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Abstract: Nowadays, engineers are widely using accelerometers to record the vibration of structures
for structural verification purposes. The main obstacle for using these data acquisition systems is their
high cost, which limits its use to unique structures with a relatively high structural health monitoring
budget. In this paper, a Cost Hyper-Efficient Arduino Product (CHEAP) has been developed to
accurately measure structural accelerations. CHEAP is a system that is composed of five low-cost
accelerometers that are connected to an Arduino microcontroller as their data acquisition system. Test
results show that CHEAP not only has a significantly lower price (14 times cheaper in the worst-case
scenario) compared with other systems used for comparison but also shows better accuracy on
low frequencies for low acceleration amplitudes. Moreover, the final output results of Fast Fourier
Transformation (FFT) assessments showed a better observable resolution for CHEAP than the studied
control systems.

Keywords: arduino; structural health monitoring (SHM); Internet of Things (IoT); accelerometer;
low-cost sensors

1. Introduction

Civil structures and infrastructures could be considered as the main foundation of
today’s modern society and, hence, their soundness is of utmost importance. However,
the reports of ASCE infrastructure grades shows that in the United States: (1) 9.1% of all
the bridges are not structurally efficient, (2) 188 million trips are taken every day over
these deficient bridges, (3) The average age of bridges is 43 years old [1]. Monitoring and
evaluating the health state of these structures are required for the maintenance applica-
tions, for minimizing the reparation costs and, eventually, for guaranteeing infrastructure
safety [2–4]. Structural Health Monitoring (SHM) applications provide information on the
state of structures, their functioning, and their structural response. As pointed out by many
scholars (see, e.g., [5]), SHM can be used to calibrate structural models of real structures
(digital twins [6]) that mimic the infrastructure performance to assess the decision-making
process during the maintenance phase [7–9].

SHM systems are composed of sensors that measure the structural response (such as
accelerations, rotations, strains, or deflections) over time. This information can be used
to estimate changes in the structural performance of infrastructures [10–12]. The time
variation of some environmental factors (such as temperature or humidity) that could
produce crack opening, rotations, settlements, corrosion and other pathologies is so slow
that they can be considered as quasi-static or static [13]. On the other hand, some events
(such as the wave response due to earthquake ground motion, traffic-induced vibrations,
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or ambient activities) surely need to be accounted for the dynamic nature of the structural
response they induce.

To observe and control them, dynamic SHM Systems are required [14–16]. Structural
system identification is a critical component of SHM that targets to identify the parameters
of the structural model [17]. Based on the nature of the structural response, structural
system identification can be classified as static [18] or dynamic [19]. The static approaches
have the advantage of being simpler and comparatively cheaper than the dynamic ones.
However, tests are comparatively more difficult to perform, as some test loading is required
that may lead to the closure to the service of the structure during testing. Moreover, to
measure deflections, a frame of reference is needed, which is not always available. Hence,
the paper targets the dynamic approach for the following reasons. (1) Dynamic approaches
have been developed more actively. (2) Exciting a large structure dynamically or acquiring
vibrations from natural dynamic excitation is easier than from static methods. (3) An
internal reference frame for measuring accelerations is not required whereas it is for
displacements [20]. A number of scholars (see, e.g., [21–23]) have presented different
dynamic structural system identification techniques. These applications require some
dynamic characteristics of the structure (such as frequencies or damping ratios), which
could not be provided directly from the sensor responses [24]. To get the needed data for
a Dynamic approach, the provided results from the accelerometers have to be analyzed
by Operational Modal Analysis (OMA) methods [25]. Examples of these methods are
the stochastic subspace method, peak picking (PP), or Frequency-Domain Decomposition
(FDD). Most of the existing systems used to feed the dynamic modal analysis are equipped
with commercial accelerometers [26,27].

Accelerometers are force-sensors attached to a seismic mass. When vibration is
induced, this mass applies a specific force, which is proportional to the measured ac-
celeration [28], and an electrical signal is obtained as a result. The most common type
of vibration sensing technology is based on one of the following three main principles:
piezoelectricity, piezoresistivity, and differential capacitive measurement [28]. Piezoelec-
tric accelerometers use the piezoelectric effect of certain materials to measure dynamic
changes in mechanical variables [29] and can operate on a wide range of frequencies [30].
The piezoresistive accelerometers (also known as strain gauge accelerometers) work by
measuring the change in electrical resistance of a piezoresistive element when mechanical
stresses are applied [31]. Differential capacitive accelerometers identify the displacement of
the proof mass by measuring changes in their capacitance [31]. All these technologies for
converting acceleration to an electrical signal (piezoelectric, piezoresistive, and capacitive
change) could be combined to construct the last type of accelerometers, the micro-electro-
mechanical systems (MEMS). These sensors are silicon-based micromachined devices that
traditionally incorporate an accelerometer sensor and a signal conditioning circuitry [31].
The MEMS accelerometers have found their way to various industrial applications due to
their significant on-going technology developments. Some of these accelerometers offer
low-cost alternatives compared with traditional applications [32].

Information on different available accelerometers from various structural health moni-
toring applications is summarized in Table 1. This table has been ordered according to the
price of the accelerometers.
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Table 1. Summary of the characteristics of the accelerometers commonly used in the literature.

