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Abstract: When recording seismic ground motion in multiple sites using independent recording
stations one needs to recognize the presence of the same parts of seismic waves arriving at these
stations. This problem is known in seismology as seismic phase picking. It is challenging to automate
the accurate picking of seismic phases to the level of human capabilities. By solving this problem, it
would be possible to automate routine processing in real time on any local network. A new machine
learning approach was developed to classify seismic phases from local earthquakes. The resulting
model is based on spectrograms and utilizes the transformer architecture with a self-attention
mechanism and without any convolution blocks. The model is general for various local networks
and has only 57 k learning parameters. To assess the generalization property, two new datasets
were developed, containing local earthquake data collected from two different regions using a wide
variety of seismic instruments. The data were not involved in the training process for any model to
estimate the generalization property. The new model exhibits the best classification and computation
performance results on its pre-trained weights compared with baseline models from related work.
The model code is available online and is ready for day-to-day real-time processing on conventional
seismic equipment without graphics processing units.

Keywords: seismogram; spectrogram; transformer; attention; CNN; deep learning; seismic phase;
real-time automation; classification; computational efficiency; local seismic network

1. Introduction

Phase picking is a routine task in the processing of local seismological monitoring
data. The complete automation of this task has become increasingly important, especially
in connection with the growth of seismic networks with inexpensive instruments and the
increase in the number of Internet of Things (IoT) devices [1,2].

Phase picking automation is a challenging problem. The number of lower magnitude
earthquakes has grown exponentially [3]; however, the amplitudes of many earthquake
signals are weakened to the level of seismic noise or less with decreasing earthquake magni-
tudes. Improving the completeness of the earthquake magnitude catalog is a central goal of
local seismological monitoring since a comprehensive catalog provides more information
about the seismic regime.

Another issue is the configuration of the seismic network. A wide variety of sensor
types, site soil conditions, and levels of seismic noise can exist inside a single network. Of
course, this can differ from one network to the next. Consequently, the registered shape of
a seismic signal can vary significantly, and a general algorithm is needed to address the
phase picking task in a manner meeting or exceeding human effort for data coming from
any local seismic network.
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Machine learning techniques allow us to fit the parameters of an arbitrary function
utilizing existing labeled data to make accurate predictions on new data coming from the
same complex distribution. Usually, phase picking automation is treated as a classification
task. One approach is to use split wave data on small windows (4–6 s) that contain
only one centered pick or noise, e.g., in [4,5]. Each window or sample is considered to
belong to one of three classes. The processing of small windows of waveform data is
more suitable for real-time seismic systems because ground motion data are received
continuously in small chunks. Thus, each successive chunk can be added to the previous
contiguous data to form the length of the window and be fed directly into the fitted
model for class detection. Since the window length is small, detecting the arrival of P/S
times from earthquakes occurs within a few seconds after the arrival of the data with
the registered phase. However, the exact detection time can slightly vary depending on
the implementation of a sliding window algorithm. For this approach, in most machine
learning architectures, convolutional neural networks (CNNs) have the lowest error rates
in terms of signal-to-noise discrimination [5]. Moreover, CNN-based models such as the
generalized seismic phase detection model (GPD) demonstrate efficiency for classifying
local seismic phases at the human performance level [4].

Another approach is to process earthquake length windows (30–60 s) with more com-
plex triggers, e.g., [6,7]. The output of this type of model is a probability distribution over
the window length. For example, PhaseNet [7] outputs P/S phases and noise distributions,
while the earthquake transformer model (EQT) [6] provides P/S phases and earthquake
detection triggers. These models have good accuracy when scanning archives, but this
approach is not suitable for real-time processing due to the required long input window
length. However, this approach leads to complex models that are difficult to optimize in
terms of computational efficiency.

However, the generalization properties of machine learning models have not been well
tested or assessed [8]. Intuitively, the shape of seismic signals from local earthquakes must be
preserved from one network to another, even if they are affected by noise and other factors.
In this work, we aimed to create a model for accurately picking P and S waves from local
earthquakes in real time. To test the generalization property, we introduced two datasets that
contain P and S waves recorded from local earthquakes in different regions of the earth. That
data were not involved in the training process for any model to estimate the generalization
property. The models presented in the work have the best indicators of the accuracy of the
TOP-1 classification of seismic phases from local earthquakes for test datasets.

Typically, seismic data servers are not equipped with graphics cards or any special
hardware. We developed the most efficient model, suitable for use on the central processing
unit (CPU) during inference. On GitHub, we provided the model implementation, code
examples, helpful tools for scanning seismic archives, and pretrained most suitable weights.
In this way, it is possible to implement a phase recognition unit in real-time seismic data
processing systems, such as earthquake early warning systems, and in many seismological
centers that process data, to quickly inform about recent earthquakes and their impacts.

