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Abstract: In this paper, we will introduce a method for observing microvascular waves (MVW) by
extracting different images from the available images in the video taken with consumer cameras.
Microvascular vasomotion is a dynamic phenomenon that can fluctuate over time for a variety
of reasons and its sensing is used for variety of purposes. The special device, a side stream dark
field camera (SDF camera) was developed in 2015 for the medical purpose to observe blood flow
from above the epidermis. However, without using SDF cameras, smart signal processing can
be combined with a consumer camera to analyze the global motion of microvascular vasomotion.
MVW is a propagation pattern of microvascular vasomotions which reflects biological properties of
vascular network. In addition, even without SDF cameras, MVW can be analyzed as a spatial and
temporal pattern of microvascular vasomotion using a combination of advanced signal processing
with consumer cameras. In this paper, we will demonstrate that such vascular movements and MVW
can be observed using a consumer cameras. We also show a classification using it.

Keywords: vascular; blood; MVW; vasomotion

1. Introduction

In this paper, we will introduce a method for detecting microvascular waves (MVW)
extracted from the image in the video taken with consumer cameras. Fluctuations in micro
vessels are a dynamic phenomenon and can fluctuate over time at frequency below 1 Hz
for variety of reasons [1]. Further, its sensing is used for variety of purposes [2,3]. For those
purposes, the special device, side stream dark field cameras (SDF cameras) were developed
in 2015 for medical purposes [4].

On the other hand, Sugita et al. measured blood vessels from video images. Studies
by Sugita et al. have shown that it is possible to measure heart rate and blood pressure by
photographing the skin with high frame rate cameras at high frame rates and analyzing
color [5].

Therefore, it is possible to use this technique and use high frame rate cameras instead
of SDF cameras. In other words, in this study, while using regular video cameras, Sugita
et al. detected blood pressure and heartbeats, and this research enables a new application
to find the spatial frequency distribution of the movement of capillaries. In addition, for the
capturing of the autonomous movement of capillaries, we will provide new techniques to
use normal cameras without directly inputting detailed images of capillaries using cameras.
However, in our application, a high frame rate is not necessary.

The mechanisms to control such fluctuations are also studied in various
aspects [6–8] and there are proposals to detect such fluctuations, e.g., one using the laser
Doppler effect [9].

Our group is proposing the analysis of MVW as one of dynamic features of microvas-
cular events and developing an analysis method for it [10]. As mentioned earlier, blood
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flow in microvessels fluctuate over time, however, these fluctuations are also organized
as spatial and temporal propagations of waveform. MVW is a propagation pattern of
microvascular vasomotions and statistical image analysis helps the analysis of vasomotion.
Therefore, we aimed to implement the analysis method of video taken from above the skin
to analyze MVW.

In our method, MVW is analyzed through several steps of the image processing. The
diff images of captured video frames are calculated to enhance small color changes due to
blood flow.

On the skin of hands, mottled red colored patterns are observed on all areas of skin
and they change over time. Those are caused by the motion of capillary walls. Such a
fluctuation of mottled red patterns has a temporal and spatial structure similar to small
waves. This is not clear as you can see in the circle (a) in Figure 1. This is because it is
a still picture. However, in the video, you can see it as the motion of mottled red color
pattern on the skin. When they are observed, temporal changes of those mottled patterns
are flickering with period between several ten seconds and one minutes. The observation
of such spatial and temporal waveform of the blood vessel through the skin by regular
cameras had not been evaluated since now.
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Figure 1. Single frame image of captured video. The dashed circle (a) shows an example of a mottled
red pattern also found in other areas of the skin.

We will show two experimental results: (1) Image processing of video to extract
features which corresponds to the MVW. (2) Simple feature extraction and discrimination
using that feature extraction. The discrimination experiment is planned to integrate with
image processing of video though it is not yet fully integrated.

Our overall goal is to confirm the possibility of such imaging and measurement
of MVW.

2. Subjects and Data Acquisition Methods of the Experiment

Two groups of subjects participated in the experiment. Group 1 consists of three
young subjects. The ages were 32 ± 7 years old and consisted of one female and two males.
Group 2 is a group of elderly subjects. They were 75 ± 7 years old and all male. Those
people agreed to be subjects after being informed of the objective of the experiment. The
set of subjects was limited because the experiment was still in the preparatory stage of the
experiment. Further, our current goal is to detect MVW as a visual feature. The number of
subjects was sufficient for that purpose.

Videos were recorded on the centers of the hands of subjects from a distance of 20 cm,
using a video camera (Everio R, JVCKENWOD co., Ltd., Kanagawa, Japan). Figure 1 shows
a frame in the recorded video.

The experiment was carried out in the quiet room with room temperature of 24 ◦C
while hands were fixed on the table. Square areas of 3 cm and 5 cm were captured at a
length of 9 minutes each. The videos recorded by CE cameras were usually formatted as
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MP4 format (standard file format contain AVC/H264 video) which is widely used among
such products.

3. Feature Extraction through Image Processing

We implemented feature extraction using image processing using FFT (fast Fourier
transform) applied to the video records. The purpose of this process was to extract video
of vasomotion from captured video using FFT. We extracted all video frames and calcu-
lated FFT of entire video. We then applied several processing steps to calculate precise
differential images.