Nº 1 Name 2 Price (€) 3 Acceleration
Range (g) 4

Frequency
Range (Hz) 5

Spectral
Noise

(µg/
√

Hz) 6

Operation
Temperature

(◦C) 7

Structural
Type 8 Type 9

1 3713B112G [33] 2070.0 ±2.0 [0.00, 250] 22.90 [−54, +121] Wind
Turbine [34] Tri, M

2 356B08 [35] 1610.0 ±50.0 [0.50, 5000] 40.00 [−54, +77] Bridge
Crane [36] Tri, P

3 356A45 [37] 1410.0 ±50.0 [0.70, 7000] 125.00 [−54, +85] Forward Swept
Wing [38] Tri, P

4 356B18 [39] 1300.0 ±5.0 [0.50, 3000] 11.40 [−30, +77]
Motorbike
Speedway

Stadium [40]
Tri, P

5 KB12VD [41] 828.0 ±0.6 [0.30, 2000] 0.06 [−20, +80] Concrete School
Building [42] Uni, P

6 3711B1110G [43] 870.0 ±10.0 [0.00, 1000] 107.90 [−54, +121] Railroad
Bridges [44] Uni, M

7 KS48C [41] 750.0 ±6.0 [0.25, 130] 0.60 [−20, +120] Footway
Bridge [45] Uni, P

8 393B12 [46] 820.0 ±0.5 [0.15, 1000] 1.30 [−54, +82]
Historical
Masonry

Structures [47]
Uni, P

9 393A03 [48] 710.0 ±5.0 [0.50, 2000] 2.00 [−54, +121] Brick Masonry
Constituents [49] Uni, P

10 352A24 [50] 540.0 ±50.0 [1.00, 8000] 80.00 [−54, +121] Hallow Square
Beams [51] Uni, P

11 352C33 [52] 380.0 ±50.0 [0.50, 10,000] 39.00 [−54, +93] Bridges [53] Uni, P
12 ADXL335 [54] 10.7 ±3.6 [0.50, 550] 300.00 [−40, +85] Bridges [55] Tri, M
13 LIS344ALH [56] 12.0 ±2.0 [1.00, 500] 50.00 [−40, +85] Steel beam [57] Tri, M
14 MPU9250 [3] 5.8 ±16.0 [0.24, 500] 300.00 [−40, +85] Steel Pile and

Column [58] Tri, M

15 MPU6050 [59] 5.4 ±16.0 [0.24, 500] 400.00 [−40, +85] Building
Model [60] Tri, M

Notes: 1 Sensor number. 2 Sensor name. 3 Sensor price: the prices are obtained from retailers (VAT excluded). 4 Acceleration range: the
maximum acceleration amplitude capacity of the sensors. 5 Frequency range: the accurate, readable range of frequencies. 6 Spectral Noise:
the power spectral density of noise per unit of bandwidth (1 Hz). 7 Operational temperature: temperature range where the sensor works
accurately. 8 Structural type: where the sensors are used. 9 Type: Uni stands for uniaxial, Tri for triaxial, P for piezoelectric and M for
MEMS (uniaxial accelerometers are only capable of sensing vibration from one axis, while triaxial ones can sense vibrations from all of
the directions).

The analysis of Table 1 shows a significant difference in sensor costs. The price of
the most expensive sensor (3713B112G) is 385 times higher than that of the cheapest one
(MPU6050). The cost of the accelerometers is precisely stated by scholars (see, e.g., [61])
as one of the main limitations for the practical application of SHM analyses. The price of
acceleration acquisition methods is not limited to the accelerometers as they might include
additional devices (such as real-time controller, data acquisition software, and workforce
for data analysis). In this table, it can be seen that sensors with lower acceleration range
(such as 4, 8) usually have lower noise density.

Arduino is a low-cost, easy to use, and open-source electronic prototyping platform
which can be connected to the majority of analog, digital sensors. Moreover, the Arduino
contains an Integrated Circuit Bus (I2C) and a Tx/Rx serial port for interfacing with sensors
serially, making this microcontroller very flexible in interacting with various devices [62].
The main advantage of using this type of microcontroller is the fact that the Arduino
platform and microcontroller rely on a very active developer and user community. This
group is in continuous communication toward problem-solving. Moreover, it has a flexible
design, a friendly interface and it is easy to learn. Finally, both open-source software and
hardware of Arduino allow users to customize their devices [63]. In fact, many of the
MEMS sensors can interact directly with an Arduino microcontroller [62]. Sensors 12 to 15
from Table 1 were the only low-cost MEMS accelerometers. They need an external power
supply and could work with Arduino. As presented in Table 1, low-cost MEMS usually
have higher noise density compared with the traditional commercial alternatives and do
not offer a vast frequency range. As a result, their use in the literature was mostly dedicated
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to projects with strong motions and low frequencies [3,55,57,58,60,63] as they were not
accurate enough to compete with traditional accelerometers on low acceleration ranges.