2. Materials and Methods

Recent advances in solving natural language processing problems applied to image
classification tasks have shown that transformer architecture with an attention mecha-
nism [9] can outperform state-of-the-art CNN-based models [10]. Moreover, the trans-
former architecture lacks some of the inductive bias inherent in CNNs [10]; therefore, the
transformer architecture is more generalized. To test the performance of the transformer
architecture, we developed a new model for phase classification of local earthquakes.

An overview of the model design is shown in Figure 1. We followed the original
image recognition model based on transformer architecture [10], with modifications specific
to the seismic data. The input sample is 4 s 3-channel 100 Hz waveform data recorded
by a local velocity seismograph. A raw signal from a digitizer was normalized by the
absolute maximum amplitude observed on any of the three components. All the data
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were detrended and high-pass filtered above 2 Hz. We removed the original date and time
stamps, so each entry started at 0 and had 400 samples in total.
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Figure 1. Seismo-performer model overview.

First, the spectrogram was computed as a 2D representation of the raw signal for each
channel. To this end, we successively applied the short-term Fourier transform (STFT),
calculated the magnitude to obtain the floating-point tensor after a complex STFT operation,
and finally, converted the magnitudes to decibels. Then, we normalized the data using the
maximum absolute scaler, as this leads to more stable training results. During the STFT
operation, seismology-specific parameters were applied (Table 1) to obtain an adequate
spectrogram that represents the seismic phases more clearly than the raw signal.

Next, we handled the spectrogram as an image similar to the vision transformer
approach [10]. The two-dimensional (2D) spectrogram x = RH×W×C was reshaped into a
sequence of flattened 2D patches xp = RN×(P1·P2·C), where H and W indicate the resolution
of the original spectrogram, C is the number of channels, P1 and P2 are the patch sizes along
the H and W dimensions, and N = (H·W)/(P1·P2) is the resulting number of patches. We
applied rectangular patches to the spectrogram, which differs from the squared regions in
the original vision transformation approach, as they lead to a more accurate classification
in our specific model.
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Table 1. The Seismo-Performer model configuration parameters.

Parameter Value

Number of FFTs 64
Hop length 16

Spectrogram dims (H, W, C) 22 × 33 × 3
Patch size 1 (P1) 22
Patch size 2 (P2) 3

Number of patches (N) 11
Projection dim (D) 48

Performer layers (L) 2
MLP hidden layer size 96
MLP output layer size 48

Number of attention heads 2
Dropout rate 0.1

Total trainable parameters 57, 123

Subsequently, we mapped the patches to D dimensions with a trainable linear projec-
tion to obtain embedded data with a fixed latent vector size as follows:

xp : RN×(P1·P2·C)·RN×D (1)

Next, we added a learnable classification token and position information to the em-
bedded patches as follows:

z0 =
[

x0
class, x1

p, x2
p, . . . , xN

p

]
+ Epos, Epos ∈ R(N+1)×D (2)

where x0
class is the classification token, Epos is the positional information, and z0 is the

resulting sequence that contains embedded patches with positional encoding.
The core block of the proposed model is the transformer encoder [9], which consists

of L layers following one another in a sequential manner,

z′l = MSE(LN(zl−1) + zl−1), l = 1, . . . , L (3)

zl = MLP
(
LN
(
z′l
)
+ z′l

)
, l = 1, . . . , L (4)

where LN is the layer normalization function, MSE is the multiple head attention, and
MLP is the simple feed-forward neural network with GELU [11] nonlinearity. To improve
computational efficiency, we replaced the original multiple head attention operation (MSA)
with the FAVOR+ mechanism (MSE) [12], which has linear space and time complexity to
form performer layers at the end.

Finally, we used the representation state of the classification token that passed through-
out the performer encoder to perform the classification step as follows:

P(P, S, N) = SoftMax
(

MLP–head
(

z0
L

))
(5)

where z0
L is the representation state of the classification token given from the performer

encoder output, and MLP–head is the feed-forward neural network with one hidden layer,
which has the same configuration to MLP inside performer layers. To treat the outputs of
the model as class probabilities, we applied the SoftMax activation function.

To configure the resulting model, we selected a rectangular patch size of P1× P2 = 22× 3,
with projection dimensions of D = 48, and L = 2 consecutive layers inside the performer
encoder. The MSE and MLP functions have their own parameters, such as the number of
attention heads and dense units. We set 2 heads for MSE. For the MLP and MLP–head hidden
layers, we picked an equal density of 96 units. The final Seismo-Performer configuration has
57, 123 trainable parameters (Table 1). To prevent overfitting, we added dropout layers with a
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constant rate (0.1) between the dense layers. In addition, a relatively small projection dimension
(D) is also an overfitting prevention mechanism.

