostia landmarks for LCA and
RCA from 24 CT scans and tested using the remaining eight CT scans. As an evaluation
metric, the accuracy based on the Euclidean distance error between the predicted and
target points was measured for a quantitative comparison with the other state-of-the-art
method. Furthermore, a comparison was made between EsseNet with DQN and EsseNet
dueling DQN using average reward per episode.

5.1. Implementation Details

For the training phase, random seed points were sampled in 80% of the CT scans
for the entire image dimension around the center. The training time for an agent took
approximately 15 h using an NVIDIA TITAN X GPU. As parameters, we used a patch
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dimension of N = 32, history order of H = 3, and a batch size of 48. In addition, the
experience replay memory size is 1.5× e5. This amount of experience data can reside in a
general desktop PC. Ten-times more experience instances can be loaded into the experience
replay buffer than in other networks that use 3D patches for the state. The ADAM optimizer
is used; the discount factor is set to γ = 0.9; and ε is reduced from 0.9 to 0.1.

A single episode is completed and resets to the default parameters when the agent
reaches the target location or moves outside the CT volume. Whenever a single episode
is completed, the CT volume is randomly changed to maximize the quantity of the data.
The agent moves using random actions when the network parameters are insufficiently
optimized and similar experience data from a specific image case are then accumulated. To
avoid such a situation, we limited the maximum number of moves to 1500 steps.

5.2. EsseNet with Dueling DQN

EsseNet, the network proposed in Section 4.2, is based on dueling DQN. We exper-
imented with comparing the plain DQN [11] with dueling DQN [25] for stability and
performance in identifying coronary ostia from 3D CT images.

Q-values from dueling DQN are separately modeled into the state value and action
advantage, whereas Q-values from the plain DQN are directly inferred. Suppose the agent
is located in a large anatomic part, such as an atrium, for which all image values are
homogeneous. In that case, the agent attends the features regarding only the direction to
the target from the aspect of the state value. The anatomic structures around the agent can
sometimes be guides or obstacles for the agents. It is assumed that the action advantage
enables the agent to attend to anatomic structures around the agent and choose actions for
optimal shorter paths to the targets.

The experiment was conducted by varying only the Q-approximator in the inference
layer (plain DQN vs. dueling DQN) in EsseNet while the other encoding layers were fixed.
Average rewards per episode were measured from both models to compare the learning
trends. EsseNet with dueling DQN learned quickly with higher average rewards as shown
in Figure 5. In addition, the accuracy was measured for a quantitative comparison in
Table 1. EsseNet with dueling DQN showed better performance in both RCA and LCA.

Average Reward per Episode

EsseNet (Dueling DQN)

MA30 of EsseNet (Dueling DQN)

EsseNet (DQN)

MA30 of EsseNet (DQN)

Amir’s (Dueling DQN)

MA30 of Amir’s (Dueling DQN)

Figure 5. The average reward per episode during training: The average reward values per episode
and their moving averages with a window size of 30 for the three methods, EsseNet with dueling-
DQN (light red/dark red), EsseNet with plain DQN (light gray/dark gray), and Amir et al. [2] (light
blue/dark blue) are presented, respectively.
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5.3. Quantitative Evaluation and Comparison

We measured the accuracy based on the Euclidean distance error between the pre-
dicted and target locations for the comparison. Amir et al. [2] proposed DQN-based
architectures that use a 3D patch with three sequential history buffers as the state inputs.
They consider the history buffers to stabilize the search trajectories and prevent the agent
from becoming stuck in repeated cycles. Because the proposed method also uses history
buffers, Amir’s method is appropriate for comparison with the proposed method.

The most different parts between the proposed approach and Amir’s method were
the structures of the input state and encoding layers. The 3D patches were encoded as
input channels in Amir’s method, whereas each 2.5D patch was encoded explicitly from
the proposed method.

As the results indicated, EsseNets with both plain DQN and dueling DQN showed
a higher accuracy, as shown in Table 1. EsseNet achieved the best performance with
dueling DQN.