The literature review shows that no low-cost solutions are available to measure low
accelerations with high accuracy that could be compared with traditional commercial sen-
sors. To fill this gap, this paper develops a Cost Hyper-Efficient Arduino Product (CHEAP).
This set is composed of five MPU9250 accelerometers controlled by an Arduino Due. The
main novelty of this solution is its ability to increase the resolution and accuracy of the
individual accelerometers by replicated measurements at the same time leading to a final
averaged result with a higher measuring accuracy. To validate its performance on labo-
ratory conditions, the CHEAP kit was compared with two piezoelectric sensors (393A03,
356B18) with low noise densities used as a control. In this test, dynamic movements with
low range amplitudes and frequencies ranging from 0.5 to 10 Hz were tested. This test was
done to compare the accuracy, resolution, and error of CHEAP with traditional expensive
sensors. Although an acquisition system with 12 channels of 393A03 sensors is 14 times
more expensive than an acquisition system with 12 sets of CHEAP, CHEAP works better
on low frequency and low amplitude accelerations compared with 393A03.

This paper is organized as follows: Firstly, in Section 2, two piezoelectric sensors as
the control systems are introduced together with their needed equipment. Then, CHEAP
is fully explained and presented. Secondly, in Section 3, the laboratory test is used to
validate the proposed methodology, and the obtained results are detailed. Finally, the main
conclusions are drawn in Section 4.

2. Signal Acquisition and Processing System

In this section, the characteristics of CHEAP and control accelerometers are introduced.
Moreover, the needed equipment for each sensor is reviewed together with their setting
up protocol.

2.1. Control Systems Description

In this section, the main characteristics of the signal acquisition and processing system
of two famous piezoelectric sensors are detailed. The acquisition equipment is presented as
follows: (1) cRIO-9064: Embedded real-time sound and vibration input module controller
that provides up to 12 channels [64], (2) NI9234, four-channel dynamic signal acquisi-
tion module that incorporates integrated electronic piezoelectric signal conditioner for
accelerometers [65]. The needed power for the real-time controller was supplied through a
constant current power supply. The signal conditioner, together with this power-supply,
assured the constant current excitation to the sensors required for proper operation [49].
The program used for data acquisition was able to record the acceleration time-history
from the two connected accelerometers simultaneously [49]. The bestowed program was
created using NI LabVIEW 2016 [66].

Two individual piezoelectric accelerometers (393A03, 356B18) were connected to the
introduced acquisition equipment for reporting separated readings. The sensor 393A03
was chosen for its low noise density. Consequently, it is used as a comparison benchmark
for CHEAP. This sensor is a uniaxial piezoelectric accelerometer with a sensitivity of
1000 mV/g with a proof mass of 210 g [48]. On the other hand, the sensor 356B18 is a
triaxial piezoelectric accelerometer that has the same sensitivity and a frequency range
as low as 393A03 with a proof mass of 25 g [39]. Although the 356B18 has a higher noise
density compared with 393A03, it was used as the second reference point for CHEAP.
This second reference point was used because it was thought that CHEAP may not be
able to provide data as accurate as 393A03. Although 393A03 has a noise density of
2 µg/

√
Hz, the accelerometers which are used to make CHEAP have each a noise density

of 300 µg/
√

Hz. The rest of the characteristics of both sensors are listed in Table 1 (sensors 9
and 4, respectively).

The acquisition system of the two studied accelerometers can be seen in Figure 1a. As
illustrated in this figure, both accelerometers were connected to the real-time controller
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equipped with the vibration input module. Finally, the real-time controller was connected
to a computer using a LAN wire. The used accelerometers and their positioning in the
laboratory tests are illustrated in Figure 1b.
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2.2. Cost Hyper-Efficient Arduino Product (CHEAP)

In this section, a low-cost system is proposed for the accurate measurement of ac-
celerations. Instead of using the results of a single sensor, this approach averages the
results of five similar low-cost MEMS accelerometers in order to amend the noises, improve
the resolution, and lower the sensitivity of these factors. This number of sensors was
finally selected by the experiences learned from the analyzed structures in the frame of the
present research.

CHEAP is composed of the following elements:
(1) Microcontroller: for this project, Arduino Due has been selected among many

other options because, firstly, it can provide a reasonable amount of memory to upload
complicated codes. Secondly, it has a faster clock speed (84 MHz) of communication
compared with other alternatives. In Figure 2a, a sketch of this microcontroller created
with the software Fritzing [67] is provided.

(2) Accelerometers: the reason why MPU9250 was chosen for CHEAP is the fact
that this one is the newest among those that were presented in Table 1, has a reasonable
price, uses less energy compared with MPU6050 with less noise density and has a better
range of frequency in comparison with LIS344ALH and ADXL 335 especially on low-
frequency signals.

(3) Multiplexor: MPU9250 uses the inter-integrated circuit (I2C) protocol for com-
municating with the Arduino [68]. I2C allows multiple “slave” digital integrated circuits
(Sensors) to communicate with one or more “master” chips (Arduino). Each one of the
sensors is introduced into the Arduino with a different address. On this application,
five similar addressed MPU9250 have been used. Figure 2b shows the attachment of the
low-cost accelerometers (MPU9250) on a stiff steel plate producing the sensing part of the
CHEAP. The Arduino needs a different address for each connected component to its I2C
port to interact and control the sensor. A multiplexer (TCA9548A) was used to change
the address of similar sensors. The multiplexer has eight bi-directional switches that are
controlled by the I2C bus. For introducing each sensor in the Arduino platform, only the
address of this multiplexer and the occupied channel by the sensor on the multiplexer is
required [69]. (4) Since CHEAP consists of five sensors, they have to be placed on a rigid
plate. This plate should be from a material that would not absorb or dissipate the vibrations
(such as steel or aluminum). The MPU9250 sensors have their Z-axis perpendicular to their
surface. Since this paper presents a uniaxial sensor, all MPU9250 sensors must be glued to
this plate with only their Z-axis paralleled with each other. (5) Connecting the system to
the ground: the GND pin of Arduino Due must be connected to earth ground [70]. It was
noticed that in the absence of this connection, the system initiation could face problems
and rebooting the system would be required.