The implementation of the model and its configuration, the pretrained best-fitted
weights, the code examples, and documentation are available online (see Data Availabil-
ity Statement).

To train and validate the model, we used 4.5 million 3-component 4 s seismograms
recorded in Southern California [13], as this is the largest available dataset of local earthquakes.
To additionally test the model, we used local earthquake data collected from two different
regions using a wide variety of seismic instruments. These data were not involved in the
training process so as to estimate the generalization property as accurately as possible.

The first region was Sakhalin Island (Figure 2A). This region’s local seismic network
extends along Sakhalin and is notably sparse. On average, earthquakes here are localized at
only 3 stations. Seismic stations are installed near settlements due to the need for a central
power supply and the availability of mobile network coverage. In general, these are noisy
stations. This seismic network was originally established to monitor seismic induction
in connection with oil and gas production in the northern Sakhalin region. The seismic
network is mainly composed of short-period sensors, such as Lennartz LE3D-Lite and
OSOP Raspberry Shake. We selected earthquakes that occurred between September 2006
and March 2021 and filtered out weak events below M1.0 or source depths ≥ 50 km. In
total, the dataset for Sakhalin after filtration contained 4702 local earthquakes (Figure 3A).
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The second region was located in the northern Caucasus in the center of Dagestan
(Figure 2B). This seismic network was created to monitor the seismic regime in the vicinity
of hydroelectric power plants. Each seismic station is equipped with a Guralp CMG-6T
broadband sensor. On average, earthquakes are localized by 6 or more stations. We used
data from January 2018 to June 2019 and the same filters used for Sakhalin to obtain
1750 events in total (Figure 3B).

To construct both datasets, we selected only those manually picked phases that were
recorded by a station with an epicentral distance of less than 300 km to track only local events.
For impulsive seismic noise sampling, a short-term average/long-term average (STA/LTA)
filter was applied to continuous data with a trigger factor equal to 3.5. We also verified that the
noise was not actually a seismic event. There was insufficient impulse noise for the Dagestan
dataset. To prevent class imbalance, we collected more noise samples by picking wave
windows starting 5 s before randomly choosing the P-wave pick. The summary information
about datasets is shown in Table 2. The Sakhalin and Dagestan datasets presented in this
work are available online in HD5 format (see Data Availability Statement).

Table 2. Summary of local earthquake datasets. Each sample is 4 s long at 100 Hz (400 points in total).
The data were high-pass filtered above 2 Hz, and a trend was removed.

Dataset Samples Per Class Total Samples Data Time Range Reference

Sakhalin 3.3 k 9.8 k 2006–2021 This work
Dagestan 9.4 k 28.1 k 2018–2019 This work
California 1.5 m 4.5 m 2000–2017 [13]

3. Results

To report the results, we trained the Seismo-Performer model several times. First,
we randomly split the seismograms from the California dataset (Table 2) into training
(80%) and validation (20%) sets. Then, the model was compiled with a cross-entropy
loss function and the ADAM optimization algorithm [14]. The model was trained using
mini-batches of 480 records and a learning rate of 0.001 on the NVIDIA Tesla P100-SXM2
graphical processing unit for approximately 3.8 h. The training process was terminated
after 48 epochs (full iterations through the training dataset) on average since there were
no performance increases in the validation data for the last five epochs. After completing
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the training, we evaluated the fitted model on the Sakhalin and Dagestan test datasets
and recorded the results. Then, we randomly partitioned the California dataset again
with a different random state, compiled, fit the model, and reported the results using the
same procedure as in the first step. The training process was completely stopped after
10 split/train iterations due to the absence of significant variability in the indicators during
the validation and testing of the data.

To further evaluate the generalization of the model, we performed the above training
procedure on a specific Sakhalin dataset and tested on all the data from California and
Dagestan. The training, testing, and validation code is available online as a Google Colab
notebook (see Data Availability Statement). We fixed random seeds to provide nearly the
same reproducible results, however, they may differ slightly due to the stochastic nature of
machine learning algorithms.

To compare the accuracy metrics of the Seismo-Performer model, we applied three
suitable models using the same input sample. First, we replaced the Performer block
with CNN after the spectrogram to build the Spec-CNN model. The accuracy metrics of
the spectrogram-based models were compared with the original CNN-based GPD model,
which is the state-of-the-art model for short window length raw seismic signal processing.
Since the code of the GPD model has not been updated for 3 years [15], we redeployed
this architecture in the latest version of the machine learning framework to speed up the
learning and inference times. We designated the reconstructed GPD model as a fixed GPD.
All these models were fitted using the same procedure as for the Seismo-Performer model.