Table 1. Comparison between 3D patch with history [2] and 2.5D patch with history (EsseNet); DQN,
deep Q-learning; RCA, right coronary artery; LCA, left coronary artery

Method
Error (mm)

RCA LCA

Amir et al. [2] (dueling DQN) 5.67 ± 2.04 5.90 ± 1.95
EsseNet (DQN) 2.01 ± 0.86 2.47 ± 1.27

EsseNet (dueling DQN) 1.94 ± 0.83 2.22 ± 1.12

We measured average rewards per episode during training from both EsseNet and
Amir’s method. As shown in Figure 5, the trends of the average rewards per episode, the
moving average with a window size of 30, showed that both methods with EsseNet were
trained well. We found a significant difference between EsseNet and Amir’s method in
the average reward per episode. EsseNet seemed to be stabilized with a slight variation of
the average reward per episode after approximately 100 episodes. In contrast, the average
rewards for Amir’s method were lower, and its variations were larger for all episodes.

Eight detailed CT images for the test cases and results by EsseNet with dueling DQN
are shown in Table 2. The Euclidean distance errors are 2.22 ± 1.12 and 1.94 ± 0.83 to
identify the ostia of LCA and RCA, respectively.

Table 2. The detailed test image cases with IO error and the results of identification of two coronary ostia by EsseNet with
dueling DQN.; IO, inter-observer; DQN, deep Q-learning.

Test Dataset
Image Details and Measures (mm)

Image Quality Left Coronary Ostium IO Error Right Coronary Ostium IO Error

0 Moderate 4.50 0.53 3.66 0.26
1 Moderate 2.90 1.2 2.17 0.72
2 Good 1.56 0.42 1.08 0.35
3 Poor 1.52 1.05 1.28 0.5
4 Moderate 1.35 0.54 1.76 0.74
5 Poor 1.92 1.07 1.32 0.46
6 Good 2.79 0.79 2.39 0.43
7 Good 1.19 0.50 1.83 1.0

Average 2.22 ± 1.12 0.76 ± 0.30 1.94 ± 0.83 0.55 ± 0.24

Table 3 shows the results from the literature for localizing the coronary ostia on
different datasets except for Amir et al. [2]. The other methods used the local region
of interest and the segmentation contours that contained the target landmarks as prior
information. In contrast, the proposed method and Amir’s method did not use prior



Sensors 2021, 21, 6187 11 of 14

information, and the agents could not find the target landmarks from any randomly
initialized location.

Regarding time analysis, it may depend on the computing power and the initial
seed locations. Many deep learning-based investigations use floating-point operations
(FLOPs), which is known to be one of the objective methods for analyzing the compu-
tational efficiency [27]. We also measured the number of FLOPs for the methods. There
were about 2.4M and 2.5M FLOPs on both EsseNet (DQN) and EsseNet (Dueling DQN),
respectively, while the 3D-based method [2] had 23.7M FLOPs. There was about a 10-fold
difference in the computational efficiency between EsseNet and 3D-patch-based methods
in our experiment.

The search trajectories of the agent during training are shown in Figure 6. The
trajectories from multiple seed points are unstable, so no agents identified the target
landmarks after 150 episodes. Although some agents seemed to identify target landmarks
after 300 episodes, others wander around or failed to identify the target landmarks. After
600 episodes, all agents directly searched and identified the target landmarks.

Figure 6. Visualization of training agents for coronary ostia. Robust convergence over a generation is
observed for coronary ostia detection problems. GT, ground truth.
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Table 3. General comparison with the existing works for the localization of coronary ostia. It is difficult to compare the
methods listed in the table directly since their results were reported on the different datasets used in the source papers.
RTW [28] was introduced for 3D human pose estimation, but it is newly applied for localization of coronary ostia in the
other work [29]. Hence, the result of RTW can be referred from the paper [29]. TAVI cases are the CT images scanned from
patients who have cardiovascular diseases. Note that all the other methods use some prior information, while the proposed
method and Amir’s method do not use any prior information.; RTW, random tree walk; TAVI, transcatheter aortic valve
implantation.