After the hardware set-up was finished, a code was written on the Arduino platform,
which gets the acceleration from all five of the accelerometers (MPU9250) simultaneously.
Experiences show that Arduino Due can print information with a frequency of 250 data
per second (250 Hz) for one MPU9250. With more sensors connected to the Arduino, more
data has to be printed by the microcontroller with the consequent speed reduction. In fact,
the frequency decreases to 85 Hz when five of these MPU9250 sensors are connected. The
data printing is a highly time-consuming operation, ergo the frequency of the overall kit
decreases dramatically when more results have to be printed. The five sensors in CHEAP
are not synchronized. The Arduino executes codes one line at a time. It means that when
the code is executed, the Arduino connects with the first sensor and gets its measurement,
and then, with the second one, and so on. This takes time. In the current CHEAP, the lag
between each sensor-print is about 2.2 milliseconds. This lag is not hampering the FFT
application, as this does not work with the exact time of data capture. However, if the
timeline has to be improved, CHEAP measurement time output can be modified deducing
4.4 milliseconds (half the total lag between the first and last measurement).
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Once recorded by Arduino, the data was saved into a PC using Python. This pro-
gramming language was chosen because of its: (1) Connectivity: The library Serial enables
a direct communication between Python and the Arduino serial-port, (2) Resolution: by
using the date-time library, the exact capture time of data became possible with a resolution
of one microsecond. To do so, Python saved the printed data from the Arduino serial port
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along with their capture-time on a text file. Finally, the acceleration from all five of the
MPU9250 accelerometers was averaged and reported as the final output of CHEAP.

A few essential points need to be indicated about the CHEAP project: (1) Dependency:
The python program needs to be run from a computer physically attached to the Arduino.
In other words, the data acquisition equipment the present system needs is a computer.
It is also important to mention that the used data acquisition equipment for commercial
accelerometers (PCB 393A03 and 356B18) is also dependent on an attached computer.
In a nutshell, both compared systems are not wireless, (2) Automation: Even though
python can be scheduled for the experiments described in this paper it was activated
manually. Since programming the jack for each experiment was time consuming, the
beginning and finishing of the data collection for the commercial accelerometers as well as
for the CHEAP were done manually, (3) Serial-port: The acquired data of both commercial
accelerometers and CHEAP are transferred to the attached computer during the data
acquisition, (4) Internet of Things: By running the written acquisition python code of
CHEAP from a shared folder with OneDrive, the saved information was uploaded to cloud
storage when the test was finished automatically. This way, the acquired data from every
test is accessible.

Figure 3 illustrates the required steps of the proposed metering system. This process
is as follows: (1) Uploading the written code to the memory of the Arduino microcontroller
from the Arduino platform. (2) Connecting all the sensors and the multiplexor to the
Arduino. (3) Connecting the Arduino USB port to the computer activates the sensors.
(4) Acquiring data by executing the code written in Python by the computer.
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In a nutshell, CHEAP is an accelerometer with a low noise density and high resolution
which is constructed from five low-cost accelerometers (MPU9250 sensor) with high noise
density and consequently low resolution. Using a multiplexor, CHEAP receives data
from all five accelerometers at the same time. At every time stamp, Arduino due receives
the acquired data of all sensors. In the following, Arduino due averages the received
data of five sensors and prints a single output which contains the inherent noises of the
five MPU9250 sensors and the signals that are being studied.

CHEAP was developed for uniaxial data acquisition purposes, but MPU9250 has
the possibility of recording data from all directions (Table 1). In other words, CHEAP is
a potential triaxial accelerometer that has been programmed to be uniaxial. Unlike the
usual uniaxial sensors, which only can acquire data only from one axis, CHEAP can be
programmed to receive uniaxial data from any of the three directions. By programming
three sets of CHEAP, one in the X direction, one in the Y direction, and one in the Z direction,
a triaxial dynamic data acquisition system can be built.

It is also important to point out that the current accelerometer requires a voltage-
current of 3.3 up to 5 Volt that consumes 200 mA per hour. Moreover, the currently
developed accelerometer is not evaluated on an actual structure. However, for applying
CHEAP for testing an actual structure, further developments are needed. CHEAP it is
not waterproof or humidity-proof. For making this accelerometer waterproof, an appro-
priate box must be designed. Furthermore, CHEAP needs to be screwed or glued [71]
properly [72] to the structure for accurate data acquisition.
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3. Laboratory Test and Results

This section illustrates the resolution and accuracy of CHEAP in laboratory conditions.
Firstly, the laboratory test performed is described. Then, the results obtained from the
carried-out experiments are presented and discussed.

3.1. Laboratory Test

In this section, the equipment and test setup for producing the input acceleration time-
waves are presented. In these tests, the acceleration recorded by the CHEAP were compared
with those obtained by the control systems. These tests were carried out on the servo-
hydraulic fatigue testing machine (INSTRON 8803 [73]) located at the Structural Laboratory
Lluís Agulló of Technical University of Catalonia (Spain). This jack was programmed using
WaveMatrix2 Dynamic Software [74].