To assess the accuracy of the models, the TOP-1 score was used. That measure checks
if the top class with the highest SoftMax value matches the true label. The TOP-1 validation
and test data accuracy for all the tested models are shown in Table 3. It can clearly be
seen that the spectrogram-based models outperformed the GPDs across all validation and
testing datasets. The difference in the accuracy of the validation data is less noticeable
because it comes from the same dataset as the training data for all models. The distinction of
the TOP-1 metric is clearer for the test datasets, which may indicate better generalizability
of the Seismo-Performer and Spec-CNN models. This is notable, although when training
on the Sakhalin dataset of only 7.84 k samples, the difference in accuracy rates for the test
data was much higher (Table 3, Panel B). Spectrogram models better learn the shape of
waveforms of local earthquakes even with small amounts of data and, therefore, tend to
be more general. To examine the differences in accuracy, we plotted the precision/recall
curves of the test datasets for all the models with various prediction thresholds (Figure 4).
Metrics are defined as follows:

PrecisionP =
TPPP

TPPP + FPPS + FPPN
, (6)

where TPPP is a true positive P-phase that is marked correct by the model and matches a
human label. FPPS is a false-positive P phase, classified as P, but in reality it is an S phase.
Additionally, FPPN is a false-positive P phase classified as P, but it is actually noise class.

RecallP =
TPPP

TPPP + FNPS + FNPN
, (7)

where FNPS is a false-negative P phase, which is designated by the model as S, but it is P.
Additionally, FNPN is a false-negative P phase, which marked a true P as some noise.
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Table 3. Comparison of the TOP-1 accuracy in percent (±std.dev.) and inference times on CPU1 in seconds on test datasets.
All models were fitted 10 times on the California (Panel A) and Sakhalin (Panel B) train sets with different random seeds.
We reserved 20% of the training dataset for validation at each iteration with different seeds.

Train Data (Frac.) Test Data (Frac.) Seismo-Performer Spec-CNN GPD-Fixed GPD [4]

Panel A
California (0.8)

Sakhalin (1.0) 90.69 ± 0.2 91.43 ± 0.2 89.21 ± 0.5 89.08 ± 0.9
Dagestan (1.0) 84.57 ± 0.7 85.32 ± 0.4 81.94 ± 0.9 81.11 ± 1.2

California (0.2) 2 98.71 ± 0.01 98.80 ± 0.03 98.63 ± 0.02 98.64 ± 0.06

Panel B
Sakhalin (0.8)

Sakhalin (0.2) 2 93.71 ± 0.4 95.18 ± 0.6 92.40 ± 1.1 93.37 ± 0.4
Dagestan (1.0) 83.63 ± 0.7 86.43 ± 0.5 73.03 ± 0.6 73.65 ± 0.5
California (1.0) 85.59 ± 2.1 85.05 ± 0.8 81.09 ± 1.0 82.31 ± 0.9

Parameters 57 k 176 k 1742 k 1742 k

CPU 1 inference time (s) during 24 h 3 ch archive
scan with 40 ms shift

56.2 ± 0.3 82.8 ± 0.3 89.7 ± 0.5 123.6 ± 0.4

1 Intel(R) Xeon(R) CPU E3-1270 under Linux Kernel-based Virtual Machine (KVM) with 2 virtual cores. 2 20% of the dataset was used for
validation during training.
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The precision/recall metrics for S phase were defined in the same fashion.
We can conclude that for all cases, the Seismo-Performer and Spec-CNN had signifi-

cantly better recall rates with about the same precision, compared with the GPD. This is a
significant finding that is detailed in Section 4.

To assess computational efficiency, we developed a miniSEED [16] archive scanner.
This tool processes 24 h, single-channel archive files, similar to those generated by the BUD
schema [17], which is a common way of storing continuous data from local instruments.
The scanner itself has many configuration options, explained in detail in the GitHub docu-
mentation (see Data Availability Statement). The most critical option is offsetting (shift) the
4 s sliding window. We chose 40 ms as the default and we explain our reasoning in Section 4.
An example of archive scanning using different models is shown in Figure 5. With this tool,
we measured the models’ inference times on a 24 h 3 ch archive with a sliding window shift
of 40 ms, using only the central processor unit (Table 3). The Seismo-Performer model was
more than twice as fast as the original GPD, and nearly 40% as fast as the fixed GPD. The
Seismo-Performer model is the fastest model with almost the same accuracy compared with
the Spec-CNN and, therefore, is the most suitable for day-to-day processing.
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Figure 5. An example of the model’s prediction during the processing of a 1 min seismogram. This is the NYSH seismic
station with a 3-channel component “ENZ” (East, North, Vertical) located 97 km from the epicenter of an M3.1 local
earthquake on northern Sakhalin [18]. “P”, “S” and “N” indicate the probability (SoftMax values) of predicting P/S phases
and noise, respectively. The red vertical lines are the manually picked P and S arrival times. The pentagrams show the
maximum SoftMax values for predicting the seismic phase class, which are nearly the same for each model.
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4. Discussion