Since hands move slightly at all time during the recording, a simple differential image
may contain large noise energy caused by such a small movement. Therefore, motion
compensation is required to reduce such noise. To compensate for such small movements,
it is expected that correlation and transfer function of entire image will produce the
best result.

At first, we calculated a 2D (two dimensional) correlation of the entire image to find
rough alignment. It derived a pixel accuracy alignment of the image. Figure 2 shows
differential images calculated by pixel accuracy alignment using cross correlation.
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Figure 2. Differential image calculated by pixel accuracy alignment using cross correlation which
contains some noise because of sub pixel error.

That correlation contains multiple blurred peaks, instead of single sharp peak. We
selected the maximum point as initial alignment. However, using that point as alignment,
will leave subpixel misalignment error and cause additional noise corresponding to the
subpixel misalignment, as shown in Figure 2. The original image has dark or glowing
shadows along with lines in the original picture. Those are not difference in two frames
but caused by the subpixel misaligned of two frames.

Subpixel motion compensation is required to eliminate subpixel errors. The 2D
transfer functions, were calculated from the entire image and can be used for such subpixel
motion compensation. However, the entire component of transfer function may contain
meaningless components which correspond to the false similarity of other parts of the two
images. To eliminate such a noisy element, it is very effective to apply a mask to the entire
transfer function to pull out meaningful areas.

Figure 3 shows the calculation of the transfer function for performing subpixel mo-
tion compensation. (a) The 2D transfer function of reference frame to a target frame that
contains noise due to false similarity. The noise appears as dark mottled patterns spread
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across all area of the image. (b) The 9 × 9 2D square window was used to pull out mean-
ingful components of transfer function, shown as white rectangular images in the figure.
(c) Filtered component of transfer function masked by a 9 × 9 mask. By applying the mask
(b) on the 2D image (a), the noise component is eliminated and this transfer function will
give fine alignment of image of two frames.
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By applying the transfer function, as a side benefit, average illumination and ampli-
tude will be compensated within a single processing step of image processing, at the same
time as motion compensation. The resulting image is shown in Figure 4. White or black
shadows of edges were removed and only the difference of two frames remained. After
sub-pixel motion compensation, a clear, noiseless differential image was derived. The edge
noises, caused by misalignment, were effectively removed.
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Figure 4. Differential image calculated by subpixel accuracy alignment using cross correlation.

The spatial frequency spectrum of MVW was then calculated. Figure 5 shows calcu-
lated, two-dimensional auto correlation in frequency domain. There are 1024 × 1024 spatial
frequency components on two axes. Due to the nature of frequency spectrum, four quad-
rants of the frequency spectrums are symmetrical. Therefore, we will show only first
quadrant after this figure. We removed DCs (direct currents) up to 64 frequency lines.
Therefore, four corners of spectrum are black. These low frequency bands reflect the shape
of hands but do not correspond to the correlation of mottled pattern in nearby images.
Figure 6 shows the result of two-dimensional, spatial domain auto correlation of the images.
Since the four quadrants are symmetrical, the space is shown. In case of ‘Elderly1’, there is
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a bright pattern in upper left corner of the 2D spectrum. This is interpreted as it has peak
around 4 Hz.
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Figure 6. Two-dimensional auto correlation in spatial domain.

Figure 7 shows the autocorrelations for MVW of (a) young (left) and (b) elderly (right)
subjects. The resulting differences in the features of the 2D correlation pattern may include
spatial and temporal characteristics corresponding to the blood vessels through the skin.
We are not yet be able to analyze these features among different age groups. However, a
clear frequency spectrum of mottled pattern has been derived.
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4. Spatial and Temporal Feature Analysis

This chapter provides a simpler spatial and temporal analysis of the images to show
the possibility to use those mottled pattern for the biological sensing.

Features in the resulting 2D correlation pattern include spatial and temporal char-
acteristics of the color that pass through the skin corresponding to the blood vessels.
Furthermore, and from there, we can analyze biological properties. Observing the time
and frequency patterns of the image using 2D correlation is useful for detailed analysis.
However, it can also be performed with simpler spatial and time feature analysis.

In this simpler method, we extracted still image in every one second throughout the
entire video.

We examined average RGB (red–green–blue) values for the circular area within radius
R (red color) at the center of hands for each second. The average value for each second is
handled as time series and power spectrum of the temporal transition of value was calculated.
To compare different sizes of the area, we compared the r (radius) = 0,1,2,3,4,5,10,15 mm. For
r = 0, we do not actually use area with r = 0 (which is impossible) and pick the red color of
single pixel. We calculated low frequency band powers (0–0.25 Hz) and high frequency band
powers (0.25–0.5 Hz) for each different radius from power spectrum. Further, the number
of peak frequencies which exceeded average power were calculated for each radius. The
calculated number became a feature of spectrum which relate to roughness etc. The analysis
is compared for each color (R, G, B) because blood vessel visibility is different for each color.