To launch the acceleration time-wave signals, this device was programed to vertically
move its lower jaw with various frequencies but with the same movement of ±0.1 mm
from its equilibrium location. The input acceleration amplitudes for each frequency test
was calculated by getting two time differential of the following movement equation:

y = d× sin (2× π × f × t + ϕ), (1)

where y represents the position of the lower jack plate based on the time t, d represents
the maximum allowed Jack displacement (0.1 mm), f is the set frequency, and ϕ is the
phase constant. By getting the second-order derivative of Equation (1), the accelerations
presented in Equation (2) can be obtained.

a =
d2 × y

dt2 =
..
y = −d× (2× π × f )2 × sin(2× π × f × t + ϕ) (2)

In total, 11 experiments were launched. Their characteristics are summarized in
Table 2. In Table 2, the set frequencies of performed tests, input amplitude during each
part of the test, and the number of performed cycles are presented. In this Table, IF is the
Input Frequency, and IA is the Input Acceleration Amplitude. IF and IA are expected to be
recorded by the accelerometers. In this table, the number of cycles was chosen to ensure
that each experiment had the same data length for post-processing evaluations.

Table 2. Characteristics of introduced Waves.

IF (Hz) IA (Milli-g) Number of Cycles

0.5 0.1006 200
1.0 0.4024 400
2.0 1.6097 800
3.0 3.6219 1200
4.0 6.4389 1600
5.0 10.0610 2000
6.0 14.4874 2400
7.0 19.7191 2800
8.0 25.7550 3200
9.0 32.5970 3600

10.0 42.9300 4000

It is essential to mention that a real structure typically faces a sum of the waves intro-
duced in Table 2. However, using FFT evaluation helps engineers to extract all the summed
waves from a mixed signal and illustrate them individually. In fact, the commercial ac-
celerometers are certified and calibrated on shaking tables and not on actual structures. The
shaking table, which typically is uniaxial, induces vibrations within known acceleration
amplitudes and frequencies. Furthermore, the results of the studied accelerometers are
then compared with the known induced vibrations by the shaking table. The aforemen-
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tioned information has been conducted through studying, communicating, and meeting
with commercial companies. Such companies sell calibrated and certified accelerometers
by testing their products on a uniaxial shaking table. Then, by changing the frequency
and acceleration amplitude they validate the reliability of their products. Moreover, they
recalibrate or certify custom made accelerometers such as CHEAP. In the future projects,
CHEAP will be calibrated and certified in one commercial company to make a professional
data-sheet for it. In the current work for avoiding high expenses of sensor certifications,
the introduced experiments of this paper (Table 2) have been designed for frequency and
acceleration accuracy tests.

The setting up of the sensors had to be done carefully in order to avoid any unwanted
noise. Figures 1 and 2 illustrate the set up for the test for both sensors (control and
CHEAP). There are many ways of mounting the sensors; each one has its advantages and
disadvantages, as reported in [71]. Since the surface flatness plays a vital role, special
consideration was given to the mating surface. If needed, machining processes (such as
lapping, spot-facing, grinding, milling, or turning) can provide an acceptably flat mounting
surface [72]. In this work, for a proper attachment of the sensors, a steel plate was bolted to
the jack firmly, and the sensors were glued to this plate to avoid independent vibrations.

The sampling frequency of the CHEAP kit was fixed on 85 Hz due to the speed
capacity of Arduino. The sampling frequency for the two control systems was fixed to the
same frequency for comparison purposes.

In this paper, after getting the saved signals from the accelerometers, they have been
fed to the FFT assessment method.

While the control systems are feeding FFT with the data of each independent sensor,
CHEAP uses averaged results of the five sensors to feed the FFT evaluation. The FFT
process highlights the most captured signal as the main one and dials down the emphasis
of the less frequent data. With this evaluation, the primary signal from the averaged data
of five sensors gets more robust.

3.2. Results and Discussions

In this section, firstly, the frequencies and amplitudes obtained by the different sensors
(CHEAP, 393A03, 356B18) are compared. Secondly, the Marginal benefits of increasing the
number of sensors in CHEAP are studied. Finally, the price comparison of the different
measuring systems is presented.

3.2.1. Accuracy and Resolution of CHEAP

By comparing the final results of the CHEAP with those of the control systems acquired
is studied in this section. Furthermore, the errors of their reported data from the input
frequencies and acceleration amplitudes are reported in this section. Finally, the better
functionality of CHEAP compared with the control sensors is shown.

After feeding the measured data from the accelerometers to the FFT application,
frequencies and amplitudes of the experiment were calculated. In Table 3, frequencies
extracted from each of the acquisition systems are presented together with their errors
from the IF (Input Frequency). In this Table, MF is the Measured Frequency obtained by
the sensors.

Table 3 shows that all the accelerometers work correctly on frequencies equal to and
higher than 2 Hz and report the input frequencies precisely (IF). CHEAP (unlike the control
systems) works well even for low range frequencies. In fact, while the control sensors were
unable to allocate signals lower than 2 Hz, CHEAP was able to capture them. Although
the data-sheet of the control systems (Table 1, sensor 9 and 4) illustrates that these sensors
should be able to read frequencies from 0.5 Hz to 3000 Hz, the obtained results showed that
they were not able to read accurately frequencies lower than 2 Hz with low acceleration
amplitudes. The results of all applications are pretty close from 2 Hz to 10 Hz (less than
0.014% of error from the reference frequency).