For the short window length approach, each 4 s sample is considered to belong to
exactly one class. The main objective of this study was to accurately pick the arrival times
of seismic phases to utilize this information for further routine processing. To this end, we
implemented a sliding window method, and the 4 s window was shifted to smaller times,
in milliseconds, to form a series of overlapping 4 s samples. The sample with the maximum
SoftMax probability for a particular class, exceeding the configured threshold parameter,
is selected by the sliding window algorithm as the sample containing the seismic phase
(P or S). The final arrival time of a seismic phase is picked by a central point of the selected
sample since all picks were centered in the training set. All the models considered in this
study accurately pick an arrival time. The accuracy of the picking time is affected only by
the window shift parameter. For example, if we set a 10 ms shift, we can center pick more
precisely and, hence, can obtain more accurate pick times considerably close to those of
human ability. On the other hand, a very small shift results in more counts; for a value of
10 ms, we obtain 858,349 4 s windows in a 24 h seismogram case to feed to a model, which
affects the inference time. However, there is some inaccuracy in the predictions of a fitted
model, uncertainty in human labeling, time synchronization errors (especially in the case of
the Network Time Protocol), etc. Finally, we chose 40 ms as the default optimal shift value
(which led to a 4-fold decrease in the number of samples), which does not significantly
affect the errors in the localization of an earthquake source.

False positives are problems that occur when testing models with continuous data,
especially in noisy stations. This is not a special case for the models proposed in this
study and affects all existing models, including PhaseNet and EQT. This issue can be
corrected by using the prediction threshold parameter. However, false positives should be
distinguishable in terms of SoftMax probabilities and have lower values, compared with
true seismic phases. In this case, we can set the prediction threshold high enough to filter
out false positives. This is the reason the better recall rate (Figure 4) is so important. After
extensive testing of our models on continuous data, we chose 0.9997 and 0.9995 as the
default prediction thresholds for the P and S phases, respectively.

In regard to EQT, another state-of-the-art model using the long window approach,
since the framework propagates different methods of prediction, we resliced the Sakhalin
and Dagestan samples as follows: The records of the earthquakes were sliced to 1 min
lengths, totaling 2576 and 6898 samples from the Sakhalin and Dagestan continuous data.
To evaluate false positives more precisely, we added the same proportion of samples
with impulse noise picks and normal seismic noise from each source of the data. We
flagged true positives if the model predicted a phase within ±2 s of the true label and false
positives otherwise. The model accuracy was only evaluated on the P and S labels without
noise class. We used pretrained weights and the default settings of the EQT framework.
Eventually, we achieved 67.97% and 46.02% accuracy for the Sakhalin and Dagestan test
sets, respectively. These results are less general (Table 3, Panel A). However, EQT is a very
powerful tool, especially it has very low false-positive rates on seismic noise records (less
than 0.01%). Better results can be achieved by training this model on local earthquake data
only, such as Southern California data [13], and optimizing the prediction hyperparameters
(normalization, filtering, thresholds, etc.)

5. Summary and Conclusions

The new machine learning models were developed for accurately picking seismic
phases from local earthquakes on the level of human capabilities. The models process the
signal based on a spectrogram rather than raw waveforms. This method made it possible
to reduce the number of trained parameters and build more general models for recognizing
seismic arrivals. Using two new test datasets, the best P/S phase prediction accuracy for
the new technique is fully demonstrated. The Seismo-Performer is one of the proposed
spectrogram-based models that demonstrates the best computational efficiency through
the use of the attention mechanism.
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Since the models process 4 s input samples, they are suitable for real-time continuous
seismic data processing. The issue of false positives that occur when processing continuous
data can be completely solved by tuning the hyperparameters. With the supplied models
code, pretrained weights, and supporting tools, machine learning processing can be quickly
deployed to existing seismic data centers. In the case of Seismo-Performer, only the CPU
can be used without any expensive acceleration hardware.
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