Figure 8 shows the difference in power at each R value for r = 0 (corresponding to one
pixel). Solid lines represent a low frequency band and thin dotted lines represent a high
frequency band.

Figure 9 compares the changes in radius r and power in the high and low frequency
bands between the two groups. In the group of young subjects, the low frequency power
decreased in power due to the increase in radius which was large. Especially in the high
frequency range, the decrease was large. In young subjects, as the radius r increased, the
low frequency power decreased moderately, and the power of the high frequency band
increased. In contrast, in regard to the elderly subjects, as the radius r increased, power did
not change clearly.
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Figure 10 compares the number of peaks when the frequencies are divided into
smaller pieces. Younger subjects, as the radius r for red color increased, the number of
peaks increased. In the case of the green color, it decreased to R = 3 and then increased
again from R = 4. For the blue color, the number was less than that of red and green. On
the other hand, the number of peak frequencies in the elderly group increased more than
that of the young.
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5. Discussion

We aimed to demonstrate method of observing microvascular wave (MVW) by ex-
tracting differential image from the video captured by consumer cameras. We also tried to
show correlation between age groups and a features of MVW.

This study added new function of the spatial frequency distribution of the movement
of capillaries to the analysis of video images from regular video cameras. Further, regarding
the capturing of the autonomous movement of capillaries, we provided a new technique
to use normal cameras without directly inputting detailed images of capillaries using
SDF cameras.

In the feature extraction through image processing, as shown in Section 3, experimental
result to process image using FFT to derive differential image of the frames are shown.
Using FFT for the image processing to derive differential figure, the experiment has shown
the sufficient performance of transform function and effectiveness of sub pixel alignment.
Further, it was also confirmed that consumer cameras have performance to capture the
MVW. It was also shown that noise caused by misalignment was effectively removed by
the proposed method, by applying a rectangular mask in the frequency domain.

Compared to the existing device, the frequency spectrum of MVW was measured
without specialized lighting, and specialized a jig to fix the camera against hands or a faster
frame rate to observe MVW. However, we are not yet confirmed that extracted feature is
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adequate for the various classification or analysis. We need further experimented with
larger number of stimulus. This experiment only demonstrated the ability to extract the
frequency domain feature of MVW.

In Section 4, we presented experimental results of spatial and temporal feature analysis.
We have shown that the difference of elderly subjects and young subjects can be identified
by spatial and temporal feature analysis. Since integration of feature extraction is not
fully integrated, we still need work to integrate the discrimination method with feature
extraction to fully gain from the advantage of our feature extraction method.

The experimental results to find the correlation with age and MVW (Section 4) has the
following restrictions. Firstly, there is a problem of samples and selection. In this study, the
data of the subjects were measured using the probability sampling method, but it cannot
be denied that sampling errors occur. Therefore, it does not necessarily reflect the general
population or the appropriate population. The subjects of the study are limited to Asian
races due to their geographical area, and as such, there is a selection bias. Secondly, the
sump size of statistical measurements is inadequate. It is necessary to use a sufficient
sample size to assemble valid research results, but in this study, the samples are small and
it is somewhat difficult to identify important relationships from the data. Larger sample
sizes are required for larger populations to be suitable.

Because the number of younger subjects was only three, it is insufficient to state any
statistically reliable conclusion. Furthermore, the discrimination method is not yet fully
integrated with the proposed image processing method.

It has already been shown in the previous research [3] that the movement of capillaries
is useful for medical purposes. On the other hand, the movement of capillaries shown to
be able to be analyzed in this study is not as clear as that obtained by SDF cameras, but
only its spatial frequency distribution. In order to use it for medical measurement, it is
necessary to investigate the correlation between the observed frequency distribution and
the state of the living body. For example, investigating the correlation with age is the first
step, but the future direction is to determine the correlation between the spatial frequency
distribution of capillary movement, including this, and the biological state.

Our next step is to integrate image processing method with the MVW based discrimi-
nation method. It is also necessary to increase number of subject and achieve statistically
sufficient result.

6. Conclusions

It was shown that consumer cameras can be used to capture microvascular vasomotion
using image processing of video using FFT, which can effectively remove noise and error
because of camera motion.

From those results obtained by temporal and spatial analysis, it is considered that
with younger subjects, each pixel’s opening and closing of the skin blood vessels did not
synchronize and had different frequencies. That is a possible reason for the decrease in
power of a wider size of area. Especially true, for the low frequency band, more frequency
lines will be expected to be observed when the size of the areas are widened. In contrast,
it is mentioned that the opening and closing phase are synchronized in the elderly even
when observing the wider size of the area.

The limitation of this research is still the small number of subjects which makes
it difficult to derive a valid statistical result. Because we are currently focusing on the
extraction of the image of MVW, we are not yet comparing statistical analyses between the
MVW and clinical data using massive data. This is a future research goal.

We have shown the possibility that MVW can be detected and image-analyzed with a
simple device. As a result, various features appearing in MVW may be used in medical
applications in the future. In addition, although this research made it possible to detect
MVW using a simple imaging device by image processing, it is possible that the same
method can be applied to improve the performance of existing imaging devices. We plan
to continue research on these issues.
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