Sensors 2021, 21, 6191 11 of 22

Table 3. Frequency extracted from the acquired accelerometers together with their error.

IF (Hz)
393A03 356B18 CHEAP

MF (Hz) Error (%) MF (Hz) Error (%) MF (Hz) Error (%)

0.5000 - - - - 0.5012 0.2420%
1.0000 - - - - 0.9993 0.0690%
2.0000 2.0003 0.0150% 2.0003 0.0150% 2.0002 0.0100%
3.0000 3.0005 0.0167% 3.0005 0.0167% 2.9996 0.0133%
4.0000 3.9997 0.0075% 3.9997 0.0075% 3.9996 0.0100%
5.0000 4.9998 0.0040% 4.9998 0.0040% 5.0007 0.0140%
6.0000 6.0002 0.0117% 6.0002 0.0117% 5.9997 0.0050%
7.0000 7.0004 0.0057% 7.0004 0.0057% 6.9994 0.0086%
8.0000 8.0006 0.0075% 8.0006 0.0075% 7.9991 0.0112%
9.0000 8.9998 0.0022% 8.9998 0.0022% 9.0004 0.0044%

10.0000 9.9996 0.0040% 9.9996 0.0040% 10.0004 0.0040%

In Table 4, amplitudes extracted from the accelerometers for the Z-axis, together with
their errors from the IA (Input Acceleration), are presented. In this Table, MA refers to the
Measured Acceleration amplitudes by the sensors.

Table 4. Amplitudes extracted from the accelerometers together with their error.

IA (Input
Wave)

(Milli-g)

393A03 356B18 CHEAP

MA
(Milli-g) Error (%) MA

(Milli-g) Error (%) MA
(Milli-g) Error (%)

0.1006 - - - - 0.1022 1.5530%
0.4024 - - - - 0.3966 1.4538%
1.6097 1.7319 7.5900% 1.7561 9.0934% 1.5977 0.7468%
3.6219 3.4947 3.5113% 3.7569 3.7281% 3.6638 1.1576%
6.4389 6.3189 1.8635% 6.3507 1.3696% 6.3536 1.3245%

10.0608 9.9082 1.5164% 10.2988 2.3660% 10.0016 0.5880%
14.4918 14.5964 0.7517% 14.4106 0.5308% 14.5063 0.1298%
19.7191 19.8035 0.4281% 20.1582 2.2268% 19.3468 1.8880%
25.7555 25.4122 1.3331% 25.9151 0.6195% 25.5072 0.9642%
32.5969 33.1459 1.6843% 33.4779 2.7028% 33.5534 2.9345%
40.2430 40.0529 0.4725% 40.5612 0.7906% 41.1806 2.3298%

The analysis of Table 4 shows that for those accelerations whose value was lower than
25.5, Mili-g CHEAP worked better than the 356B18. For the accelerations whose amplitude
was lower than 14.5 Milli-g, CHEAP worked better than the 393A03. These data clearly
show that CHEAP was able to compete with the two control systems. This Table also
illustrates how the performance of CHEAP is especially interesting for small amplitudes.

In Figure, the MA error of the control systems and CHEAP is shown. The horizontal
axis represents the frequency (Hz) of the experiment, and the vertical axis shows the error
in percentage.

Figure 4 shows that on lower amplitudes, CHEAP (compared with the two control
systems) worked steadier and more accurately until 6 Hz. This figure also illustrates that
the control systems only began to provide better accuracy on frequencies higher than 6 Hz.
Moreover, in higher amplitudes, the errors of the different applications were quite close.
The maximum experienced errors from the input acceleration amplitude on the highest
experienced amplitude for CHEAP, 393A03 and 356B18 were as low as 0.47%, 0.79%, and
2.33%, respectively.
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3.2.2. Effect of the Number of Sensors

In this section, the beneficial effects of adding an increasing number of averaged
sensors are studied in detail.

In Figure 5, estimated errors obtained for a different number of sensors in CHEAP are
compared. The Max and the Min in each graph represent the enveloped error for all the
possible sensor selections from the five available accelerometers (CHEAP represents the
proposed kit with five sensors). It is also worth mentioning that in this work only the data
outputs of Z-axis of MPU9250 sensors were used. Concordantly, the orientation of X and Y
axes of these sensors are not important in this work. They have been distributed with only
their Z-axis paralleled.

The results of the increasing number of sensors are presented in Figure 5, Figure 5a
(one sensor), Figure 5b (two sensors), Figure 5c (three sensors), Figure 5d (four sensors).
In all these figures, the horizontal axis presents the frequency of the experiment, and the
vertical one illustrates the MA error in percentage. The MA for 0.5 Hz is not presented
in Figure 5a,b because the system resolution for acquiring low acceleration amplitudes
was insufficient. In other words, Figure 5a,b do not have the outputs of the test with the
frequency of 0.5 Hz. The information of that test can be only analyzed and compared
through Figure 5c,d. This is because the inherent noise of one or two accelerometers cannot
be cancelled by FFT at 0.5 Hz. However, when three or more are used, noises can be
canceled and some output for 0.5 Hz is obtained.