Method Mean Error (mm) Approach Priors Data Type

Colonial walk [29] 2.01 ± 1.02 Random walk Local region of interest Private
Colonial walk [29] 2.05 ± 1.08 Random walk Local region of interest Private (TAVI)

RTW [28,29] 2.18 ± 1.25 Random walk Local region of interest Private
RTW [28,29] 2.44 ± 1.72 Random walk Local region of interest Private (TAVI)
Elattar [30] 2.18 ± 1.37 Image processing Segmentation Private

Amir et al. [2] 5.80 ± 1.99 Reinforcement learning - Public
EsseNet(dueling DQN) 2.08 ± 0.98 Reinforcement learning - Public

6. Discussion

The DRL-based methods for object detection were highly efficient and accurate,
which is attractive for medical imaging applications. In this paper, we proposed a DRL-
based efficient architecture considering 2.5D-patch images to identify coronary ostia in 3D
CT images.

In most methods, only information observed around the agent at the current location
was considered, and the Q value was then inferred based on the information. However, a
single piece of ROI information around an agent’s current location may not be sufficient
to determine an action when the number of possible states is huge such as in 3D medical
images. In contrast, with the proposed method, multiple history buffers, i.e., the ROIs from
previous locations, were considered together based on the previous trajectory, which made
our state information include the properties of one small trajectory. These properties made
it possible to consider where the agent came from and what action was optimal for the
agent to go forward to the target object. This may have prevented the agent from staying
around a specific location by creating repeated cycles [2,10–12]. Furthermore, a smoother
and more stable trajectory was obtained overall.

Three-dimensional patches have more contextual information; however, when the
history buffer is considered with it, the 3D volume patch can be a burden to accumulate
in experience memory. Further, information is likely to overlap each other among the
volume patches, leading to wasted memory. DQN-based networks learn by using the
experience buffer as a data pool. The larger the size of a state, the more limited the data
that accumulate in memory. To become more efficient and accumulate more information
in the experience buffer, we considered the 2.5D patch-based architecture and designed
EsseNet to encode the features of 2.5D patches efficiently. The use of a 2.5D patch avoids
overlapping information as much as possible and allows for the accumulation of more data
owing to its smaller size. EsseNet is not only accurate, but it also has significant efficiency
in both memory and operation utilities and shows a higher performance than the other
method using 3D patches.

The proposed method was affected more by the accuracy of the GT. The fact that
the target locations defined by several experts had errors meant that determining the
representative location of the target was difficult. In our dataset, the IO error ranged from
a minimum of 0.26 to a maximum of 1.2 mm, with an average of 0.76 mm for the LCA and
0.55 mm for the RCA ostium. Reinforcement learning only trusts and learns the location of
the GT; thus, there was a limit to producing a smaller error than the IO error. In addition,
the surrounding structures of the target object should be consistent with all image data
because these structures can be a guide for agents. Otherwise, learning the agents may be
difficult, even if the IO error is small. For example, when the tip points of coronary arteries
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were set as targets, the locations and the surrounding structures for each type of data were
not always consistent. In this case, it was more challenging to train the network.

7. Conclusions

In this paper, we proposed an efficient and accurate network, EsseNet, based on
2.5D patches and used in a DRL framework. It is designed to solve the sequential deci-
sion process problem in 3D CT images efficiently. A 2.5D patch-based state with three
history buffers that have both spatial and sequential information is explicitly encoded.
EsseNet is not only accurate, but it also has significant efficiency in both memory and
operational utility and shows a higher performance than the other method using a 3D
patch. As a result, the ostia of LCA and RCA achieved an accuracy of 1.94 ± 0.83 mm
and 2.22 ± 1.12, respectively. Also, floating-point operations (FLOPs) were calculated for
measuring the computational efficiency, and the result showed that there were 2.5M FLOPs
on the proposed method. In comparison, the 3D-based method had 23.7M FLOPs. The
proposed method can be integrated with other approaches to segment coronary arteries
and applied to other identification tasks simply by changing the target locations in GT. We
are conducting future investigations based on CT images and various image modalities,
and large-scale data.
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