The analysis of Figure 5 shows that, as expected, the error depends to a greater extent
on the number of sensors and the analyzed frequency. The errors of a system with one,
two, three, four and five (CHEAP) sensors during the test with the frequency of 1 Hz were
18.67%, 10.68%, 8.95%, 6.35% and 1.45% respectively. Therefore, it can be concluded that
lower errors are obtained when the number of accelerometers is increased, especially on the
tests with lower acceleration amplitude (less than 0.4 milli-g). Results in Figure 5 also show
that the part of the experiment which had the lowest frequency (0.5 Hz) could be considered
as the most important one for the following reasons. Firstly, the highest experienced error
appears there. Secondly, the lowest acceleration amplitude (0.1022 milli-g) is in this part of
the experiment. In a nutshell, locating this low-level acceleration amplitude (MA) from
the FFT evaluation was an opportunity to compare the resolution and accuracy of CHEAP
with a different number of sensors. It should be highly noted that in order to locate the
acceleration amplitude and frequency of an understudy signal from the FFT diagram, the
noise density of the accelerometer must be smaller than the amplitude of the signals being
studied. Consequently, the tests with one and two sensors did not have enough resolution.
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In other word their noise density was so high that the signal being studied could not be
located from the FFT output diagram.
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For a single MPU9250 accelerometer, the resolution for this part of the experiment
was not enough. The resolution of the kit with a single accelerometer appeared to be at
least 0.19 Milli-g. The amplitude of the needed signal was less than this resolution. As
a result, finding and reporting this signal from the FFT output was not possible. The
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resolution for the kit of sensors with two MPU9250 accelerometers was not entirely clear
either. This resolution was at least 0.13 milli-g, which is still 0.03 milli-g higher than the
value of the captured signal. The resolution for the kit of sensors with three MPU9250 was
about 0.10 milli-g. As a result, finding the amplitude of this part of the experiment was
still impossible.

Results of the FFT application for the lowest tested frequency (0.5 Hz) for a different
number of sensors is presented in Figure 6a (four sensors), Figure 6b (five sensors).

For reporting the resolution of each system from the FFT diagram, the amplitudes
of acquired signals were investigated. It is known in this figure that the MA should have
a frequency of 0.5 Hz. As a result, any other wave can be considered as an unwanted
signal, and the highest amplitude among these unwanted signals is the resolution of this
system. Table 4 reports the IA for the signal with a frequency of 0.5 Hz as 0.1006 Milli-g.
The analysis of Figure 6a illustrates that with four MPU9250 accelerometers, the resolution
of the system is slightly less than 0.08 Milli-g. This resolution enabled locating the needed
signal from the FFT output diagram possible. This figure reports the MA of the signal as
0.10384 Milli-g, which has a 3.22% error from the IA. On the other hand, the analysis of
Figure 6b shows that the kit of sensors with five MPU9250 (CHEAP) provides a resolution
of around 0.06 Milli-g. In addition, it was deducted that CHEAP had an error of 1.55%
from the IA.

A kit of sensors with five MPU9250 (CHEAP) has a sampling frequency of 85Hz
and a resolution of 0.06 Milli-g. In addition, CHEAP provided exceptionally accurate
outputs for accelerations less than 14.5 milli-g. Moreover, CHEAP worked properly where
the commercial sensors were unable to provide any data whatsoever. As it was already
discussed, the two studied control systems were not able to provide MA of the needed
signal for the experiment with 0.5 Hz frequency. This was due to the low resolution of the
control accelerometers. From the FFT outputs for the experiment with 0.5 Hz frequency, it
was seen that 393A03 and 356B18 have a resolution of about 0.5 and 1.6 milli-g, respectively.

The reason why the averaged results of a number of accelerometers show a lower
noise density and higher resolution lies within the processing procedure. During laboratory
tests it was observed that all MPU9250 sensors have individual noises that changed from a
test to another. Deep study of the FFT process has helped the authors to come up with a
novel idea. By averaging the outputs of five MPU9250 sensors, a single output that includes
the inherent noises of the accelerometers and the signals can be obtained. Therefore, the
signals being studied are not dependent on the low-cost accelerometers, and they do not
affect the FFT process. However, since the noise density of final product has a complete
indirect relation with the number of averaged accelerometers, it is concluded that every
single accelerometer has a unique noise density. The FFT highlights the most repeated
signals (the signals being studied) and undervalues the signals that are repeated less such
as the inherent noises of the accelerometers that have been repeated one-fifth of the number
of times that the main signals have been repeated.
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3.2.3. Price Comparison

The overall price comparison of the used sensors and their equipment has been
presented in this section.

In Table 5, the price of the equipment of each of the studied acquisition applications is
presented. This Table includes the following information organized in columns: (1) System:
the application which uses the illustrated accelerometer, (2) Price of the used accelerometers:
the accelerometer of CHEAP was composed of five MPU9250 with a unitary cost of 5.76 €,
a 3.22 € multiplexor (TCA9548A) and a 4.03 € breadboard, (3) Price of the microcontroller,
(4) Price of the cable: the cable for all of the systems were three meters. CHEAP is
using normal cables, whereas cables required by the two control systems are special
noiseless cables, (5) Price of the real-time controller, (6) Price of the vibration input module,
(7) Dimension of the sensing part, (8) Weight of the sensing part. It can be deducted that
CHEAP is not much bigger or heavier than the control accelerometers. It has to be noted
that although the used software for the control systems was 3549 €, CHEAP used the
Arduino platform and Python, which are both free.

Table 5. Price comparison of the three systems.

System
Cost of the

Accelerometer
(€)

Cost of the
Microcontroller

(€)

Cost of the
Cable (€)

Cost
Real-Time

Controller (€)

Cost Vibration
Input Module

(€)

Dimension of
the Sensing
Part (mm)

Weight of
the Sensing

Part (gr)

393A03 710 - 75 2010 2050 28 × 28 × 56 210
356B18 1300 - 210 2010 2050 20 × 26 × 20 25
CHEAP 36.1 38.017 10 - - 50 × 50 × 10 357

From the analysis of Table 5, it can be seen that the price of an acquisition system with
a single 393A03 is 57 times higher than CHEAP. Nevertheless, the introduced equipment
for the control systems has the capacity for more sensors. In order to make a fair price
comparison between the control systems and CHEAP, the full capacity of the equipment
should be taken into account. Real-time control provides 12 channels, and the vibration
module has four channels. For a uniaxial control system on full capacity: 12 393A03
accelerometers, 12 sets of single channeled cables, one real-time controller, three vibration
input modules are needed. The overall price is about 17,580 € (VAT excluded). For a triaxial
control system on full capacity: four 356B18 accelerometers, four sets of three channeled
cables, one real-time controller, three vibration input modules are needed. The overall
price is about 14,200 € (VAT excluded). As it was mentioned before, three sets of CHEAP
can be programmed to make a triaxial sensor. As a result of this potentiality, 12 sets of
CHEAP can either be used as 12 uniaxial accelerometers or four triaxial accelerometers
with a proximate price of 1008.84 (VAT excluded).

In Figure 7, a comparison of the total price of the different measuring devices, when
each acquisition system has 12 channels, is presented. This comparison does not take into
account the price of the control system software nor the needed power supply for the
control sensors.

As shown in Figure 7, the total price of an acquisition system with 12 channels of
CHEAP is about 17 times lower than the control acquisition system with all the 12 uniaxial
(393A03) accelerometers and 14 times lower than the same system occupied with four
triaxial (356B18) accelerometers. Also, the needed equipment for running the CHEAP is
fewer than the control systems, which would make setting up the CHEAP easier and faster
than the control systems.
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4. Conclusions

In order to determine maintenance applications, minimize the reparation costs, and
guarantee the safety of the structures, Structural Health Monitoring (SHM) systems are
required. SHM usually require costly sensors and equipment. This issue was a very
significant drawback because the majority of structures were not economically eligible to
go through SHM evaluations. To solve this issue, in this paper, a Cheap Hyper-Efficient
Arduino Product (CHEAP) to record accelerations was introduced to decrease the cost
of the SHM applications. CHEAP consists of five MEMS accelerometers (MPU 9250), a
multiplexer, and an Arduino Due.

To validate the accuracy of CHEAP, its performance on laboratory conditions was com-
pared with that of two control accelerometers (393A03, and 356B18). The main advantage of
CHEAP in comparison with the commercial alternatives in the literature is its reduced cost.
CHEAP is 58 times cheaper than an acquisition system with a single 393A03 accelerometer.
For a fair comparison, all the available channels of the control acquisition system had to be
used. These channels could be occupied either with 12 uniaxial accelerometers (393A03) or
four triaxial accelerometers (356B18). It is known that 12 sets of CHEAP can both be used
as 12 uniaxial sensors and four triaxial ones. It was concluded that an acquisition system
with 12 online channels of CHEAP is 17 times cheaper than a control acquisition system
with 12 sets of 393A03 and 14 times cheaper than four sets of 356B18.

CHEAP and the control systems worked accurately in the frequency range of 2 Hz
until 10 Hz with no significant error from the input data. Although control systems were
unable to capture frequencies below 2 Hz, CHEAP was able to work on frequencies as low
as 0.5 Hz. CHEAP also showed a better resolution compared with the control systems.
Besides, it was illustrated that CHEAP had better accuracy on low acceleration amplitudes.
In addition, on accelerations lower than 14.5 milli-g, CHEAP worked more accurately than
the 393A03 accelerometer. It is to be noted that until 25.5 milli-g CHEAP worked more
accurately than the 356B18 accelerometer. The resolution of CHEAP was about 0.06 milli-g
while it was noticed from FFT outputs that the resolutions of 393A03 and 356B18 were 0.5
and 1.6 milli-g, respectively.

Adding an increasing number of averaged sensors is investigated to have beneficial
effects on the resolution and accuracy of CHEAP. It was seen on an experiment with a
frequency of 0.5 Hz that a kit of sensors with four MPU 9250 had a resolution of about
0.08 Milli-g while with five accelerometers (CHEAP), the resolution was around 0.06 Milli-g.

In a nutshell, this developed application could be used for structural health monitoring
of typical structures with a low budget; until now, monitoring them was not economical.
CHEAP can also enable the accurate monitoring of infrastructures with low frequencies.
Future research will aim to evaluate the performance of CHEAP in actual structures and
to compare its behavior against other commercial systems. Checking the performance of
cheap under higher frequencies and amplitudes is also envisaged.
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